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Between June and November 2010, a concerning rise in the number of cases of puerperal sepsis, a postpartum pelvic bacterial
infection contracted by women after childbirth, was observed in the New South Wales, Australia, hospital system. Group A
streptococcus (GAS; Streptococcus pyogenes) isolates PS001 to PS011 were recovered from nine patients. Pulsed-field gel electro-
phoresis and emm sequence typing revealed that GAS of emm1.40, emm75.0, emm77.0, emm89.0, and emm89.9 were each recov-
ered from a single patient, ruling out a single source of infection. However, emm28.8 GAS were recovered from four different
patients. To investigate the relatedness of these emm28 isolates, whole-genome sequencing was undertaken and the genome se-
quences were compared to the genome sequence of the emm28.4 reference strain, MGAS6180. A total of 186 single nucleotide
polymorphisms were identified, for which the phylogenetic reconstruction indicated an outbreak of a polyclonal nature. While
two isolates collected from different hospitals were not closely related, isolates from two puerperal sepsis patients from the same
hospital were indistinguishable, suggesting patient-to-patient transmission or infection from a common source. The results of
this study indicate that traditional typing protocols, such as pulsed-field gel electrophoresis, may not be sensitive enough to al-
low fine epidemiological discrimination of closely related bacterial isolates. Whole-genome sequencing presents a valid alterna-
tive that allows accurate fine-scale epidemiological investigation of bacterial infectious disease.

Puerperal sepsis (PS) is a postpartum pelvic bacterial infection
contracted by women after vaginal or abdominal delivery. The

condition is identified by fever at 1 day postpartum, although
more rapid and severe infection leading to death may occur. Pu-
erperal sepsis has been recognized as a major contributor to ma-
ternal and newborn morbidity since ancient times. The introduc-
tion of lying-in hospitals in the 1600s triggered a steep rise in
puerperal sepsis cases and deaths, which remained unchanged un-
til the late 1800s. Epidemics of PS were common in the 1600s to
1800s as the by-product of hospital practices in the days before
infection control and antimicrobial therapy (12).

Nosocomial bacterial infections are a worldwide problem re-
quiring constant and targeted surveillance. Antiseptic control
measures must be implemented to minimize the occurrence and
spread of such infections, a notion accepted only relatively re-
cently in the history of health care (12, 25, 27, 33). While death was
the outcome for most infected mothers in the preantibiotic era, PS
deaths are less common today, with most instances occurring in
developing countries (17). The WHO ranks puerperal sepsis as the
6th-highest cause of maternal mortality worldwide (34). Risk fac-
tors that contribute to infection include breakdown of hygiene
standards during delivery and postdelivery care, prolonged ma-
nipulation of patients during delivery, prolonged labor or rupture
of membranes, as well as poor sanitary conditions and inadequate
services within health facilities (23).

Group A beta-hemolytic streptococcus (GAS; Streptococcus
pyogenes) is the infectious cause of puerperal fever (13). S. pyo-
genes is a strictly human pathogen usually found in the skin and
throat and less frequently in the rectum and the female genital
tract (19). GAS of serotype M28 has been associated with recent PS
outbreaks (8, 14, 29). Pulsed-field gel electrophoresis (PFGE) and
random amplified polymorphic DNA analysis have been used to
determine the clonal relatedness of strains isolated in clusters of
PS infection (10, 24, 29). However, advances in whole-genome
sequencing technology provide an opportunity to overcome the

limitations inherent in these techniques, offering highly sensitive
and unequivocal sequence comparison at the single nucleotide
level (3, 9, 28).

CASE REPORTS

In Australia, deaths due to GAS puerperal sepsis are rare, but
outbreaks of infection still occur (26). In New South Wales, nine
cases of GAS puerperal sepsis were identified between June and
November 2010 from five different hospitals in the greater Sydney
area. The mothers presented high temperatures on the day after
childbirth, and all made a full recovery upon treatment. Given the
close temporal distribution of multiple PS cases, an investigation
of this potential outbreak was initiated. A total of 11 GAS isolates
were recovered from vaginal swabs and urine and blood samples
and subjected to molecular epidemiological characterization (Ta-
ble 1).

MATERIALS AND METHODS
Isolation and typing. The 11 GAS isolates were emm typed by sequencing
of the emm gene using the PCR amplification method of Beall et al. (4).
Bidirectional Sanger sequencing was performed, and consensus sequences
were submitted to the Centers for Disease Control and Prevention (http:
//www.cdc.gov/ncidod/biotech/strep/M-ProteinGene_typing.htm). Five
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isolates that were found to be emm28.8 were further characterized by
PFGE (refer to the supplemental material for details of PFGE method).

