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Abstract
Current research on discrete and rhythmic movements differs in both experimental procedures and
theory, despite the ubiquitous overlap between discrete and rhythmic components in everyday
behaviors. Models of rhythmic movements usually use oscillatory systems mimicking central
pattern generators (CPGs). In contrast, models of discrete movements often employ optimization
principles, thereby reflecting the higher-level cortical resources involved in the generation of such
movements. This letter proposes a unified model for the generation of both rhythmic and discrete
movements. We show that a physiologically motivated model of a CPG can not only generate
simple rhythmic movements with only a small set of parameters, but can also produce discrete
movements if the CPG is fed with an exponentially decaying phasic input. We further show that a
particular coupling between two of these units can reproduce main findings on in-phase and
antiphase stability. Finally, we propose an integrated model of combined rhythmic and discrete
movements for the two hands. These movement classes are sequentially addressed in this letter
with increasing model complexity. The model variations are discussed in relation to the degree of
recruitment of the higher-level cortical resources, necessary for such movements.

1 Introduction
In current research on motor control, a large portion of studies focuses on a relatively small
set of actions, most notably discrete prehension movements and rhythmic locomotion. With
a view to everyday behavior, these two classes of movement represent only a small section
of the rich movement repertoire of humans and animals. Furthermore, there appears to be a
conceptual gap between research focusing on discrete movements—movements bounded by
two rest intervals such as reaching, pointing, or aiming—and research focusing on rhythmic
movements—movements executed in a sustained manner with a repetitive pattern, such as
walking or drumming (Schaal, Sternad, Osu, & Kawato, 2004; Hogan & Sternad, 2007).
This gap is reflected in both the respective experimental methodologies and the theoretical
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approaches. This state appears unsatisfactory, as not only do many behaviors constitute
combinations of rhythmic patterns with discrete movements, as, for example, seen in playing
musical instruments, but also both types of behavior are ultimately controlled by the same
central nervous system.

Phylogenetically, rhythmic movements are old behaviors and are found in most species,
ranging from worms and insects to primates. These are mostly locomotory behaviors but
also chewing, rocking, and grooming. Discrete movements are pervasive in phylogenetically
younger species, particularly in primates with developed upper extremities, and are
controlled by more elaborate cortical areas (see, e.g., Kalaska, Scott, Cisek, & Sergio, 1997;
Desmurget et al., 2001; Shadmehr & Wise, 2005). In recent years, evidence has been
accumulated that the control of rhythmic and discrete movements is processed differently by
the central nervous system (Hogan & Sternad, 2007; Huys, Studenka, Rheaume, Zelaznik, &
Jirsa, 2008; Sternad, 2008). Behavioral studies (see, e.g., van Mourik & Beek, 2004;
Buchanan, Park, & Shea, 2006; Smits-Engelsman, Swinnen, & Duysens, 2006)
demonstrated that rhythmic movements between two targets are in general more accurate
than corresponding isolated discrete movements. These results make the hypothesis that
rhythmic arm movements are concatenations of discrete submovements unlikely. In support
of this inference from behavioral data, Schaal et al. (2004) presented imaging results
showing that the major areas activated in extremely simple discrete movements are the
parietal and prefrontal cortex typically associated with higher cognitive functions. In
contrast, rhythmic movements showed activation concentrated in the primary motor areas
and considerably less bilateral cerebellar activity.

In animals, the neural control of locomotion and other rhythmic activities is known to be
processed by dedicated low-level neural circuitries, the Central Pattern Generators (CPGs;
see, e.g., Marder, 2000; Marder & Bucher, 2001). In vertebrates, the first evidence for CPGs
was revealed by Brown (1914), who showed that cats with a transected spinal cord showed
rhythmic alternating contractions in ankle flexors and extensors (see also Duysens & van de
Crommert, 1998). These early documentations that the locomotory CPGs are located—at
least partly—at the spinal level were supplemented by further support from nonprimates and
primates, including humans (Cohen, Rossignol, & Grillner, 1988; Collins & Richmond,
1994; Dimitrijevic, Gerasimenko, & Pinter, 1998; Duysens & van de Crommert, 1998;
Swinnen, 2002; Kawashima, Nozaki, Abe, Akai, & Nakazawa, 2005). More recently, the
concept of CPG has been extended to rhythmic actions in the upper extremities (Dietz, 2002;
Zehr et al., 2004; Zehr & Duysens, 2004; White et al., 2008), suggesting the presence of
similar lower-level circuitries for voluntary rhythmic arm movements. These last findings
are in good agreement with the imaging results reported by Schaal et al. (2004), as far fewer
high-level cortical areas were involved in rhythmic compared to discrete movements.

Based on these neurophysiological findings, especially those on phylogenetically older
species where CPG circuitries are easily identifiable and separable, numerous studies have
successfully modeled CPGs. For example, Wilson (1999) reported a model of the lamprey’s
CPG, which drives the muscles generating swimming activities, and Vavoulis et al. (2007)
developed a model of the snail feeding network. Ijspeert, Crespi, Ryczko, and Cabelguen
(2007) used a network of extremely simple oscillators for a salamander robot that can
robustly walk and swim. For more complex circuitries, researchers have opted for more
phenomenological models, in which an abstract oscillatory structure captures the global
behavior (Buchli, Righetti, & Ijspeert, 2006). A common characteristic of various CPG
models is to separate the circuitry into two symmetrical and mutually inhibitory
substructures, that is, half-centers (Matsuoka, 1985; Nagashino & Kelso, 1991, 1992;
Grossberg, Pribe, & Cohen, 1997). These two half-centers can be viewed as drivers of a pair
of antagonistic muscles. While the presence of such half-centers has been established for
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“simple” species, there is only indirect evidence that such circuitries also exist in primates,
including humans.

The modeling of the cortical processing involved in the planning, control, and sensory
integration of discrete reaching movements has recently been reviewed in the context of
optimization principles (see Jordan & Wolpert, 1999; Wolpert & Ghahramani, 2000;
Todorov & Jordan, 2002; Todorov, 2004). The key principle in this approach is that the
central nervous system optimally extracts the information from priors and sensory inflow
and generates an end-effector trajectory that minimizes a given cost function. For instance,
minimizing movement jerk (third derivative of position) is one such optimality criterion that
has successfully accounted for the bell-shaped velocity profiles in simple reaching
movements (Flash & Hogan, 1985). While optimization approaches are successful for
discrete movements, it has not been discussed how the generative processing of discrete
movements can be related to rhythmic movements, which arguably exploit low-level
structures.

In the past decade, researchers have experimentally demonstrated that forearm movements
combining rhythmic and discrete components highlight some coupling between those two
units of action: the discrete movement is triggered during a limited phase window of the
rhythmic cycle, which is in turn reset by the discrete movement (Sternad, Dean, & Schaal,
2000; de Rugy & Sternad 2003). Moreover, recent investigations revealed that the
interaction between rhythmic and discrete components is necessary to finely control an
external object (a bouncing ball), either to correct for unexpected perturbations (Wei,
Dijkstra, & Sternad, 2007) or to adapt the control strategy to various movement frequencies
or visual feedback conditions (Ronsse, Lefèvre, & Sepulchre, 2008; Ronsse, Thonnard,
Lefèvre, & Sepulchre, 2008). Taken together, these findings suggest that even if they are
largely nonoverlapping primitives, discrete and rhythmic movements are combined in a
nonarbitrary manner by the central nervous system. The aim of this letter is to present a
modeling framework that explicitly cuts across the divide between discrete and rhythmic
movements. This model is based on a parsimonious half-center structure, whose mutual
inhibition ensures steady-state oscillations as long as it is provided with a tonic input.
Subsequently, we will show that this inhibitory structure can also be recruited for the
generation of discrete movements when the alternating activation of the antagonistic
muscles is decreased. Finally, our model embeds a coupling mechanism that can account for
the most fundamental coordination properties appearing in bimanual movements.

