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We recently developed the first algo-
rithms specifically for plants to

predict proteins carrying peroxisome
targeting signals type 1 (PTS1) from
genome sequences.1 As validated experi-
mentally, the prediction methods are
able to correctly predict unknown peroxi-
somal Arabidopsis proteins and to infer
novel PTS1 tripeptides. The high predic-
tion performance is primarily determined
by the large number and sequence diver-
sity of the underlying positive example
sequences, which mainly derived from
EST databases. However, a few constructs
remained cytosolic in experimental vali-
dation studies, indicating sequencing
errors in some ESTs. To identify erro-
neous sequences, we validated subcellular
targeting of additional positive example
sequences in the present study. Moreover,
we analyzed the distribution of prediction
scores separately for each orthologous
group of PTS1 proteins, which generally
resembled normal distributions with
group-specific mean values. The cytosolic
sequences commonly represented outliers
of low prediction scores and were located
at the very tail of a fitted normal distribu-
tion. Three statistical methods for identi-
fying outliers were compared in terms of
sensitivity and specificity.” Their com-
bined application allows elimination of
erroneous ESTs from positive example
data sets. This new post-validation
method will further improve the predic-
tion accuracy of both PTS1 and PTS2
protein prediction models for plants,
fungi, and mammals.

In the post-genomic era, accurate predic-
tion tools are essential for identification of

the proteomes of cell organelles.2-5 Such
prediction methods have been developed
for peroxisome-targeted proteins of animals
and fungi,6-11 but had been missing speci-
fically for plants. For development of a
predictor for plant proteins carrying pero-
xisome targeting signals type 1 (PTS1),
we assembled putatively orthologous
plant sequences of Arabidopsis PTS1 pro-
teins (so-called positive example sequences)
and non-peroxisomal sequences (so-called
negative example sequences) and applied a
discriminative machine learning approach
to derive two different prediction methods,
both of which showed high prediction
accuracy. Upon application of these
methods to the Arabidopsis genome, a
total of 392 gene models were predicted
to be peroxisome-targeted. Extensive
experimental validations revealed a high
experimental verification rate of Arabido-
psis proteins previously not known to
be peroxisomal. Moreover, the prediction
methods were able to correctly infer novel
PTS1 tripeptides, which even included
novel residues.1

The high performance of the new
prediction methods was mainly based on
the large size (. 2,500 sequences) and
sequence diversity of the underlying data
set of positive PTS1 protein example
sequences, which mainly derived from
EST databases. However, ESTs are known
to contain a low but significant rate of
sequencing errors. Indeed, among 32 posi-
tive example sequences validated experi-
mentally, five reporter fusion constructs
remained cytosolic.1 Two cytosolic sequen-
ces (terminating with LNL . and LCR .)
could be identified bioinformatically as
erroneous sequences because (1) they had
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been assigned extremely low position weight
matrices (PWM) model prediction scores
and posterior probabilities and (2) their
C-terminal tripeptides deviated from the
emerging general pattern of plant PTS1
tripeptides ([x(KR)(LMI)., (SA)y(LMI).,
(SA)(KR)z., Table 1]. By contrast, the other
three positive example sequences shown to
be cytosolic1 could not be recognized as
erroneous by bioinformatics methods. Their
PWM model prediction scores and poster-
ior probabilities were only slightly below
threshold or in the prediction gray zone in
which additional true positive sequences are
found. Moreover, the sequences terminated
with C-terminal tripeptides that matched
the general pattern of plant PTS1 tripep-
tides (see above) and were closely related to
recently identified plant PTS1 tripeptides
(e.g., SEM. to SEL.; SGI. to SGL.,
Table 1). Hence, it would be desirable to
be able to apply bioinformatics including
statistical methods to identify and elimi-
nate putatively erroneous positive example
sequences containing sequencing errors
from starting data sets.

Experimental Validation
of Additional Positive Example

Sequences

To identify additional erroneous ESTs
among positive example sequences of plant
PTS1 protein homologs, we validated
subcellular targeting of further sequences
in the present study. One positive example
sequence terminating with the C-terminal
tripeptide, SEL ., had previously been
shown to target peroxisomes, charac-
terizing the tripeptide as a novel func-
tional plant PTS1.1 The presence of an
acidic residue at position -2 of the PTS1
tripeptide, however, remained atypical,
because typically positively charged resi-
dues, such as Arg and Lys, occur at the
same position in the large majority of plant
PTS1 sequences (92.03% of all positive
example sequences).