Whole-genome sequencing and comparative analysis. To investigate
the genetic diversity of the emm28.8 isolates within the infection cluster,
whole-genome sequencing was carried out using an Illumina HiSeq 2000
apparatus (Illumina, San Diego, CA). The previously sequenced emm28.4
strain S. pyogenes MGAS6180 (15) was also sequenced under the same
conditions to provide an internal reference for subsequent comparative
analyses. For each isolate, 1 million read pairs were mapped to the S.
pyogenes MGAS6180 reference genome (GenBank accession number
CP000056) using Burrows-Wheeler Aligner (BWA) (21). Putative single
nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were
called using bcftools (22) with settings that retained only high-quality
variants. Whole-genome phylogenetic reconstruction using maximum
likelihood was carried out with 186 high-quality SNPs. To identify any
large-scale differences, such as phage or genomic islands, we carried out a
de novo assembly of each genome using the Velvet program (35). This was
done using the 1 million read pair subsets previously selected for the
read-mapping step. Automated annotation was performed using the
RAST annotation server (2), and subsequent genomic comparisons were
undertaken using a combination of the software Mauve (11), Artemis (7),
and BRIG (1). Further details of the DNA preparation, sequencing, phy-
logenetic, and comparative genome analysis methods are available in the
supplemental material.

RESULTS
Initial typing of GAS puerperal sepsis isolates. To characterize
the relationship between the 11 GAS isolates in this cluster, we
initially employed emm PCR typing and PFGE. Isolates with dif-
ferent emm types (emm1.40, emm75.0, emm77.0, emm89.0, and
emm89.9) were each recovered from single patients (Table 1), rul-
ing out a single source of infection. The five remaining emm28.8
isolates were further characterized by PFGE. Four of five emm28.8
isolates presented an identical PFGE profile (Fig. 1).

Whole-genome sequencing to identify the relationship be-
tween emm28.8 isolates. For each GAS emm28 isolate, between
4.6 million and 15.8 million sequence read pairs were obtained,
corresponding to 920 and 3,160 mega-base pairs of sequence data,
respectively. As this amount of data exceeds the required sequence
coverage, we carried out subsequent analysis steps using 1 million
read pairs randomly sampled from each data set (approximately
100� read coverage relative to the reference emm28.4 strain S.
pyogenes MGAS6180 [15]). Reads were mapped to the reference
genome (Fig. 2). High-quality variants, including 186 SNPs and
33 small insertions/deletions (indels), were identified from the

read-mapping data. Out of a total of 186 SNPs identified com-
pared to the sequence of MGAS6180, only 72 are common to all
emm28.8 isolates, ruling out the scenario of the emm28.8 strains
having diverged from a recent common ancestor and spread from
one hospital to another (see Table S1 in the supplemental mate-
rial).

Three isolates are virtually identical according to our SNP anal-
ysis, with only two SNPs identified in PS001 compared to the
sequences of PS005 and PS006. To rule out the possibility of an
error in sequencing or read mapping, the nucleotide sequence
covering these SNPs was independently confirmed by Sanger se-
quencing. Notably, strains PS001, PS005, and PS006 were isolated
from two patients from the same hospital within a 2-day window.
In contrast, the emm28.8 GAS strains PS007 and PS008 were iso-
lated from different hospitals 3 and 5 months after PS001, PS005,
and PS006, respectively. Whereas PS007 and PS008 harbor a sim-
ilar number of SNPs compared to the sequence of MGAS6180

TABLE 1 GAS strains used in this study

Identifier
Hospital of
origin

Date of collection
(day/mo/yr) Specimen or site Patient emm type

Source
(reference)

MGAS6180 NAa NA NA NA emm28.4 CP000056 (15)
PS001 A 26/06/10 Vaginal swab 1 emm28.8 This study
PS002 A 26/06/10 Vaginal swab 2 emm1.40 This study
PS003 A 5/07/10 Vaginal swab 3 emm77.0 This study
PS004 A 6/07/10 Vaginal swab 3 emm77.0 This study
PS005 A 27/06/10 Urine 4 emm28.8 This study
PS006 A 26/06/10 Urine 1 emm28.8 This study
PS007 B 21/09/10 Blood 5 emm28.8 This study
PS008 C 11/11/10 Vaginal swab 6 emm28.8 This study
PS009 C 7/11/10 Vaginal swab 7 emm89.0 This study
PS010 D 20/11/10 Blood 8 emm75.0 This study
PS011 C 25/11/10 Vaginal swab 9 emm89.9 This study
a NA, not applicable.

FIG 1 PFGE profiles of the five emm28.8 isolates examined in this study, using
SmaI on the left of the marker lane (Mk) and AscI on the right.
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(107 and 119 SNPs), these isolates have a substantially larger num-
ber of unique SNPs (32 and 47 SNPs) and therefore are not clonal.

The relationships between all emm28.8 isolates are best visual-
ized as a phylogeny of the emm28.8 GAS strains based on the core
186 SNPs relative to the reference strain MGAS6180 (Fig. 3; see
methods in the supplemental material). Indel analysis also indi-
cates that PS001, PS005, and PS006 are closely related in compar-
ison to the other emm 28.8 GAS strains (see Table S2 in the sup-

plemental material). Thus, we hypothesize that PS001, PS005, and
PS006 are clonal and are likely the result of either patient-to-pa-
tient- or staff-to-patient-mediated transmission.

