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Plants emit volatile organic compounds (VOCs) as a means to
warn other plants of impending danger. Nearby plants
exposed to the induced VOCs prepare their own defense
weapons in response. Accumulated data supports this asser-
tion, yet much of the evidence has been obtained in labora-
tories under artificial conditions where, for example, a single
VOC might be applied at a concentration that plants do not
actually experience in nature. Experiments conducted out-
doors suggest that communication occurs only within a
limited distance from the damaged plants. Thus, the question
remains as to whether VOCs work as a single component or a
specific blend, and at which concentrations VOCs elicit insect
and pathogen defenses in undamaged plants. We discuss
these issues based on available literature and our recent work,
and propose future directions in this field.

Introduction

Plants are exposed to various stress factors such as disease, injury,
herbivory, extreme heat/cold, etc. Hence, they must adjust their
physiological state either in response to, or in preparation for,
such threats to their well-being and survival.1-5 To achieve this
adjustment, plants have developed a communication system to
transmit information based on volatile organic compounds (VOCs).

Plants emit VOCs under other circumstances besides the threat
of danger. Notably, flowers use VOCs to attract pollinators and
ensure reproduction.6,7 Induced VOCs provide more than just a
scent. In a damaged plant, VOCs are also used as nonvolatile
signals to transmit SOS messages within the plant itself. The
airborne signals are diffused to reach undamaged plants nearby,
giving them the chance to strengthen their own defense system.
The receivers are not limited to conspecies. Natural enemies can
also catch the SOS signals and locate the place of battle.8-13

By changing the volatile components and their blend ratios,
plants can create specific messages for communication. Earlier

studies mainly investigated the effects of individual VOCs on
plant defense systems because a single compound is easier to test
than a blend of compounds. However, there is increasing evidence
that VOCs work as blends in plant-plant communication. Thus,
we look at the current status of VOCs in studies on within-plant
and plant-plant communications to address the question, “Plant
communication: mediated by individual or blended VOCs?”

Plant-Plant Communication

The trigger for development in this field was the discovery that
undamaged poplar and sugar maple trees accumulated phenolics
and tannins when situated close to damaged trees.14 However, in
this original report, no active principle was identified. Methyl
jasmonate (MeJA) emitted by sagebrush (Artemisia tridentata) was
the first compound shown to render intact plants resistant to
herbivores by increasing the proteinase inhibitor production.15

Later on, other VOCs emitted by damaged plants were found to
influence the receiver plants, regardless of whether or not the
receivers were conspecies.16-21

Gas chromatography–mass spectroscopy (GC-MS) has been
employed to identify a variety of induced plant VOCs (Fig. 1).
One major group is the terpenoids, with subgroups named after
the carbon numbers. Although countless terpenoid species have
been discovered, only a limited number are involved in plant
communications. An equally major group is the green leaf
volatiles (GLVs) generated from lipids (Fig. 1). They are pro-
duced from C18 fatty acids, particularly linolenic acid, by the
action of hydroperoxide lyases and the subsequent shift of the
olefinic bond, reduction of the carbonyl group and esterifica-
tion.21 Furthermore, the small olefins ethylene and isoprene as
well as the oxylipin metabolites MeJA and cis-jasmone add to such
“ecology tuning” volatiles.

In Phaseolus lunatus, (E)-β-ocimene, (E)-4,8-dimethyl-1,3,7-
nonatriene (DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-
tridecatetraene (TMTT) (Fig. 1) are emitted in response to spider
mite infestation and these VOCs differentially enhance the
expression of LOX, FPS and some PR genes in intact leaves.22 On
the other hand, in Zeamays, GLVs induce the accumulation of
jasmonic acid (JA) with prolonged storage time as well as the
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Do not distribute.release of a greater amount of VOCs.23 Also in this plant species,
(Z)-3-hexenol induces the production of (Z)-3-hexenyl acetate
and methyl salicylate (MeSA) (Fig. 1) along with the expression of
LOX, PAL and maize proteinase inhibitor genes for defense
against herbivores.24 In Arabidopsis, GLVs and allo-ocimene
enhance resistance to pathogens such as Botrytis cinerea, suggesting
that VOCs elicit resistance not only to herbivores, but also to
pathogens.25,26

The phytohormones MeSA and ethylene are also volatiles
involved in defense. MeSA is emitted from the local infected
region to induce systemic acquired resistance (SAR) in the emitter
itself and receivers.27 Meanwhile, ethylene, which is known to
enhance maturation of various fruits, particularly underlies plant
disease response.28,29 Ethylene has also been found to amplify the
defense response induced by (Z)-3-hexen-1-ol and amplify the
emission of sesquiterpenes in Zeamays.30

cis-Jasmone (Fig. 1) is a metabolite closely related to JA.
Arabidopsis was treated with cis-jasmone and the induced gene
expression was investigated by microarray to show that this
molecule’s mode of action was distinct from that of JA in gene
induction.31 Application of cis-jasmone induces defense responses
such as synthesis of secondary metabolites and attraction of
natural enemies. Furthermore, this signal molecule directly reduces
the development of pest infestation, disease and weeds.32,33