In the present study we focused on
experimental analysis of the three other
SEL . sequences for two major reasons.
First, SEL . can be created by single
nucleotide sequencing errors from SKL .

sequences by exchange of the first nucleo-
tide (A-to-G) of the two lysine triplets
(AAA and AAG) into glutamate triplets
(GAA andGAG). Second, because SKL .
is the prototypical PTS1 tripeptide and
frequently found in high-abundance
PTS1 proteins, the number of SKL .
sequences was exceptionally high among
positive example sequences (655 sequences,
26.65%). Codon similarity between SKL.
and SEL . and the extremely high
abundance of SKL . sequences were
predicted to strongly increase the prob-
ability that some SEL . sequences were
erroneous and cytosolic in experimental
validation studies. The rational is that
peroxisome targeting is generally expected
to be abolished by SKL . -to-SEL .
mutations because SEL . is considered
a weak PTS1 tripeptide that requires
specific targeting enhancing upstream
elements for peroxisome targeting, which
are generally not required and therefore
missing in SKL . sequences.

The three SEL-terminating EST exam-
ple sequences chosen for experimental

Table 1. Experimental validation of ambiguous positive example sequences. In addition to two obviously erroneous and four ambiguous positive example
ESTs experimentally validated in Lingner et al.1 three additional SEL . ESTs were selected as putatively erroneous sequences in the present study. All three
reporter protein constructs were shown to remain cytosolic (data not shown) and thereby validated as erroneous ESTs. Based on these data, three statistical
methods were evaluated for their ability to identify such erroneous sequences as outliers in OG-specific histograms of PWM prediction scores. The following
protein acronyms have been used: AGT, alanine (serine)-glyoxylate aminotransferase; DEG15, DEG15 endopeptidase; GOX, glycolate oxidase; GSTT1,
glutathione S-transferase isoform theta 1; MLS, malate synthase; SDRb/DECR, short-chain dehydrogenase-reductase B/2,4-dienoyl-CoA reductase; SCP2,
sterol carrier protein isoform 2; Uri, uricase. The following plant species acronyms have been used: Bd, Brachypodium distachyon; Ci, Cichorium intybus; Cpr,
Chimonanthus praecox; Gr, Gossypium raimondii; Fv, Fragaria vesca subsp vesca; Pn, Populus nigra; Rs, Raphanus sativus; So, Saccharum officinarum;
P, peroxisome; C, cytosol.

PTS1
protein

Species Sequence
type

C-terminal
decapeptide
fused to EYFP

PWM prediction model Experimental
subcellular
targeting

Figure

Prediction
score

Posterior
probability

Targeting
prediction

Ambiguous positive examples (Lingner et al.)1:

SDRb/DECR Gr EST TPVGVPSRKL . 0.367 0.233 C Cytosol Lingner et al.,1 Figure 2 Ae

SCP2 Fv EST SDIFPKPSEM . 0.270 0.020 C Cytosol Lingner et al.,1 Figure 2 Ad

AGT Gr EST NNIPMSPSGI . 0.175 0.001 C Cytosol Lingner et al.,1 Figure 2 Ac

DEG15 Rs EST LSRDVIPSEL . 0.410 0.485 C Peroxisome Lingner et al.,1 Figure 2 R

Obviously erroneous positive examples (Lingner et al., 2011):

Uri So EST TSLDPPMLNL . −0.161 0.0 C Cytosol Lingner et al.,1 Figure 2 Af

GOX_b Pn EST TCSRWDHLCR . −1.433 0.0 C Cytosol Lingner et al.,1 Figure 2 Ag

Ambiguous positive examples (this study):

MLS Ci EST VHHPKGPSEL . 0.682 0.997 P Cytosol This study (data not shown)

GSTT1 Cpr EST VRKQSTLSEL . 0.386 0.339 C Cytosol This study (data not shown)

SCP2 Bd EST PDIFTKPSEL . 0.380 0.304 C Cytosol This study (data not shown)
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validation derived from a homolog of
malate synthase (MLS) from Cichorium
intybus, a homolog of glutathione S-
transferase isoform theta 1 (GSTT1) from
Chimonanthus praecox, and a homolog
of sterol carrier protein isoform 2 (SCP2)
of Brachypodium distachyon. The proposed
peroxisome targeting domains (PTDs),
comprising the C-terminal decapeptide
of the translated ESTs, were attached to
the C-terminal end of the reporter pro-
tein, EYFP. The cDNAs were transiently
expressed from the cauliflower mosaic
virus (CaMV) 35S promoter in onion
epidermal cells that had been biolistically
transformed. Similar to EYFP alone, the
reporter protein constructs extended by
the three decapeptides terminating with
SEL . remained in the cytosol and
nucleus (data not shown). Extended
expression times up to 1 week at reduced
temperature (ca. 10°C) did not lead to
peroxisome targeting (data not shown).
Hence, the experimental data indicated
that, consistent with the initial hypothesis,
the three ESTs either contained sequen-
cing errors that prevented peroxisome
targeting or that they were not ortholog-
ous to the reference Arabidopsis PTS1
proteins.