In conclusion, we aim at providing a comprehensive model to capture the low-level circuitry
of the motor apparatus. This model sheds some light on the physiology of the actual system,
arguing that the half-center structure is efficiently recruited in the generation of both
rhythmic and discrete movements. A simple coupling between two such structures can
account for some coordination findings in bimanual movements. The basic model is detailed
in the next section; sections 3 to 6 address movements with increasing complexity that this
model can simulate.

2 Modeling Approach
The modeling of an autonomous oscillator is usually captured by a set of nonlinear
differential equations ẋ = f(αf, x), where x denotes the state vector of the oscillating system
and αf the parameter vector. The function f is such that the limit cycle defined by x★(t + T)
= x★(t), ∀t ≥ 0 (T is the cycle period) is a stable attractor in the state space of x. In the case
of a CPG, the model also includes an input vector u, representing, for example, the global
contribution of synaptic inputs to the CPG neurons: ẋ = f(αf, x, u). For simplicity, we
assume that the system is linear in the input and that the input and autonomous contributions
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to the dynamical equations can be separated, ẋ = f(αf, x) + αuu, with αu weighting the input
contribution. Finally, it is also meaningful to integrate a coupling term to capture how two or
more of these structures “talk” to each other in order to synchronize their frequency or lock
their phase. For the ith oscillator, the model is as follows:

assuming that the coupling g, parameterized through the vector αg, can be isolated from the
autonomous dynamics. Accordingly, the vector xj denotes the state of any other oscillator
coupled with the one of interest (the ith). With a particular design of f and g, Haken, Kelso
and Bunz (1985) proposed a model based on the van der Pol and Raleigh oscillators that
capture the bifurcation route in phase stability occurring in human hand movements under
the influence of a scalar change in cycling frequency: both in-phase and antiphase
movements are stable at low frequency, while only in-phase movements remain stable at
high frequency. Similarly, Grossberg et al. (1997) designed a neural network of two
excitatory and two inhibitory neurons obeying the Hodgkin-Huxley membrane equation,
which displayed the same bifurcation route via particular coupling function g and
parameters αg.

2.1 Background: The Matsuoka Oscillator
We will use a simple CPG model that captures the basic properties for the generation of a
one-degree-of-freedom rhythmic movement, the half-center Matsuoka oscillator (Matsuoka
1985, 1987). This CPG model consists of two antagonistic (groups of) neurons and produces
rhythmic patterns with a tonic (constant) external input. The magnitude of this input
determines the frequency and amplitude of the output, such that the stable limit cycle of this
oscillator is not unique, but is shaped by the input. The Matsuoka oscillator has already been
used to model the rhythmic component in complex arm movements (Sternad et al., 2000; de
Rugy et al., 2003; de Rugy & Sternad, 2003), investigate the mechanisms of resonance
tuning in rhythmic movements (Williamson, 1998; Verdaasdonk, Koopman, & van der
Helm, 2006; Williams & DeWeerth, 2007; White et al., 2008), and produce coordinated
patterns in the musculoskeletal system of the lower extremities in human locomotion (Taga,
1995a, 1995b).

In the Matsuoka oscillator, the autonomous dynamics f are based on a piece-wise linear set
of differential equations modeling the dynamics of the neural discharge rates: the oscillator
consists of a pair of mutually inhibitory (groups of) neurons whose (average) rates of
discharge are denoted by ψi and ψj, respectively. The firing rates obey the following
equations:

(2.1)

where t1 is the time constant for the rate of discharge, β the constant of self-inhibition, and η
the constant of mutual inhibition. The symbol [•]+ = max(0, •) denotes that only positive
discharge rates are considered for mutual inhibition. The self-inhibition is governed by two
other state variables, ϕi and ϕj, which obey the following equations:

(2.2)
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These equations capture the well-known phenomenon of adaptation or fatigue (see, e.g.,
Wilson, 1999), whose time constant is t2. Adaptation refers to the fact that the rate of
discharge of a neuron whose external input u(t) is constant will first rapidly increase to a
maximum value (at a fast timescale governed by t1) and then gradually decrease to a lower
value (at a slower timescale governed by t2). Adaptation plays an essential role in the
generation of the oscillations by the Matsuoka oscillator (see Matsuoka, 1985, and
references therein).

The structure of the Matsuoka oscillator is very similar to other half-center CPGs (e.g.,
Nagashino & Kelso, 1991, 1992; Grossberg et al., 1997). Robust oscillations emerge as a
consequence of the balance between mutual inhibition (either direct, as in the Matsuoka
oscillator, or through an intermediate neuron, as in Nagashino and Kelso’s or Grossberg et
al.’s models) and self-inhibition (via adaptation, as in the Matsuoka oscillator, or through the
same intermediate neuron in Nagashino and Kelso’s or Grossberg et al.’s models). While the
models by Nagashino and Kelso (1991, 1992) and Grossberg et al. (1997) considered each
half-center as the pacemaker of one limb, we assume here that each of both half-centers of
the oscillator controls the activity of one muscle of the joint, whose outputs are opposing
(antagonistic) torques linearly dependent on the truncated rates of discharge (see Sternad et
al., 2000; de Rugy et al., 2003; de Rugy & Sternad, 2003). Assuming that ψi and ψj are
proportional to the torque generated in the positive and negative directions, respectively, the
total produced torque is then

(2.3)

where hψ is the torque gain. The torque is converted into effector velocity through a simple
inertial mechanical system,

(2.4)

where I and γ are the moment of inertia and the damping. This effector’s angular position,
velocity, and acceleration are given by θ, θ̇, and θ̈, respectively. For simplicity, we
neglected the passive stiffness of the effector, assuming that the equilibrium of the

mechanical equation 2.4 (i.e., ) is not confined to a single position θ̄, but can be
attained throughout a larger range (see, e.g., Esposti, Cavallari, & Baldissera, 2007). A
picture of this CPG driving the two antagonistic muscles of the elbow is represented in
Figure 1A.

More recently, the Matsuoka oscillator was extended with a term representing the feedback
information from the afferent pathways originating from the muscle spindles (Dimitrijevic et
al., 1998; van de Crommert, Mulder, & Duysens, 1998; Kuo, 2002; Buschges, 2005; Frigon
& Rossignol, 2006; Simoni & DeWeerth, 2007). One way to include this sensory feedback
into the firing rate equations (2.1) is in terms of a negative inhibitory influence (Williamson,
1998):

(2.5)

where σ quantifies the strength of this sensory coupling and θ★ is the reference position of
the output. This proprioceptive feedback is represented by the light gray path in Figure 1A.
Initially, such sensory input of the Matsuoka oscillator was studied to reproduce the energy
exchanges between the oscillator and the mechanical system that leads to frequency locking
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and resonance tuning (Williamson, 1998; Verdaasdonk et al., 2006; Williams & DeWeerth,
2007). Note that Taga (1995a, 1995b) used similar feedback terms to stabilize the
musculoskeletal system in his locomotion model, including the so-called global angle
between centers of pressure and gravity. Since the mechanical limb system (equation 2.4) is
not an oscillator (it does not include gravity or passive stiffness), there is no resonance
tuning, and the output frequency is determined only by the frequency of the CPG. Besides
this property, the extended system (equation 2.5) has additional advantages for the present
simulations: sensory feedback is undoubtedly present at the spinal level, and sensory
feedback stabilizes the average position around θ★ via an active stiffness mechanism.
Without this term, system 2.1 oscillates around an arbitrary position and is dynamically
unstable.

