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NO serves as a signaling intermediate
downstream of H2O2 to modulate dynamic
microtubule cytoskeleton during responses
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Although hydrogen peroxide (H2O2) and nitric oxide (NO) can act as an upstream signaling molecule to modulate the
dynamic microtubule cytoskeleton during the defense responses to Verticillium dahliae (VD) toxins in Arabidopsis, it is not
known the relationship between these two signaling molecules. Here, we show that VD-toxin-induced NO accumulation
was dependent on prior H2O2 production, NO is downstream of H2O2 in the signaling process, and that H2O2 acted
synergistically with NO to modulate the dynamic microtubule cytoskeleton responses to VD-toxins in Arabidopsis.

Reactive oxygen species including hydrogen peroxide (H2O2) and
nitric oxide (NO) are well established as signaling molecules,
mediating a wide range of cellular responses. H2O2 signals have
been shown to induce large transcriptional changes and cellular
reprogramming that can either protect the plant cell or induce
programmed cell death.1-4 Moreover, NO has emerged as an
important signaling molecule that mediates many developmental
and physiological processes.5-8 It has been demonstrated that
NO cooperates with H2O2 to activate the hypersensitive reaction
in plants.9-12 However, the interaction of NO and H2O2 is still
far from being clearly elucidated.13-17 We have recently demon-
strated that NO and H2O2 can act as an upstream signaling
molecule to modulate the dynamic microtubule cytoskeleton
during the defense responses to Verticillium dahliae (VD) toxins in
Arabidopsis.18,19 Here, we provide evidence that NO serves as a
signaling intermediate downstream of H2O2 to modulates the
dynamic microtubule cytoskeleton during the responses to VD-
toxins in Arabidopsis.

The Interaction of NO and H2O2 in VD-Toxins-Induced
Responses in Arabidopsis

The levels of NO and H2O2 in wild-type Arabidopsis leaves
were monitored by cell permeable fluorophores, DAF-2DA and
H2DCF-DA, respectively. The fluorescent intensity in leaves
significantly increased after treatment with VD-toxins (Fig. 1A, b
and h, B and C).

To investigate the interaction between the NO and H2O2

production, wild-type seedlings were co-treated with VD-toxins
plus DPI (a potent inhibitor of NADPH oxidase), DMTU (a
H2O2 scavenger), cPTIO (a NO scavenger) and sodium tungstate
(a potent inhibitor of nitrate reductase).

The VD-toxin-induced H2O2 production was almost comple-
tely prevented by supplements of DPI and DMTU, but only
partially restricted by supplements of cPTIO or sodium tungstate
(Fig. 1A and B). In contrast, the VD-toxin-induced NO produc-
tion almost completely blocked by supplement of DPI or DMTU,
cPTIO or sodium tungstate (Fig. 1A and C). This result showed
that NO and H2O2 were signaling molecules in VD-toxin-induced
responses in Arabidopsis, and that H2O2 was located upstream of
NO in this pathway. Thus, VD-toxin-induced NO accumulation
was dependent on H2O2 production in Arabidopsis.

NO and H2O2 Modulates VD-Toxins-Induced Dynamic
Microtubule Cytoskeleton

Previous experiments indicated that NO is produced mostly by the
nitrate reductase (NR) pathway in response to VD-toxins in
Arabidopsis leaves.20 The wild-type and nia1, nia2 NR-deficient
mutants of Arabidopsis were used to visualize microtubules in living
leaf cells. The results showed that VD-toxins induced a time-
dependent microtubule depolymerization, and that microtubule
depolymerization was more severe in WT than in nia1, nia2 NR-
deficient mutants, especially at the later stages (Fig. 2). The data
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indicate that NO accumulation was involved in modulating VD-
toxins-induced the dynamic microtubule cytoskeleton.

To further examine the role of H2O2 on NO modulation of
VD-toxins-induced the dynamic microtubule cytoskeleton, we
used different concentrations of exogenous H2O2 to treat the
wild-type and nia1, nia2 NR-deficient mutant seedlings. The
depolymerization of cortical microtubules increased with increas-
ing concentrations of exogenous H2O2; moreover, microtubule
depolymerization was more severe in WT than in nia1, nia2
mutants (Fig. 3). The results suggest that H2O2 modulated the
dynamic microtubule cytoskeleton through the activity of NR.
It is possible that VD-toxin-induced NO accumulation was
dependent on prior H2O2 production, and that H2O2 acted
synergistically with NO to modulate the dynamic microtubule
cytoskeleton responses to VD-toxins in Arabidopsis.

Additionally, time course experiments with fluorescent probes
showed that there was temporal separation of increases in H2O2

and NO, and NO production occurred after that of H2O2.18,19

Taken together, these data suggest that NO serves as a signaling
intermediate downstream of H2O2 to modulates the dynamic
microtubule cytoskeleton during the responses to VD-toxins in
Arabidopsis.
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Figure 1. Effect of an inhibitor of NADPH oxidase (DPI), a H2O2 scavenger (DMTU), a NO scavenger (cPTIO) and an inhibitor of nitrate reductase (sodium
tungstate) on VD-toxin-induced H2O2 and NO production in the leaves of wild-type Arabidopsis. (A) H2O2 and NO were detected by fluorescence
resulting from H2DCF-DA and DAF-2DA. Pictures were taken 60 min post-treatment. Bars = 20 mm. (B) The H2DCF-DA fluorescence intensities in the leaves
of wild-type Arabidopsis. (C) The DAF-2DA fluorescence intensities in the leaves of wild-type Arabidopsis. Confocal data are displayed as estimated mean
pixel intensities and associated 95% confidence intervals. Error bars indicate standard deviations. Values of each group with the same letters were not
significantly different (p, 0.05).
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Figure 2. Sequential images of cortical microtubule alterations induced by VD-toxins (150 mgmL–1) in the leaf pavement cells of the wild-type (Col-0) and
nia1, nia2 mutants expressing GFP–tubulin of Arabidopsis. Bars = 20 mm.

Figure 3. Disruption of the microtubule cytoskeleton induced by exogenous H2O2 in the leaf pavement cells of wild-type (a–d) and nia1, nia2 mutants
(e–h) Arabidopsis. (a) and (e) Control, leaves were untreated; (b) and (f) leaves were treated with 1 mM H2O2; (c) and (g) leaves were treated with 5mM
H2O2; and (d) and (h) leaves were treated with 10 mM H2O2. Pictures were taken 90min post-treatment. Bar = 20mm.
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