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MBF1s regulate ABA-dependent germination
of Arabidopsis seeds
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Transcriptional co-activators of the multiprotein bridging factor 1 (MBF1) control gene expression by connecting trans-
cription factors and the basal transcription machinery. In Arabidopsis thaliana functions of MBF1 genes have been related
to stress tolerance and developmental alterations. Endogenous ABA plays a major role in the regulation of Arabidopsis
seed dormancy and germination. Seed dormancy and ABA sensitivity are enhanced in ethylene insensitive mutants
suggesting that ethylene signal transduction pathway is necessary to fully develop ABA-dependent germination. In this
report we showed that a triple knock-down mutant for Arabidopsis MBF1 genes (abc-) has enhanced seed dormancy and
displays hypersensitivity to exogenous ABA. In addition, higher ABA contents were detected in abc- seeds after
imbibition. These evidences suggest a negative role of MBF1s genes in ABA-dependent inhibition of germination. The
participation of MBF1s in ethylene signal transduction pathway is also discussed.

Introduction

The multiprotein bridging factor 1 (MBF1) type controls gene
expression by connecting transcription factors and the basal
transcription machinery.1,2 In Arabidopsis thaliana there are three
genes: AtMBF1a (At2g42680), AtMBF1b (At3g58680) and
AtMBF1c (At3g24500), encoding MBF1 proteins.3 Several
evidences relate AtMBF1 functions with tolerance to stress
conditions.4-7 Analysis of AtMBF1c overexpressing plants and
null mutant unraveled the role of MBF1c during osmotic stress
and thermotolerance.5-7 Constitutive overexpression of AtMBF1a
leads to elevated salt tolerance, insensitivity to glucose and
resistance to fungal disease.4 Other reports link MBF1 functions
with developmental alterations, such as plant size, leaf cell
expansion and ploidy levels.8,9 In addition, a loss-of-function
AtMBF1c mutant, showed a reduction on seed germination.8

Initially, MBF1 genes were related to ethylene signal transduc-
tion pathway. The firstMBF1 gene was identified in tomato fruits
and it was named ER24 by ethylene-responsive transcriptional
co-activator.10 AtMBF1c overexpressing plants accumulate trans-
cripts associated with ethylene signaling and exhibit a stronger

triple-response phenotype.5 These results suggest that MBF1
genes are positive regulators of ethylene signaling.

We reported the analysis of an Arabidopsis thaliana triple
knock-down mutant for MBF1 genes (abc-) under oxidative and
osmotic stress conditions.11 We showed that abc- mutant seedlings
were more sensitive than wild type (WT) to hydrogen peroxide
(H2O2) and methyl viologen (MV). Inhibition of seed germina-
tion by oxidative treatments and osmotic stress was enhanced by
the abc- mutation. In addition, we showed that AtMBF1s regulate
the expression of the Abscisic Acid Repressor (ABR1) gene. ABR1
transcript levels were strongly reduced in the abc- mutant under
normal conditions. WT seedlings treated with MV showed a
reduction in ABR1 transcript levels meanwhile, abc- seedlings
were unable to regulate ABR1 expression. ABR1 is a transcription
factor of the Ethelyne Responsive Factor family (ERF) with an
APETALA2 domain and it was described as an ABA response
repressor during germination and root growth.12 In Arabidopsis,
disruption of ABR1 gene leads to hypersensitivity to osmotic stress
and to ABA application during seed germination and root growth
assays.12 In our previous report we suggested that the reduced
tolerance to oxidative stress in the abc- may be due to a perturbed
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regulation of the ABA signaling pathway.11 In addition, there are
evidences connecting ABA and ethylene signaling cascades. The
insensitive ethylene mutants etr1 and ein2 show phenotypes
with enhanced dormancy, ABA hypersensitivity during germina-
tion and augmented levels of ABA, resembling ABA-signaling
mutants.13,14 Ein 2 null mutant is also supersensitive to both salt
and osmotic stress conditions.15 All these data suggest that a
functional ethylene signal transduction pathway is necessary to
fully develop several ABA responses. As we commented before
there are evidences that MBF1 genes positively regulate ethylene
signaling pathway. Thus, in this report we explored the impact of
AtMBF1 genes on inhibition of germination, a typical ABA-
dependent response.