The Matsuoka oscillator produces an oscillatory output for a constant tonic input ui(t) = uj(t)
= uT. A typical input-state-output plot is shown in Figure 2 for t1 = 0.05 s, t2 = 0.125 s, uT =
1, β = 2.5, η = 2.5, σ = 1.5, hψ = 5 (arb. units), γ = 0.5Nm.s/rad, I = 0.08Nm.s2/rad, and θ★
= 0 deg. The parameters γ and I correspond to previously measured values for rhythmic
elbow movements (Bennett, Hollerbach, Xu, & Hunter, 1992). The time constants t1 and t2
are tuned such that the oscillation period lies around 0.5 s, with a plausible time course of
the adaptation. Moreover, it can be shown that both the period and amplitude of the steady-
state oscillation are dependent on the time constants t1 and t2 and the tonic input uT (see the
appendix).

2.2 Bimanual Coupling
This section proposes a design for the coupling function g, capturing how several oscillators
can “talk” to each other to synchronize their frequency or lock their phase. We will focus on
a network of two oscillators, each representing the CPG structure of a single limb. Based on
the single-limb equations, 2.2 to 2.5, we assume that the right limb is described by the
following state variables ψr,i, ψr, j, ϕr,i, ϕr, j, θr, θ̇r and the inputs ur,i and ur, j. Similarly, the
left limb is described by the following state variables ψl,i, ψl, j, ϕl,i, ϕl, j, θl, θ̇l and the inputs
ul,i and ul, j. For simplicity, we assume that the time constants t1 and t2 are equal for the two
limbs.

With a view to oscillator 2.5, three types of dynamical coupling g can be considered:

1. Following the principle of muscle homology (i.e., postulating that homologous
muscles are (partly) controlled by a common neural network in the brain), the
coupling should be at the level of the inputs: ur,i = ul,i and ur, j = ul, j. However this
coupling does not constrain the phase between the oscillators: relative phase does
not converge to one or several attractors, and the oscillators behave as two
independent units.

2. Matsuoka (1985, 1987) suggested a coupling at the level of the internal state
variables (e.g., discharge rates) when considering networks of more than two
oscillators. However, this type of network converges robustly to one particular
phase relationship, and the coexistence of two mutually exclusive attractors, such
as in-phase and antiphase, is very hard to obtain within a simple network structure.

3. The coupling can be at the level of the output variables θr and θl, suggesting a
connection between the two effectors via the afferent pathways. In the case of
rhythmic movements, in-phase and antiphase stability can be obtained via the
homologous coupling (θr with ψr,i and ψr, j, and vice versa) and the
nonhomologous coupling (θr with ψl,i and ψl, j, and vice versa), respectively (see
section 5).
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Due to the shortcomings of types 1 and 2, we focus on the third type of coupling. The
coupled Matsuoka oscillator is thus described by the following equations (only for the right
effector for brevity):

(2.6)

An equivalent system is used for the left oscillator. The mechanical systems are equivalent
to equation 2.4. The couplings introduced in equation 2.6 correspond to sensory couplings,
since the μ and ν terms depend on the position of the other limb. In equation 2.6, μ
parameterizes the homologous coupling (since μ and σ play similar roles for θr and θl in the
equation), and ν parameterizes the nonhomologous coupling (since ν and σ play opposite
roles for θr and θl in the equation). Similar to the feedback term σ introduced in equation
2.5, both μ and ν are inhibitory in equation 2.6. An overview picture of the coupled
oscillators driving the two elbows is shown in Figure 1B, with the bimanual coupling
represented by the dashed gray paths. In the following sections, two types of inputs to these
oscillators, tonic and phasic, will be used to simulate rhythmic and discrete movements,
respectively.

3 Unimanual Discrete Movements
As reviewed in section 2.1, the single-effector oscillator (see equation 2.5; not including
coupling terms) produces steady-state oscillations around its reference position θ★. This
mechanism has been exploited to generate rhythmic movements (see Figure 2). Discrete
movements—movements that are clearly delimited by pause intervals such as reaching or
pointing (Hogan & Sternad, 2007)—are another class of movements.

In this section, we will use the Matsuoka oscillator as a generator for discrete movements.
Since the Matsuoka oscillator is a simple model of CPG, which is supposed to lie at a very
low level in the motor pathway (at least partly spinal), we hypothesize that such a structure
cannot be bypassed in the generation of discrete movements. We will show that the mutually
inhibitory structure of the Matsuoka oscillator can be similarly constructive in the generation
of the alternating antagonistic muscular bursts as typical for discrete movements
(Wachholder & Altenburger, 1926; Sternad & Corcos, 2001). Our objective is thus to
demonstrate how the discrete movements generator could use an oscillatory CPG at the end
of its pathway.

3.1 Methods
One way to generate discrete movements with oscillators is by characterizing their
equilibrium points, that is, the fixed points of the state space for constant inputs (see, e.g.,
Schöner, 1990; Jirsa & Kelso, 2005). The equilibrium point or λ-model for human
movement control was initially proposed by Asatryan and Feldman (1965) and Feldman
(1966a, 1966b). More recently, other equilibrium point models have been developed to
study discrete and rhythmic movements (see, e.g., Jirsa & Kelso, 2005; Kistemaker, van
Soest, & Bobbert, 2007). In the case here, the equilibrium point is set through the reference
position θ★. The sensory inputs correcting for the difference between θ and θ★ in equation
2.5 are inhibitory, such that they make ψi and ψj negative in the absence of any external
input (ui = uj = 0). Given equation 2.3, negative rates of discharge cannot produce any
torque, such that the output θ will stay constant and will not converge to θ★. Stated
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differently, our model requires the design of inputs ui and uj that compensate for the
inhibitory influence of the sensory feedback and drive the output toward the equilibrium θ★.

A first way to compute the inputs ui and uj with the goal of producing a bell-shaped velocity
output is to invert the oscillator (equations 2.4 and 2.5). Using H to denote the transfer
function of the Matsuoka oscillator, that is, the frequency mapping between the inputs (ui
and uj) and the output (θ) the dynamical inverter G of this transfer function will ensure G ×
H ≃ 1 for a large frequency range. Figure 3A depicts examples of three typical bell-shaped
velocity profiles computed from inputs that were obtained through dynamical inversion. The
solid gray curves represent ui, and the dashed gray curves represent uj.

We do not want to suggest that dynamical inversion of the Matsuoka oscillator is explicitly
computed by the central nervous system in order to generate movements such as point-to-
point reaching (see Wolpert, Miall, & Kawato, 1998; Kawato, 1999; Todorov & Jordan,
2002, for contributions discussing the presence of inverse internal models in the brain).
However, we will use these “ideal” (meaning that these inputs generate a perfectly bell-
shaped velocity output) inputs for ui and uj to find a simple phasic input uP for both muscles
that generates an output with approximate bell-shaped velocity with very few parameters.
This fit was obtained by a product of two exponentials: one of the form (et τ1 − 1), which
models the rising time constant τ1, and one of the form e−t/τ2, whose time constant τ2
depends on the desired movement duration. In sum, this input corresponds to a filtered
decaying pulse as used by de Rugy and Sternad (2003) to generate ballistic discrete
movements from a similar model. The parameters have been obtained from fitting many
inputs ui computed by dynamical inversion (see Figure 3A). We propose the following
phasic input for both muscles: ui = uj =

(3.1)

where θ★ is the desired movement amplitude (and consistently the equilibrium point of the
inhibitory proprioceptive feedback), τ is the desired movement duration, and t0 is the
movement onset.