In conclusion, the data by Lingner
et al.1 supplemented by those presented
in this publication confirmed that ESTs,
even though valuable and indispensible
resources to significantly enlarge data sets
of positive example sequences (e.g., for
plant PTS1 proteins approx. 8-fold,
87.2% ESTs1) contain a low rate of
sequencing errors that might reduce the
prediction accuracy of the PTS1 protein
prediction methods.

Identification of Erroneous ESTs
by Statistical Analysis

of Prediction Score Distributions
per Orthologous Group

To further improve the accuracy of PTS1
protein prediction methods, we aimed to
identify erroneous ESTs by mathematical
or bioinformatics methods. If the distri-
bution of the PWM model prediction
scores of all positive example sequences
were analyzed (bin width 0.05), the histo-
gram showed that the sequences clustered
around a mean value, resembling a normal

Gauss distribution with a relatively wide
peak (Fig. 1A). Outliers, i.e., sequences
with atypically low PWM prediction
scores that are most likely caused by
sequencing errors, were difficult to identify
by this general analysis. However, we

hypothesized that the PWM prediction
scores of example sequences of a single
orthologous group (OG) cluster around a
mean value similar to a normal Gauss
distribution with group-specific mean

Figure 1A–F. Distribution of PWM model prediction scores of positive example sequences and
outlier detection thresholds calculated by three different statistical methods for nine representative
OGs. Each individual plot shows the histogram of prediction scores for positive examples associated
with a particular orthologous group (OG), using the PWM prediction model (see also Table 1 , data
taken from ref. 1). The dashed red line represents the scaled density function of the normal
distribution whose parameters have been estimated from the prediction scores. The solid red
vertical corresponds to the mean of the distribution. The purple, green and black vertical lines
represent the rejection thresholds for putative false positive examples corresponding to the three
different statistical methods (see text). In the upper left corner of each plot the values of the
thresholds are provided along with the respective number of rejected examples in parentheses.
The following OGs are shown: (A) all sequences; (B) Acyl-CoA oxidase isoform 1 (ACX1); (C) Alanine
(serine)-glyoxylate amiontransferase (AGT); (D) Acetyltransferase (ATF); (E) Quinone oxidoreductase
(BSMDR); (F) Glutathione S-transferase isoform theta 1 (GSTT1); (G) Hydroxypyruvate reductase
(HPR); (H) Malate synthase (MLS); (I) Short-chain dehydrogenase-reductase B/2,4-Dienoyl-CoA
reductase (SDR-b/DECR); (J) sterol carrier protein isoform 2 (SCP2).
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values. In this case, statistical methods
might be applicable to identify outliers.

To this end, we analyzed the distri-
bution of prediction scores separately for
each OG containing more than ten
sequences (i.e., 43 PTS1 protein groups).
For several OGs such as acyl-CoA oxidase
isoform 1 (ACX1) and quinone oxido-
reductase (BSMDR, Fig. 1B and E) rela-
tively sharp score distribution peaks were
obtained, while for other groups such as
alanine(serine)-glyoxylate aminotransferase
(AGT) and acetyltransferase isoforms 1
and 2 (ATF1/2, Fig. 1C and D) the scores
were distributed over a wider range of
values. The histograms of a few OGs
such as AGT and malate synthase (MLS)
indicated atypical score distributions,
partly with the presence of a second
distribution peak clustering around a lower
PWM value (Fig. 1C,H). A few obvious
outliers of extremely low PWM prediction
scores could be identified by visual histo-
gram inspection. Notably, absolute PWM
prediction scores appeared insufficient to
identify outliers. For instance, one appar-
ent BSMDR outlier had the same PWM
score of 0.3 as several ATF sequences
located within the main Gauss peak of
ATF1/2 orthologs. Those six erroneous

sequences that had been experimentally
validated as cytosolic generally had been
assigned exceptionally low prediction
scores and were located as outliers out-
side of the fitted normal distribution
(Tables 1 and 2; Fig. 1C, F, H and J).

