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Carnivorous pitcher plants of the
genus Nepenthes have evolved a

great diversity of pitcher morphologies.
Selective pressures for maximizing
nutrient uptake have driven speciation
and diversification of the genus in a
process known as adaptive radiation. This
leads to the evolution of pitchers adapted
to specific and often bizarre source of
nutrients, which are not strictly animal-
derived. One example is Nepenthes
ampullaria with unusual growth pattern
and pitcher morphology what enables
the plant to capture a leaf litter from
the canopy above. We showed that the
plant benefits from nitrogen uptake by
increased rate of photosynthesis and
growth what may provide competitive
advantage over others co-habiting plants.
A possible impact of such specializa-
tion toward hybridization, an important
mechanism in speciation, is discussed.

Carnivorous plants of the genus Nepenthes
have gained considerable attention during
last few years. And it is not only due to
the fact that new and often bizarre species
of the genus are being discovered every
year in remote highlands (N. attenboroughii
described by Robinson et al.1 was even
included into the Top 10 new species
for 2010, species.asu.edu./Top10), but
also because of the new nutrient sequest-
ration strategies described. Our percep-
tion of pitcher plants as merciless killers
catching anything what is moving and
careless is being changed. Instead of, the
pitcher plants are under strong selective
pressures of their prey and environment
and some species gave up carnivory
almost completely and rely on other

source of nutrients. It is tempting to
assume that such specialization helps to
avoid interspecific competition and the
different species can thus co-exist together.
This is a good example of adaptive
radiation with regard to nutrient sequest-
ration strategies in plants—a powerful
tool for speciation and diversification of
the genus.2,3

The genus Nepenthes demonstrates
remarkable variety in pitcher morpholo-
gies mirrored by the variety of strategies
employed to obtain nutrients. It is believed
that simple modification of trap geometry
and its physiology makes possible to utilize
different source of nutrients (like beaks of
famous Darwin’s finches).2,4,5 The pitchers
have evolved either waxy zone or wide
peristom for prey capture, and waxy zone
or viscoelastic digestive fluid for prey
retention at each other’s expanse.3,5,6 The
pitchers with viscoelastic digestive fluid are
ussualy funnel-shaped and are more effi-
cient at trapping flies than cylindrical
pitchers with wax, which are more efficient
on ants. The scarcity of ants in tropical
mountains and the relative abundance of
flying insect may favor the development
of viscoelastic digestive fluid and may
explain why such fluid is more com-
mon in mountain species.5 The tropical
mountains have also wetter habitat what
may favor the development of large
peristome, which is much more effective
in insect trapping when is wet.3,7 Pitchers
of N. albomarginata produce a white rim
of lichen-mimicking tissue to target
termites of the genus Hospitalitermes.8,9

N. bicalcarata hosts ants Camponotus
schmitzii within its wide tendrils. They
help its carnivorous host-plant to catch
prey, may help with digestion, or can
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effectively protect the plant against
damage caused by weevil.10-12 The upper
pitchers of N. lowii lack the features
associated with carnivory (waxy zone and
reduced peristome) and are instead visited
by a tree shrew Tupaia montana, which
defecate into the pitchers after feeding
on exudates produced by the pitcher lid.13

The pitchers of N. rajah and N. macro-
phylla have retained the ability to trap live
prey, but have also evolved mutualistic
association with T. montana and even
with summit rat (Rattus baluensis).2,14-16

The pitcher size and geometry of N. lowii,
N. macrophylla and N. rajah with large
orifices and lids that are concave, elon-
gated, and oriented approximately at
right angles to the orifice, is fundamental
to the positioning of the tree shrew
hindquarters over the pitcher orifice
while it feeds.2 The elongated pitchers
of N. rafflesiana var elongata provide
roost for the bat Kerivoula hardwickii,
which also defecate into the pitchers.17

N. ampullaria has pitchers with lid reflexed
away from pitcher orifice and allows
debris to fall directly into the pitcher.
The pitchers sit above the soil surface in
a tighly-packed “carpet,” waxy zone and
lunate cells, the important mechanisms
involved in prey capture and retention,
are absent.18-20 We tested the hypothesis,
whether N. ampullaria can benefit from
leaf litter, because only then the new
nutrient sequestration strategy may be
considered as adaptive.21 We found that
N. ampullaria can obtain ~40% of its leaf
(lamina) nitrogen from leaf litter, what is
in accordance with data obtained by
Moran et al.19,22 This resulted in slightly
higher lamina N concentration and
increased rate of photosynthesis. Because
the leaves of co-habiting plant species are
only a poor source of nitrogen and the
nutrient stress was not alleviate comple-
tely, N. ampullaria has retained some
structures responsible for prey capture
(e.g., wide peristome, endochitinase

activity).22,23 These examples demonstrate
that the genus Nepenthes is under
strong selective pressure of the prey and
environment.3,5

As we have shown, a lot of species is
highly specialized to avoid interspecific
competition. The unique pitcher morpho-
logical attributes important for different
nutrient acquisition strategies may provide
explanation why the Nepenthes hybrids
fail to become established in large numbers
in natural habitats, despite the fact that
horticultural hybrids are more vigorous
through the effect known as heterosis. In
the case of natural hybrids, the unique
features of the parent species may be
significantly reduced in the hybrids
(Nepenthes hybrids are intermediate in
appearance between parent species), which
attract, capture and digest fewer prey
items (faeces or leaf litter) than either
parent.20 A natural hybrid N. � hookeriana
between N. rafflesiana and studied N.
ampullaria is a nice example (Fig. 1).
As we mentioned above, N. ampullaria

exhibits leaf litter trapping syndrome,
whereas N. rafflesiana is an insect hunter
which attracts prey using combination of
visual and olfactory cues.24 At the first
glance, you can note that the lower
pitchers of N. � hookeriana have not the
lid reflexed away from pitcher orifice,
typical character for N. ampullaria—a
key structure for leaf litter capture syn-
drome. N � hookeriana also does not
produce tighly-packed “carpet” of pitchers.
One may also suggest that N. � hookeriana
is also less atractive and less efficient in
trapping insect prey, because N. ampul-
laria has lost many characters related to
insectivorous lifestyle (e.g., nectar glands,
waxy zone, viscoelastic digestive fluid,
lunate cells, low pH in digestive fluid).4,20

We can suggest that this may hold also for
other Nepenthes hybrids, what makes
them a suitable model for studying the
relationship between structure and function
of the pitcher. The scarcity of Nepenthes
hybrids in natural habitat makes this type of
research difficult, but not impossible task.

Figure 1. N. ampullaria (A), N. rafflesiana (B) and their natural hybrids N. � hookeriana (C).
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