3.2 Results
Figure 3 displays three typical reaching movements obtained from different parameter
tunings and compares them with the corresponding “ideal” movement (i.e., a perfect bell-
shaped velocity trajectory of same amplitude and duration and their corresponding inverted
inputs). This “ideal” trajectory should correspond to one that minimizes jerk (third
derivative of position; see, e.g., Flash & Hogan, 1985; Hogan & Sternad, 2007). Note that
the reference position θ★ switches abruptly (step function) from 0 deg to its final value at
the movement onset: t0 = 0.5 s. The input up is equal for both muscles (see equation 3.1).
However, dynamical inversion predicts large differences between the “ideal” ui and uj for—
at least—the first movement phase. During this phase, the fit (see equation 3.1) is much
closer to ui than uj (see Figure 3A), thus closer to the input corresponding to the active
muscle (i.e., ψi; see Figure 3B). Nonetheless, this discrepancy between up and the “ideal” uj
will not affect the corresponding output very much. Indeed, the corresponding ψj is negative
in both cases during this first movement phase, and the model relies on the fact that negative
ψ’s are truncated to zero in both the torque generation and mutual inhibition. In sum, a
common input for both units is simpler than dynamical inversion and does not significantly
influence the position output if the fit is made with the input corresponding to the active
muscle.
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The EMG bursts in point-to-point movements are typically triphasic, arising from the
successive activation of the agonist (acceleration of the effector), the antagonist (braking),
and the agonist (stabilization). Figure 3B shows a similar sequence of activations. This is
due to mutual inhibition that attracts them into the oscillatory mode (as in sustained
rhythmic movements) and the exponential decay of the input that limits the number of bursts
to three. Our method thus generates terminated discrete movement while exploiting the
oscillatory structure (crossed-inhibition) of the Matsuoka oscillator. It is interesting to point
out that Wachholder and Altenburger (1926) already speculated that the triphasic sequence
of bursts was a consequence of the fundamentally rhythmic alternation of the antagonistic
muscles (see Sternad & Corcos, 2001, for the English translation).

Figure 3 illustrates that a large range of reaching movements can be generated from a simple
input, equation 3.1, and that the control of amplitude and duration can be determined
independently by θ★ and τ, respectively. In sum, equation 3.1 can be viewed as a simplified
implementation of a discrete movement inverter. Rather than relying on a complex
computational structure, it relies on two parameters, θ★ and τ, and therefore requires fewer
computational resources. The controller generates the phasic input on the basis of the
desired duration and amplitude, while the bell-shaped velocity profile emerges as a
consequence of the intrinsic sequential activation of the antagonistic muscles.

4 Rhythmic and Discrete Combination in Unimanual Movement
In this section, we describe simulation results that were obtained when combining rhythmic
and discrete movements within a single limb. An example for such type of movement occurs
in locomotion, where stepping over an obstacle corresponds to a change in the step length,
that is, a change in the average position of the effectors. Based on section 3, the reference
position (the average position θ★) of the ongoing oscillation is abruptly changed at some
arbitrary phase in order to elicit a discrete component to the ongoing rhythmic movement.
However, there is no need for compensating the inhibitory effect of the sensory feedback
with a phasic input, since the tonic input generating the rhythmic component already plays
this compensatory role. Since only the reference position changes in the simulations and the
tonic input remains constant, the proposed model can be viewed as a purely “equilibrium
point model,” keeping in mind that θ = θ★ is not a stable equilibrium point, but stabilizes
the average position of the oscillation. Simulation results will be compared to experimental
results from human performance as previously reported by Sternad and colleagues (Sternad
et al., 2002; Sternad, de Rugy, Pataky, & Dean, 2002; de Rugy & Sternad, 2003).

4.1 Methods
We simulated the following experimental results on a combined rhythmic and discrete
movement using the unimanual model, equation 2.5. A baseline rhythmic movement around
θ★ = 0 deg was generated with an amplitude of A = 20 deg—oscillations between −10 deg
and 10 deg—and five different periods: T = 0.4 s, 0.5 s, 0.6 s, 0.8 s, or 1 s. At a certain phase
of the rhythmic cycle, θ★ was switched abruptly (step function) to 20 deg, forcing the
oscillator to oscillate around this novel reference position of oscillations between 10 deg and
30 deg (see Figure 4).

For each of the five tested periods T, 100 movements were generated, for which the phase of
the abrupt switch in θ★ was randomly selected from the range of 0 to 2π rad with a uniform
distribution. We tested the validity of our model with respect to three main results from the
literature (Sternad et al., 2000, 2002; de Rugy & Sternad, 2003):

1. Regardless of the phase of the shift signal, the onset of the overt discrete movement
occurs within a finite phase window of the rhythmic cycle.
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2. The phase of the rhythmic movement is reset by the discrete movement.

3. The duration and the peak velocity of the discrete movement scale with the
rhythmic movement period.

In order to quantitatively evaluate and compare the simulation and human results, it is
necessary to define some variables. First, t0 defines the beginning of the cycle and is used as
reference time: it is the last time the position passes through θ = θ★ with positive velocity
before the perturbation (see Figure 4). ttrig and tdisc define the times when the discrete
movement was triggered and when the trajectory differed from a continuous rhythmic
movement with respect to t0. The difference threshold was set to 0.03 deg between the
normal and the changed trajectories. Consequently, the phases of stimulation and discrete
onset are defined as

(4.1)

The duration of the discrete movement is denoted by τdisc and is defined as the time between
the movement onset (defined previously) and the first peak in the following oscillation: the
end of the discrete movement.

For the 500 simulated movements (5 periods T × 100 phase onsets), we calculated φdisc,
τdisc, and the velocity peak during the discrete movement: the time window defined by τdisc.

4.2 Results
The phase of the switch in θ★(φtrig) and the phase of the actual onset of the discrete
movement φdisc are compared in Figure 5A for T = 0.5 s. The relationship between the two
phases would be a straight line parallel to the dotted identity line if the discrete movement
started at a constant phase (corresponding to a constant delay for a given frequency) after the
trigger ttrig, that is, if the phase of the discrete movement onset did not depend on the
rhythmic cycle. This was the case for trigger phases in the approximate interval 0 < φtrig <
5π/4, where a small but constant offset is observed between φtrig and φdisc. However, for the
remaining phases, only one onset phase at φdisc ≃ π/6 was obtained.1 This result is
consistent with the finding that the phase of the discrete movement onset is dependent on the
trigger phase. Similar figures were obtained for the other four periods T. This result can be
directly compared with actual human data (Sternad et al., 2002; de Rugy & Sternad, 2003),
in which the distributions of the onset phase of the discrete movement also appeared to be
clustered around particular values.

To illustrate phase resetting after completion of the discrete movement, we compared the
duration of the discrete movement τdisc with the trigger phase φtrig (see Figure 5B, for T =
0.5 s). Once again, if no phase reset existed, this relationship would be linearly growing
between 0 and T, since the first peak after the discrete movement would not be constrained
by its onset. In contrast, Figure 5B illustrates that τdisc evolved along two “plateaus” of
almost constant value. Within each of these plateaus, the first peak in the oscillation
following the discrete movement appears after a constant time after the triggering the
discrete movement, hence demonstrating that the oscillator phase is reset by the discrete
movement.

1The fact that φdisc < φtrig in that window is not due to a reversal of the events causality. Even when φdisc < φtrig, the relationship
tdisc > ttrig obviously holds through the whole cycle. The fact that φdisc < φtrig in a certain phase window is simply due to the phase
definition, which is calculated modulo 2π (see equation 4.1).
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Figure 6A replicates the third result: the average duration of the discrete movement scales
almost linearly with the period of the rhythmic movement. Consistently, as shown in Figure
6B, the velocity peak during the discrete movement is higher when the duration is shorter.
This can be explained by the fact that the period of the rhythmic movement is determined by
the oscillator time constants (t1, t2; see the appendix). Consequently, since the discrete
movement is initiated by a step change in the reference position θ★ (switch of equilibrium
point), its dynamical profile is also determined by the parameters of the oscillator, in
particular, its time constants.