Next, we applied three statistical
methods to the histograms of the nine
chosen example OGs and compared their
ability in identifying apparent outliers
including the six cytosolic sequences in
terms of sensitivity and specificity. The
first statistical method applies the most
simple statistical rejection criterion, using
the standard deviation from the mean
value of a score distribution assuming a
normal distribution of the scores. Here,
the mean score value m is estimated from
all scores s1, …, sN associated with an OG

according to  

1

1
N

Si
i

N

. For many

OGs the mean PWM scores were high
(i.e., between 0.7 to 0.9, e.g., ACX1,
AGT, BSMDR, GSTT1, HPR, MLS,
SDRb/DECR, SCP2), while for other
OGs such as ATF1/2 the mean value
(0.4) was significantly lower, confirming
the hypothesis that the mean values
of PWM prediction scores are often

OG-specific, for instance, because the
proteins of some OGs preferentially con-
tain weak PTS1s. The (sample) standard
deviation s is then estimated according

to  




1

1
2

1
N

Si
i

N

( ) . In this case,

examples with a score of s , m-s are
rejected (Fig. 1). Upon method applica-
tion to the nine representative OGs,
between three (3.4%) to 13 sequences
(27.7%) were excluded with 61 out of 635
(9.6%) in total (Table 2). The excluded
sequences comprised all six cytosolic
sequences, showing that the method was
sufficiently sensitive on experimentally
validated sequences. In general the method
appeared well suitable in identifying out-
liers in most OGs but too insensitive for
hydroxypyruvate reductase (HPR) and too
unspecific for SDRb/DECR (Table 2).

As a second statistical method for
outlier detection, we used the maximum
positive deviation from the median score
of the distribution. Here, the (so-called
robust) median mmed corresponds to the
midpoint value of the sorted list of
example scores. In case of an even number
of examples mmed is computed as the mean
value of the two mid-point scores in this
list. Compared with the mean value (see
method 1), the median is robust toward
outliers in the score distribution, in parti-
cular if the outliers are located asym-
metrically, as is generally the case for
positive PTS1 protein example sequences
(e.g., HPR). The maximum positive devia-
tion spos is calculated as the difference of
the highest example score smax and the
median value (spos = smax2 mmed). Example
sequences with scores s , mmed 2 spos are
considered potential outliers and are
rejected. Upon application to the nine
representative OGs, between two (3.8%)
to 15 sequences (16.0%) were excluded
with 68 (10.7%) out of 635 in total. In
general, this method performed similar to
the first method in terms of correct
exclusion of all six cytosolic sequences
and the total number of excluded
sequences (68 compared with 61). This
second method, however, appeared to
perform better for HPR in being more
sensitive in identifying outliers, while it
seemed too unspecific for SDRb/DECR
and SCP2 (Fig. 1 and Table 2).

Figure 1G–J. For figure legend, see page 266.
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The third statistical method uses
quartiles of the score distribution to define
an acceptable minimum score value. A
quartile is defined as one of three points
that divide the (sorted) list of prediction
scores into four equally sized sets. As an
example, the first quartile border q25
incorporates the prediction scores associ-
ated with the first 25% of data points in
an (ascendingly) ordered list of values.
Outliers on the left-hand size of the score
distribution can then be identified by the
so-called “lower fence” (lf). The lower
fence value is defined as q25 2 1.5*IQR,
whereby IQR represents the interquartile
range between the third and the first
quartile border (q75-q25). Between zero to
14 sequences (14.9%) were excluded with
a relatively low total number of 44 rejected
sequences (6.9%). This statistical method
generally appeared well suitable in identi-
fying outliers but too insensitive for MLS
in terms of both total sequences and
cytosolic sequences (Fig. 1 and Table 2).

In summary, histogram analysis of
PWM score distributions is an important
method to computationally validate the
identification of both putatively ortho-
logous sequences per se and of sequences
containing sequencing errors. All three
statistical methods performed well on most
OGs but none on all OGs because they
were too insensitive or too unspecific on a
few OGs whose histogram shape morpho-
logy significantly differed from an approxi-
mate Gauss curve. However, for each
representative OG at least one of the three
statistical methods appeared to perform
well. Hence, by testing all three statistical
methods on all OGs and selecting the
most appropriate for exclusion of outliers,
very good performance in outlier identifi-
cation can be achieved.

Conclusions

Highly accurate prediction tools have
been developed for plant PTS1 proteins.
The development of similar tools for plant
PTS2 proteins and animal and fungi PTS1
and PTS2 proteins is in progress. The
development of these prediction tools
essentially relies of ESTs to increase the
number and sequence diversity of positive
example sequences. The drawback that
ESTs contain a low sequencing error rateTa
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can be overcome to large extent by post-
validation of positive example sequences in
an OG-specific manner. According to the
data presented in this study, the applica-
tion of the three statistical methods allows
identification and elimination of erroneous
ESTs from the present1 and future data
sets of positive example sequences (Fig. 2).
This post-validation will be instrumental
in further improving the prediction accu-
racy of both PTS1 and PTS2 proteins
from genome sequences.
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