Importance of Dose and Ratio

Previous literature as a whole demonstrates that induced VOCs
have the ability to enhance plant defense systems. Yet, many of

the studies treated their target plants with a single molecule, or
native VOC blends, but not with synthetic VOC mixtures of
known composition. Also lacking is the concentration-response
data to prove that VOCs enhance plant defense at concentrations
that plants are actually exposed to in nature. This has recently
come to the attention of scientists.34-36 For example, the efficacy of
cucumbers to attract melon flies varies among cultivars, and that
of grapes to attract the herbivorous moth Paralobesia viteana
depends on the VOC blend ratios.37,38 Also, changing herbivore
species influences the blend ratio in grapes.39

In our study, we selected the Pyrethrum daisy (Tanacetum
cinerariifolium; earlier species name: Chrysanthemum cinerariaefo-
lium) to examine the effects of wound-induced VOCs on the
biosynthesis of pyrethrins that are insecticidal metabolites of this
plant species.40 The pyrethrin amount in intact young seedlings
was increased by placing intact seedlings in the vicinity of
wounded seedlings. GS-MS detected significantly enhanced
emissions of (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)-
3-hexen-1-yl acetate and (E)-β-farnesene from the wounded
T. cinerariifolium seedlings. The blend ratio of the VOCs varied
dynamically with time after wounding. The five VOC concentra-
tions were quantified and mixed together at a ratio similar to
that observed 35–60min after wounding to examine the effects
of the VOC mixture on pyrethrin biosynthesis. One intriguing
observation was that the synthetic VOC was effective only at
the concentration at which it was observed in the glassware
used to quantify the concentration; both a 10-fold increase and
a decrease to 1/10 the concentration resulted in a marked
reduction in gene expression of 1-deoxy-D-xylulose 5-phosphate

Figure 1. VOCs used for different messages in plant-plant communications. Classified by oxylipin family, terpenoids and others.
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synthase (DXS), chrysanthemyl diphosphate synthase (CPPase)
and allene oxide synthase (AOS), which are involved in
biosynthesis.

Another interesting discovery in Pyrethrum was that the
wound-induced VOCs were effective on pyrethrin biosynthesis
only when all five components were mixed. Eliminating just one
component from the five-VOC mixture resulted in reduced gene
expression of 13-lipoxygenase as well as DXS, CPP and AOS,
demonstrating that both the concentration and blend ratio play
an important role in establishing plant-plant communications.
In sagebrush, VOC-mediated plant-plant communications were
observed only when the receiver plants were placed at a certain
distance from the emitter plants.12,41 These examples together
suggest that plant-plant communication works within a narrow
concentration range.

Pyrethrum also relies on within-plant communications to
control pyrethrin biosynthesis. Mechanical wounding in older
leaves led to increased pyrethrin I in younger intact leaves in the

same seedlings, but this effect was prevented by
wrapping the receiver leaves, suggesting the
contribution of wound-induced VOCs to the
increase of pyrethrin I in the intact receiver
leaves.42 Unlike the case of plant-plant commu-
nications, the concentration of induced VOCs
faced by intact leaves is rather high, and so even
a single VOC may work as a warning message
within wounded plants. Including T. cinerarii-
folium, more studies are needed to show that the
concentration of each VOC reaches the effective
concentration at intact leaves within damaged
plants.

Future Perspectives

Given the accumulated evidence, we can
conclude that both individual and blended
VOCs are important in plant communications,
but which is most important depends on the
concentration. Since the individual VOCs are
not species-specific, the blend ratio determines
the specificity of VOC-mediated plant-plant
communications in conspecies (Fig. 2A), redu-
cing the risk of eavesdropping by other species.
This has also led to insect-plant coevolution.
However, relying on specific VOCs can lead to
an inability to respond to herbivores that target
a broad range of plant species. To prepare a
defense against generalists, plants eavesdrop on
the herbivore-induced VOCs from other species
(Fig. 2B).43,44

In this review, we did not discuss the “prim-
ing” effect of VOCs.45 After exposure to VOC
signals, even if there is no apparent change in
metabolites or relevant gene expression, the
receiver plants are able to respond more
vigorously to herbivore attack compared with

naïve plants. At present, little is known about the concentration-
response relationship and the individual or blended VOC question
for such priming effects, which remains to be investigated. The
recent infection with cucumber mosaic viruses has been shown to
modulate the volatile blends to attract vector insect vectors.46,47

It has also been shown that the experience of pathogen attack is
inherited by the next generation through epigenetics.48 Thus, it
is important in the future to consider these topics to enhance
our understanding of VOC-mediated plant communication.
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Figure 2. VOCs emitted by injured plants have a specific ratio and concentration of
components. Upon receiving a VOC message from their family, plants respond by inducing a
particular defense mechanism. For example, the plant might prepare specific secondary
metabolites for defense against herbivores (A). The danger signals emitted by the family
provide warning that a species-specific enemy (specialist) is nearby. In contrast, plants that
receive a VOC message from other families might elicit a general defense response to prevent
damage by herbivores (generalists) attacking various plant species (B). By sharing common
VOC information across the plant kingdom, plants are able to prevent attack from a broad
range of herbivores.
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