These results can be quantitatively compared with the results reported by Sternad et al.
(2002), since the tested periods T were the same and the mechanical parameters of the
model were tuned for the forearm. While the qualitative match is very good (a decrease of
the duration with T, and hence an increase of the velocity peak), Sternad et al. (2002)
reported that peak velocity in the discrete movement was about twice as fast in human
subjects as reported in the present simulations. Consistently, the duration of the discrete
movement was reported to be shorter than in the simulations. A potential reason for this
difference is the rather simplistic tonic input uT used in the present simulation. Actual
discrete movements could be accelerated by superimposing a phasic transient (e.g. equation
3.1) on the tonic input at the time of the discrete movement onset or execution.

5 Bimanual Coupling: The Test Case of Rhythmic Movements
Section 2.2 extended the model to couple two Matsuoka oscillators. Here we describe how
this coupled structure can produce bimanual rhythmic movements as a natural extension of
the unimanual case reviewed in section 2.1. The test case for the model will be two
prominent phenomena in rhythmic bimanual coordination: the stability of in-phase and
antiphase coordination and the transition from antiphase to in-phase as the movement
frequency increases. These two basic coordination phenomena cannot be inferred from
single-limb movements since the movements of the coupled limbs are constrained by each
other.

As demonstrated in many studies, relative phase between two symmetric rhythmically
moving effectors has the tendency to converge toward 0 rad (in-phase) or π rad (antiphase),
even though other modes also exist (Swinnen, 2002). From an egocentric frame of reference,
in-phase corresponds to simultaneous activation of homologous muscle groups, while
antiphase corresponds to alternating activation of these homologous muscle groups between
the limbs.

Research on rhythmic bimanual movements has shown that the in-phase mode is usually
more stable and less variable (Kelso, Southard, & Goodman, 1979; Haken et al., 1985;
Schöner & Kelso, 1988; Turvey, 1990; Beek, Peper, & Daffertshofer, 2002) and requires
less effort than the antiphase mode to maintain stability (Swinnen, 2002). Accordingly,
increasing the movement frequency ultimately results in a loss of stability of the antiphase
mode, such that the in-phase mode becomes the only remaining attractor. In this section, we
show how the interlimb coupling proposed in section 2.2 is used to reproduce these two
phenomena. Such results have already been obtained by the model of Haken et al. (1985) in
which both limb movements are modeled by nonlinear oscillators (see also Schöner &
Kelso, 1988; Kelso, 1995). Grossberg et al. (1997) obtained the same result with another
model composed of four neurons obeying Hodgkin-Huxley membrane equations. Our
objective here is to demonstrate that the same results can be obtained by a model that
separates mechanical and neural levels for which each state variable can be mapped onto
physiological and mechanical variables. While Grossberg et al.’s model necessitates
different parameters for the inhibitory coupling of the two half-centers to elicit either in-
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phase or antiphase as the unique attractor, we will demonstrate that both attractors coexist
with the same parameters’ vector through proper tuning of the sensory coupling terms in
equation 2.6.

5.1 Methods
Since this section is on rhythmic movements, the inputs of the two oscillators (see equation
2.6) are tonic: ur,i = ur, j = ur,T and ul,i = ul, j = ul,T (constant over time). Moreover, we will
focus on the case where these two inputs are equal ur,T = ul,T = uT. Since the time constants
t1 and t2 are also equal for the two limbs, only movements of same period (frequency) and
amplitude will be discussed here. For simplicity, we will consider only rhythmic movements

around . The in-phase mode corresponds to simultaneous activation of the
homologous muscles—(ψr,i and ψl,i) and (ψr, j and ψl, j)—such that θr = θl, while the
antiphase mode corresponds to simultaneous activation of the nonhomologous muscles—
(ψr,i and ψl, j) and (ψr, j and ψl,i)—such that θr = −θl. We will characterize the basin of
attraction of the in-phase and antiphase coordination patterns that defines the portion of the
state space in which the considered pattern acts as an attractor. The size of the basins of
attraction of the in-phase and antiphase coordination patterns can be tuned via the coupling
terms μ and ν of equation 2.6, respectively.

In order to analyze the phase relationship between the two coupled oscillators, we compute
their individual phase assuming that the oscillators’ outputs are purely sinusoidal (e.g., θr =
Asin (ωt + φr), θl = Asin (ωt + φl)). The phase difference is thus obtained by computing

(5.1)

where ⌊•⌋ represents the variable • normalized between −1 and 1. While neither the positions
nor the velocities are truly sinusoidal, equation 5.1 provides a reasonable estimate of the
phase relationship between the two signals. More important, Δφ = 0 rad if θr = θl (in-phase)
and Δφ = π rad if θr = −θl (antiphase), for all θr and θl periodic.

5.2 Results
The first result established in this section is the existence of two attractors in the oscillators’
state space, corresponding to the in-phase and the antiphase modes. Figure 7 represents the
position outputs (θr and θl) of two coupled oscillators converging to in-phase and antiphase.
At the beginning of the simulations, the interlimb coupling terms are set to zero (μ = ν = 0),
such that the two oscillators are independent. Even if the tonic input is the same in the two
oscillators in this condition, no particular phase relationship is dynamically stable. At t = 5 s
the coupling terms are switched on to μ = 0.75 and ν = 0.49, and the self-coupling term
simultaneously decreases from σ = 1.5 to σ = 0.75, such that σ + μ is a constant over time.2

All other parameters remain at the values given in section 2. In Figure 7A, the oscillators are
initialized with approximately 0.4π rad of phase difference. This phase difference belongs to
the basin of attraction of the in-phase mode (0 rad) when the coupling terms are switched on.
In contrast, the antiphase mode (π rad) is the asymptotic attractor when the oscillators are
initialized with a phase difference from its own basin of attraction, for example, with 0.8π
rad (see Figure 7B).

2This constancy assures that the empirical relationships between the oscillator parameters and the output amplitude and frequency (see
the appendix) still hold for the in-phase mode after the coupling is introduced (Figure 7A). In contrast, the coupling slightly modifies
the outputs’ amplitude and frequency if they are attracted into the antiphase mode (Figure 7B).
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Simulations have been executed for a wide range of initial phase differences and movement
periods T, and the results are presented in Figure 8. As revealed by this figure, the in-phase
and the antiphase modes are the sole attractors for the coupled oscillators. The basin of
attraction of the in-phase mode is large and encompasses initial phase differences of 0 rad
and 2π rad. The basin of attraction of the antiphase mode is narrower and is almost
symmetrical around the initial difference of π rad. Interestingly, only the in-phase mode
remains a stable attractor when the movement period becomes faster than a certain value
(around T = 0.7 s), as qualitatively observed in many behavioral experiments (see, e.g.,
Kelso et al., 1979, for finger-tapping movements).

This is further confirmed by Figure 9, which represents a bimanual rhythmic movement that
is performed at an increasing tempo (the desired period T decreases linearly over time
during the simulation; see Figure 9A). At the beginning, the antiphase mode is stable and
attracts the oscillators. However, with T decreasing below a certain threshold (about T = 0.6
s), the antiphase mode becomes unstable (the basin of attraction does not exist for T = 0.6 s
in Figure 8) and the outputs are rapidly attracted to the in-phase mode. Note that if the
period T is further increased after having been attracted into the in-phase mode, both
oscillators remain in-phase, since the in-phase mode is a stable attractor across the entire
range of periods.