Identification of mobile genetic elements. Read-mapping vi-
sualization revealed that all M28-specific islands previously iden-
tified in MGAS6180, with the exception of the prophage 6180.2,
were also present in the five PS emm28.8 isolates. Of note, this
includes the 6180.RD2 region, which is known to carry several

FIG 2 Visualization of the reads selected for each strain mapped onto the S. pyogenes MGAS6180 reference genome. The innermost circles represent the GC
content (black), GC skew (purple/green), and rRNA operons of MGAS6180 (pink boxes). BRIG (1) shows the distribution of the number of reads for each
individual strain mapped onto the central reference using a window size of 500, arranged from inner to outer colored circles as follows: resequenced reference
MGAS6180 (pink), PS001 (yellow), PS006 (orange), PS005 (red), PS007 (maroon), and PS008 (purple). Additional strain-specific regions of difference (RODs)
(�PS008 and ICESpPS008) are represented as insertions. The outermost circle represents previously reported regions of difference in MGAS6180, namely,
prophage elements 6180.1 and 6180.2, prophage remnants 6180.3 and 6180.4, and regions of difference 6180.RD1 and 6180.RD2 (15) (black).
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virulence factors and surface proteins, including the R28 protein
that may play a role in vaginal carriage (15, 30, 32) (Fig. 2).

Identifying strain-specific accessory genomes and macrovaria-
tions, such as new mobile genetic elements, provides insight into
horizontal gene transfer and evolution of GAS (5, 31). In order to
identify regions that are not found in the reference genome, we
produced a de novo assembly for each isolate. The whole-genome
comparison of de novo assemblies also revealed the presence of
two putative mobile genetic elements in PS008 (Fig. 2). The novel
37-kb prophage �PS008 does not share significant similarity to
any previously described GAS prophage and does not carry any
characterized virulence factors. The 41-kb integrative and conju-
gative element ICESpPS008 is nearly identical to ICESp2905 (6),
although it harbors neither the erm(TR) nor the tet(O) antibiotic
resistance gene and instead carries putative virulence factors, in-
cluding genes encoding multidrug efflux proteins and a lipopro-
tein. Of note, ICESpPS008 is integrated at the 5= end of the RNA
uracil-methyltransferase rum gene, a well-known integration hot
spot for several mobile streptococcal elements (6).

DISCUSSION

Despite the persistence of puerperal fever as a primary cause of
maternal death, most of the predisposing factors leading to this
disease are preventable. Control of PS incidence depends on the
implementation of established techniques, including high stan-
dards of hygiene and cleanliness, strict adherence to asepsis, as
well as preventive antibiotic therapy (17, 18, 33). In this study, we
have demonstrated, using whole-genome sequence analysis, that
in-ward transmission of infection may still be implicated in the
spread of disease even within hospitals where hygiene standards
are of a high level.

Whole-genome sequencing and SNP analysis have proven use-
ful in discriminating between closely related isolates and allow
analysis of the epidemiology of small infection clusters (9, 16, 20).
This study shows that the 11 GAS strains recovered from a tem-
poral cluster of PS infection in New South Wales hospitals did not
represent a single clone and that most of the strains isolated from
different hospitals were nonclonal. However, three strains isolated
in the same hospital from two different patients were found to be
clonal. PFGE was unable to discriminate these GAS emm28.8 iso-
lates, whereas high-resolution SNP analysis allowed the deduction
of fine-scale epidemiological links.

Analysis of the genome sequence of the five emm28 strains
demonstrates variation in the accessory components of the ge-
nome compared to the sequence of the reference MGAS6180
strain. Although all emm28.8 strains carry the RD2 region, impli-
cated in the development of PS (15, 32), of MGAS6180, they lack
the 6180.2 phage of MGAS6180 that encodes two streptococcal
virulence factors, the superantigen SpeK and the phospholipase
SlaA. However, strain PS008 has acquired two novel mobile ge-
netic elements, the phage �PS008 and the integrative chromo-
somal element ICESpPS008, carrying uncharacterized putative
virulence factors. It has been established that horizontal gene
transfer provides the main means for the evolution of new invasive
clones via rearrangement of GAS genomes (5). Prophage se-
quences make up 10% of the GAS genome and account for most of
the gene variation among different M types (5). Assessing the im-
pact of such genome variation on the ability of these strains to
cause disease will likely allow better understanding of the viru-
lence potential of emm28 GAS.

Rapid, high-resolution genetic analysis of bacterial isolates is
important for determining the epidemiology of hospital infection
clusters. This study demonstrates the utility of whole-genome se-
quencing technology in the context of bacterial infection and
transmission. Platforms for rapid whole-genome typing of micro-
bial pathogens are becoming invaluable tools in epidemiological
investigations (9). While there are still some limitations to the full
integration of whole-genome sequencing as part of a standard
typing pipeline in clinical settings, such as data analysis and cost,
current efforts in implementing automated data analysis pipelines
will allow whole-genome sequencing to be widely used as a rou-
tine diagnostic tool. Ongoing advances in sequencing technology,
such as the Illumina platform, allow rapid sequencing of whole
bacterial genomes with high coverage and will soon obviate the
limitations of PFGE and other traditional epidemiological tools.
This study provides an exemplar for real-time surveillance and
management of suspected infection outbreaks.
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