6 Rhythmic and Discrete Combination in Bimanual Movement
This section combines discrete and rhythmic movements in a bimanual paradigm: one limb
executes a rhythmic movement, while the other limb executes a discrete movement. The
interactions between these two movements will reveal how the two are coupled to each
other. Similar protocols have been experimentally used to establish whether rhythmic and
discrete actions result from two different control regimes (Wei, Wertman, & Sternad, 2003)
and how their coupling is impaired when the corpus callosum is lesioned (Sternad, Wei,
Diedrichsen, & Ivry, 2007).

The coupling between rhythmic and discrete movements will be developed on the basis of
the structure presented in section 2.2: one limb is activated by the tonic input to produce a
rhythmic movement and the other with the phasic input (see equation 3.1) to produce the
discrete movement. The model will exploit the full capabilities of equation 2.6, and the
resulting trajectories are the most complex in the framework of this letter. The model
outcomes will be compared to two primary experimental results obtained with human elbow
movements (Wei et al., 2003; Sternad et al., 2007):

1. In contrast to unimanual rhythmic-discrete movements (see section 4.2), in
bimanual performance, discrete movements can be initiated at any arbitrary phase
of the simultaneous rhythmic movement.

2. The baseline rhythmic movement is perturbed by the onset of the discrete
movement.

6.1 Methods
The model used in this section is the bimanual model presented in section 2.2. First, one
limb (e.g., right) receives a phasic input uP = ur,i = ur, j (given in equation 3.1) to generate a
discrete movement. Second, the other limb (e.g., left) receives a tonic input uT = ul,i = ul, j to

generate a rhythmic movement around .

For simplicity, the simulations have been computed with only one period T for the baseline
rhythmic movement (i.e., with the nominal parameters t1 and t2 defined in section 2.1).
Similar to the unimanual case in section 4.2, we simulated a rhythmic movement oscillating
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between −10 deg and 10 deg and a discrete movement starting at  and terminating at

 (amplitude 20 deg).

Figure 10 depicts an example of a simulation of such combined bimanual movement. As in
Figure 4, ttrig and tdisc define the times of trigger and actual onset of the discrete movement
with respect to t0. The corresponding phases were calculated following equation 4.1. In
order to quantify the coupling between both units, the center-of-mass (COM) of each
activation burst was computed as the half-area point of each burst. A result reported in Wei
et al. (2003) is that the bursts of these two limbs following the discrete movement onset tend
to synchronize. This runs counter to the expectation that if the onset of the discrete
movement was uniformly distributed, the distance between them should also be uniformly
distributed. To quantify this tendency, ΔCOMbim was defined as the interval delimited by
the first COM of the discrete unit and the closest COM of the homologous unit in the
rhythmic effector, that is, the two diamonds in Figures 10B and 10C. The corresponding
phase was calculated following

For simplicity, the desired duration of the discrete movement was fixed (τ = 0.46 s).
Simulations were run 100 times with the phase φtrig uniformly distributed between 0 and 2π.
For each of these 100 movements, φdisc and φC OMbim were calculated.

6.2 Results
In contrast to results in the unimanual case, Figure 11A reveals that there is almost no
influence of the initiation phase φtrig on the phase relationship between the actual onset of
the discrete movement and the rhythmic cycle φdisc.3 Stated differently, the model is able to
generate the discrete movement almost independently from the rhythmic movement. No
local attractor appeared on Figure 11A (in contrast to Figure 5A), and the entire phase circle
emerged as a solution: only a small and rather constant phase difference is reported between
φtrig and φdisc. This delay is partly due to the time necessary to compensate for the inhibition
due to the activation of the other limb (see equation 2.6). Logically, this inhibitory effect is
slightly larger—around φtrig = π/2 rad and φtrig = 3π/2 rad.

This result is in good agreement with the data reported by Wei et al. (2003): no phase
dependence was observed in the initiation of the discrete movement, particularly when
subjects were instructed to focus their attention on the discrete movement.

However, there is some interaction between both effectors. The example represented in
Figure 10 illustrates that the rhythmic movement diverges from the baseline oscillation
(dotted lines) at the discrete movement onset. The rhythmic movement rapidly returns to
steady-state oscillation with a slightly modified phase. To quantify this interaction, we
computed the histogram of φC OMbim in Figure 11B. If there was no mutual influence
between the two effectors, the histogram should be flat since φtrig is uniformly distributed.
However, a peak appeared around 0 rad, which shows a tendency toward synchronization of
the bursts, as previously reported for human data (Wei et al., 2003).

3The same remark as in section 4.2 about the causality of events also holds here.
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7 General Discussion
This letter proposes a computational model of a pattern generator for rhythmic and discrete
movements that is based on a half-center structure. Although this model is formulated at a
phenomenological level, it nevertheless captures the main properties of the CPGs: (1)
generation of robust oscillations with nonrhythmic input, (2) organization around two
mutually inhibitory half-centers, and (3) the presence of local feedback loops simulating
afferent pathways that act as stiffness terms (Dimitrijevic et al., 1998; van de Crommert et
al., 1998; Kuo, 2002; Buschges, 2005; Frigon & Rossignol, 2006; Simoni & DeWeerth,
2007). This model is based on the Matsuoka oscillator, which has been used successfully to
simulate a large body of rhythmic movements (Matsuoka, 1985, 1987; Taga, 1995a, 1995b;
Williamson, 1998; Sternad et al., 2000; de Rugy et al., 2003; de Rugy & Sternad, 2003;
Verdaasdonk et al., 2006; Williams & DeWeerth, 2007; White et al., 2008). The objective of
this study was to shed light on the functional relevance of this oscillator structure for a low-
level circuitry coupled with the motor apparatus. We propose that this low-level circuitry is
recruited in the generation of rhythmic as well as discrete movements, two potentially
fundamental units of action (see Hogan & Sternad, 2007). It simulates the alternating
activation of antagonistic muscles and the decaying train of antagonistic bursts that are
measured in the execution of these two types of movement. Moreover, we tested the model
with several paradigms of increasing complexity and reproduced behavioral results reported
in the literature. The main features of the model architecture are outlined as follows:

• The model is based on the assumption that CPGs exist and are fundamental
components in the circuitry for human upper-limb movements. These CPGs are
supposed to be modulated by (local) afferent pathways.

• The model hypothesizes that these CPGs are not bypassed in the execution of
discrete movement but instead are recruited to generate the typical train of EMG
bursts measured in discrete movements.

• The model establishes that homologous and nonhomologous afferent coupling
between two oscillators is sufficient to reproduce the main findings of bimanual
coordination.

• The model reproduces specific findings on the coordination between discrete and
rhythmic movements, highlighting that these two movement types constitute two
units of action that interact with each other via the CPG circuitry.

The existence of CPGs has been identified in animals (both invertebrates and vertebrates) as
dedicated low-level (spinal in vertebrates) circuitries for the generation of a broad range of
rhythmic activities, including locomotion, respiration, and mastication (Marder, 2000;
Marder & Bucher, 2001). Claims that the locomotory CPGs are located—at least partly—at
the spinal level were supplemented by further support in nonprimates and primates including
humans (Cohen et al., 1988; Collins & Richmond, 1994; Dimitrijevic et al., 1998; Duysens
& van de Crommert, 1998; Swinnen, 2002; Kawashima et al., 2005). Supporting the
evolutionary view from quadrupedal to bipedal locomotion, later findings accumulated to
indirectly support for the presence of CPGs in the generation of voluntary rhythmic
movements by the upper limbs (Dietz, 2002; Zehr et al., 2004; Zehr & Duysens, 2004).
Interestingly, experimental studies on the mechanisms of resonance tuning further supported
the separation between neural (CPG) and mechanical oscillators for the upper limb in the
gravitational plane (Verdaasdonk et al., 2006; Williams & DeWeerth, 2007; Raftery,
Cusumano, & Sternad, 2008; White et al., 2008).

Finally, it has been established that sensory feedback also regulates the CPG activity and
assists in mediating interlimb coordination (Zehr & Duysens, 2004), highlighting the role of
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the afferent pathways in low-level sensorimotor loops (Dimitrijevic et al., 1998; van de
Crommert et al., 1998; Kuo, 2002; Buschges, 2005; Frigon & Rossignol, 2006; Simoni &
DeWeerth, 2007). The model presented in this letter clearly relies on the existence of CPGs
in the upper-limbs circuitry and proposes a conceptual model of these CPGs, including the
afferent pathway (see Figure 1A). For unimanual rhythmic movements, this model achieves
fine control of the main movement properties—amplitude, frequency, and average position
—via dedicated inputs. The movement amplitude and frequency were controlled by the tonic
input uT and the time constants t1 and t2 (see the appendix). The average position around
which the oscillation takes place was controlled by the (unstable) equilibrium point θ★,
defining the reference of the afferent pathway.

This reference position also plays a crucial role for the generation of discrete movements,
since it determines the stable equilibrium point of the model when the tonic input is zero.
However, due to the inhibitory contribution of the sensory feedback, a step change in θ★
while maintaining the input at zero is not sufficient to move the joints to another equilibrium
position. Instead, a particular phasic input is needed that can compensate for the sensory
inhibition and produce a bell-shaped velocity profile. This contrasts with the λ-model of
Feldman and colleagues (see, e.g., Asatryan & Feldman, 1965; Feldman, 1966a, 1966b,
1986; Latash, 1993; Adamovich, Levin, & Feldman, 1997), in which a movement is brought
about by a ramplike or N-shaped change in the r-command that produces a change in the
force and length characteristics of the effector (the so-called invariant characteristic). In our
model, the input is phasic of a shape given by equation 3.1 to produce a bell-shaped velocity
profile. However, other phasic inputs could be considered depending on the task’s objective.

Although the shape of the input is different, the general notion is consistent with the
equilibrium point hypothesis. Yet we do not rule out that this phasic input that drives the
effector from the old to the new equilibrium point may be adapted to different demands
using optimization principles (see, e.g., Todorov & Jordan, 2002). Interestingly, Liu and
Todorov (2007) reported how an optimization principle based on a speed-accuracy trade-off
accounts for the fact that perturbations introduced late in reaching movements are not fully
compensated, seemingly violating the condition of equifinality (see also Hinder & Milner,
2003). In our model, equifinality is not mandatory either, since the task’s objective (e.g.,
speed-accuracy trade-off) could require a phasic input uP to bring the output θ to a position
other than the equilibrium θ★.

In the generation of discrete movements, the optimization algorithms mentioned above
usually compute the corresponding torque as a succession of positive (accelerating) and
negative (breaking) pulses. Such alternating trains of pulses have also been observed in
actual data (Wach-holder & Altenburger, 1926; Sternad & Corcos, 2001). We showed that if
a lowlevel CPG is recruited for generating a discrete movement, its oscillatory structure
facilitates the alternating activations of the two antagonistic muscles. In the example given
here, only one common phasic input uP is computed rather than the desired torque of two
different muscles (see also de Rugy & Sternad, 2003). The λ-model also predicts the
generation of the three-burst pattern if one-incorporates a velocity-sensitive term into the
stretch reflex response (see, e.g., Adamovich et al., 1997). However, the mechanisms
involved are very different from our model: in the λ-model, this velocity-sensitive term
accounts modulates the stretch reflex to produce the three-bursts pattern, while in our model,
it is the low-level oscillatory structure of the CPG that gives rise to this pattern.

The presented mathematical framework also captures some fundamental bimanual
coordination properties. The exact source of the bimanual coordination has not yet been
clearly identified in the literature as the observed frequency and phase locking could emerge
as a consequence of neural cross-hemispheric interactions at the planning or execution stage,
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interactions in feedback processing, perceptual biases, or any combination of those (see
Swinnen & Wenderoth, 2004). The coupling introduced in section 5 suggested a
physiologically motivated model of coupled CPGs that can account for the preference for in-
phase and antiphase frequency locking in coordinated movements (Turvey, 1990; Kelso,
1995; Swinnen, 2002; Temprado, Swinnen, Carson, Tourment, & Laurent, 2003; Swinnen &
Wenderoth, 2004; Levin, Suy, Huybrechts, Vangheluwe, & Swinnen, 2004). The interlimb
coupling terms present inhibitory interference between the sensory feedbacks (afferent
pathways; see Figure 1B) of the two limbs and isolate the in-phase and the antiphase mode
as unique attractors. Importantly, by tuning these coupling terms, we reproduced the loss of
stability of the antiphase mode when movement frequency increases.

Other CPG networks have produced bifurcations (see, e.g., Nagashino & Kelso, 1991, 1992;
Grossberg et al., 1997), and one model has also been extended to generate discrete
movements through tuning of their equilibrium point (Jirsa & Kelso, 2005). While these
models rely on equilibrium-point switching by changing parameters, the mechanism we use
produces discrete movements by temporarily recruiting the oscillatory structure of the CPG.
Stated differently and going back to the formalism introduced in section 2, we generated
both discrete and rhythmic movements from the same parameter vector α by changing only
the shape of the external input u, while the other approaches manipulate the stability of
equilibrium points and limit cycles via the parameters vector. We thereby emphasize the
importance of the final stages of the motor pathways in shaping the output and deemphasize
the higher-level cortical routes that have been central in other work.

This of course does not deny the fact that cortical mechanisms and interhemispheric
coupling are important for bimanual coordination. Specifically, the corpus callosum has
been shown to be an important pathway for interhemispheric exchanges. For example,
acallosal patients have less difficulty in simultaneously producing movements with
divergent directional requirements (Eliassen, Baynes, & Gazzaniga, 1999; Swinnen, 2002).
A study by Sternad et al. (2007) examining the mutual influence of rhythmic and discrete
movements in bimanual coordination showed that acallosal individuals failed to show phase
entrainment at the initiation of a rhythmic movement with one limb while the other was
moving rhythmically; in contrast, the perturbation on the baseline rhythmic movement when
the other limb produces a discrete movement was similar to control subjects. These results
led to the conclusion that the coupling between the two effectors (the dotted gray lines on
Figure 1B) arises at several levels in the control loop. Moreover, this interaction was
different for rhythmic and discrete movements.

The approach using the half-center oscillator for the generation of both rhythmic and
discrete movements provides a mathematical formalism that is consistent with fMRI
imaging results (Schaal et al., 2004). Consistent with the higher computational demands of
the discrete movement generation, the fMRI results showed that cortical and cerebellar
activation of human subjects is more important in the execution of discrete wrist movements
(flexion extension) than during a similar rhythmic movement. Indeed in our model, the input
profiles for the discrete movement generator are more complex than the constant input
required for rhythmic movements. The additional circuitries involved in the discrete
movement execution could thus be dedicated to the computation and the timed generation of
this complex input. This and other behavioral findings have led to the hypothesis that
rhythmic and discrete movements are two fundamental and distinct units of action,
controlled by largely nonoverlapping circuitries. This viewpoint is consistent with the
simulations presented here on the coordination between rhythmic and discrete
submovements within a single or two different effectors. Bimanual simulations revealed that
the trigger of the discrete movement in one hand is relatively independent of the phase of the
rhythmic movement executed by the other hand, in contrast to the strong phase coupling that
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has been described when the two hands execute rhythmic movements. However, the
unimanual combination of a rhythmic and a discrete component does support the hypothesis
that these two units of action share a common circuitry (presumably the low-level CPG),
since the trigger of the discrete movement has been shown to be constrained by the phase of
the rhythmic cycle in both simulations and experiments.

In conclusion, we have developed a model for the generation of unimanual and bimanual
rhythmic and discrete movements. We proposed a parsimonious model that is
physiologically motivated by using a half-center CPG. Moreover, we reproduced a number
of experimental findings on the coordination of complex movements. More specifically, we
aimed at focusing on the biological relevance of our model and proposing a role of the CPG
in the generation of (coordinated) discrete movements.
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Appendix: Empirical Relationship Between the Rhythmic Output and
Oscillator Parameters

The empirical relationships between the parameters of the single-limb oscillator (see
equation 2.5) and the features of its output (mainly amplitude and frequency) are briefly
summarized.

First, the period T of the oscillation depends on only the time constants t1 and t2. Over the
range t1 = [15: 2.5: 250] ms, the following empirical correlation can be established:

(A.1)

with t2 = 2.5t1. Over this range, the output consequently oscillates with a period between
149 ms (for t1 = 15 ms) and 1597 ms (for t1 = 250 ms). The mean of the absolute error
between the estimated period, equation A.1, and the actual period is equal to 6 ms. Without
the sensory coupling (i.e., σ = 0 in equation 2.5), the relationship between T and t1 is close
to linear (Williamson, 1998).

Second, Williamson (1998) revealed that the amplitude of the torque ψT depends almost
linearly on the tonic input uT. In the model here, the relationship of the tonic input, the time
constant t1, and the position (i.e., output) amplitude Aθ (in degree) is as follows:

(A.2)

over the range t1 = [15: 2.5: 250] ms (with t2 = 2.5t1) and uT = [0.1: 0.05: 2]. The mean of
the absolute error between the estimated amplitude, equation A.2, and the actual amplitude
is equal to 0.452 deg.

Equations A.1 and A.2 permit a direct way to invert the Matsuoka oscillator to produce a
rhythmic movement with a desired period T and amplitude Aθ. Assuming that both the time
constants t1 and t2 and the tonic input uT are parameters of the oscillator, the inverse of
equations A.1 and A.2 is

(A.3)

(A.4)

Figure 12 illustrates that both the period and the amplitude of this oscillator can be changed
online. At t = 5 s, the period shortened to half its duration (from T = 1.2 s to T = 0.6 s) and at
t = 10 s, the amplitude is doubled (from Aθ = 8 deg to Aθ = 16 deg). Steady-state
oscillations are rapidly recovered, and the transitions are smooth.

In conclusion, both period and amplitude of the oscillatory output can be controlled through
inversion of the oscillator properties. Note that de Rugy and Sternad (2003) established in a
similar Matsuoka oscillator that the phase of the cycle at which the change in amplitude
onset actually produces a change in the rate of discharge pattern is in good agreement with
human data (see also section 4.2).

Note that Matsuoka (1987) showed that different parameters can tune the oscillation
frequency in either the time constants or the crossed-inhibition term η.
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Figure 1.
(A) Matsuoka oscillator as a model for the CPG driving the two antagonistic (cartoon)
muscles of the elbow generating single degree-of-freedom movements. Proprioceptive
feedback (in gray) provides inhibitory input to the CPG. More details can be found in the
text. (B) Complete model for the generation of bimanual rhythmic and discrete movements.
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Figure 2.
Simulation of a single degree-of-freedom rhythmic movement. (A) Tonic input uT. (B)
Muscles input (rates of discharge of the corresponding neurons ψi and ψj), which produce
the torque ψT. (C) Position output θ oscillating around the reference position θ★ = 0.

Ronsse et al. Page 24

Neural Comput. Author manuscript; available in PMC 2012 July 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Typical examples of discrete movements triggered at t = 0.5 s: (1) amplitude θ★ = 45 deg
and duration τ = 0.4 s, (2) amplitude θ★ = 45 deg and duration τ = 0.6 s, and (3) amplitude
θ★ = 25 deg and duration τ = 0.4 s. (A) Phasic inputs computed by equation 3.1 (solid
black) in comparison to the input resulting from a dynamical inversion of the perfect bell-
shaped velocity output (solid and dashed gray for the agonistic and antagonistic sides,
respectively). (B) Corresponding neuronal discharge rates ψi and ψj (only positive parts).
(C) Resulting trajectories (solid black) compared to the ideal bell-shaped velocity profile
(dotted gray). (D) Corresponding velocity profiles. Ideal bell-shaped velocity profiles are
again shown in dashed gray lines.
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Figure 4.
Example of a unimanual combination of rhythmic and discrete movement. (A) Positive
truncated neuronal discharge rates. (B) Resulting effector position θ with respect to the
reference position θ★. With respect to t0 (the beginning of the cycle), ttrig denotes the time
of the stimulus indicating a switch in θ★; tdisc denotes the onset time of the discrete
movement at which the trajectory actually differs from the original rhythmic movement
(dotted line); and τdisc denotes the duration of the discrete movement (between the onset,
defined previously, and the first peak in the following oscillation). On A, the diamond
highlights the ψi burst, which generates the discrete submovement.
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Figure 5.
(A) Phase of the onset of the discrete movement φdisc, with respect to φtrig, the phase of the
switch in the reference position θ★. (B) Duration of the discrete movement τdisc, with
respect to φtrig. These simulations have been obtained for T = 0.5 s.
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Figure 6.
(A) Average duration of the discrete movement τdisc with respect to the period T of the
baseline rhythmic movement. (B) Velocity peak of the discrete movement with respect to
the period T of the baseline rhythmic movement.
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Figure 7.
Simulation of bimanual rhythmic movements converging toward in-phase (A) or antiphase
(B) coordination. The plots depict the position output θr and θl for T = 1 s and Aθ = 12 deg.
The interlimb coupling terms μ and ν are turned on at t = 5 s in the simulations.
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Figure 8.
Simulation of bimanual rhythmic movements for a broad set of desired movement period T
and initial phase difference between the two oscillating units. The conditions for which
oscillators converge to the in-phase mode are denoted by the white area (delimited by the
dotted rectangle); if they converge to the antiphase mode, this is denoted by the black area.
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Figure 9.
Simulation of bimanual rhythmic movements with a decreasing movement period T. (A)
Desired period T. (B) Position output of the oscillators. (C) Phase difference between θl and
θr (computed by equation 5.1). A transition from antiphase (π rad) to in-phase (0 rad) occurs
when T goes below about 0.6 s.
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Figure 10.
Example of a bimanual rhythmic and discrete movement. Both inputs are represented in A:
uP is the phasic input of the discrete effector and uT is the tonic input of the rhythmic
effector. (B, C) Positive parts of the neuronal discharge rates for both effectors. (D)
Resulting effector trajectories with θr for the discrete and θl for the rhythmic unit. ttrig
denotes the time at which the discrete movement is initiated, while tdisc denotes the time at
which the position of the discrete effector deviates from 0. The circles and the diamonds
represent the COMs of the ψi (filled) and ψj (empty) bursts. ΔCOMbim is the time
difference between the first COM burst of the discrete effector, and the closest COM of the
homologous muscle in the rhythmic effector, that is, the two diamonds.
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Figure 11.
(A) Phase of the onset of the discrete movement φdisc, with respect to the phase of initiation
of the discrete movement φtrig. (B) Phase difference φC OMbim between the first discharge
burst of the discrete effector and the closest burst of the homologous muscle in the rhythmic
effector.
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Figure 12.
Simulation of a unimanual rhythmic movement. The plot depicts the position output θ when
the reference period is T = 1.2 s for the first 5 seconds of the simulation and T = 0.6 s for the
last 10 seconds. The reference amplitude is Aθ = 8 deg for the first 10 seconds and Aθ = 16
deg for the last 5 seconds.
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