Results

Seed dormancy is enhanced in ABA-hypersensitive mutants, such
as era 1 as well as in the ethylene insensitive mutants (ctr1, ein2
ein3).13-17 We analyzed the effect of AtMBF1 mutations on seed
dormancy of abc- seeds and compared with ein3–1
mutant and abc- complemented with AtMBF1c gene
overexpression (abc- +c).11,16 Since stratification of
Arabidopsis seeds breaks dormancy,18 we determine seed
germination of WT or mutant seeds previously incubated
or not for 4 d at 4°C (Fig. 1A). Germination rate did not
differ among the lines upon 24 h stratification. However,
the non-stratified abc- seeds showed a lower germination
rate (10%) compared with WT (20%). Germination
of ein3–1 was similar to abc-. However, germination of
abc- +c was similar to WT indicating that AtMBF1c
overexpression rescued the mutant phenotype. When
developmental stages were analyzed at 48 h, according
to Boyes et al.,19 only 40% of non-stratified abc- seeds
reached stage 0.7 compared with 90% of the WT
(Fig. 1B). Eventually all the non-stratified seeds germi-
nated and reached stage 0.7 (data not shown).

In Arabidopsis, mutants with enhanced seed dormancy
also showed increased sensitivity to exogenous ABA
during germination.13,14,17 Therefore, to clarify ABA
sensitivity of the abc- mutant, ABA dose-response experi-
ments were performed during germination of stratified
WT and mutant seeds (Fig. 2A). Germination rates of
abc- and ein3–1 seeds were 20% lower than WT for the
tested concentrations. abc- +c showed germination rates
similar to WT.

It is well known that 1-aminocyclopropane-1-carb-
oxylic acid (ACC) is an intermediate in the conversion
of methionine to ethylene and that ACC synthesis,
mediated by the enzyme ACC synthase, determines
the rate of ethylene production. Exogenous ACC
induces ACC oxidase leading to ethylene biosynthesis.20

Moreover, ABA regulates ACC synthase and ACC
oxidase genes in mung bean and during tomato fruit
ripening.21,22 Ghassemian et al.14 described that ABA-
dependent inhibition of WT germination is partially
rescued in a dose dependent manner by ACC, while ACC

alone does not enhance germination in Arabidopsis. Effects of
ACC on enhancement of germination in abc- were weaker than
those in WT and the complemented line (Fig. 2B). Taken
together these results suggest that MBF1 negatively regulates
ABA-dependent inhibition of germination by positively regulating
ethylene signaling.

Next, we analyzed ABA content in non-stratified mature seeds
of WT, abc- and abc- +c lines imbibed for different times (Fig. 3).
At 8 h after imbibition all seeds showed a similar increase in ABA
content. A similar increase on ABA levels has been reported for
non dormant Arabidopsis seeds during the first hours after
imbibition.23 At 16 h, ABA content decreased at a slower rate in
abc- compared with abc- +c and WT seeds.

Discussion

The enhanced seed dormancy of abc- mutant seeds and their
hypersensitivity to exogenous ABA (Figs. 1 and 2A) suggest a
negative role of MBF1s genes in ABA-dependent inhibition of

Figure 1. Mutations in AtMBF1 genes enhance seed dormancy. Seeds from WT,
abc-, and abc- +c plants were surface-sterilized and stratified or not at 4°C for 2 d
in the dark to break dormancy. Seeds were plated on ATS medium with 0.8%
agar and placed on a growth chamber at 23°C with a 16 h-light photoperiod.
(A) The percentage of germination was scored after 24 h. (B) The percentage of 0.7
stage according to Boyes et al.19 was evaluated after 48 h. Approximately,
100 seeds were processed per line in each experiment. Data are mean values
(± SE) of five independent experiments. Different letters indicate a significant
difference at p , 0.05 (Tukey’s test).
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germination. Unlike ethylene insensitive mutants (ein2, ein3
or etr1)14,15 abc- root growth was not altered in the presence of
exogenous ABA (data not shown), suggesting that MBF1s may
modulate specific ABA-dependent responses.

Our results unravel new evidence that connects AtMBF1 genes
to the ethylene signal transduction pathway. First, abc- mutant
resembled ein3 responses in all the assays. Second, ABA inhibition

of germination could not be fully rescue by exogenous ACC
(Fig. 1B), suggesting that abc- ability to sense ACC is compromised.

An Oryza sativa MBF1 was reported to interact “in vitro” with
ERF2 and ERF4 transcription factors.24 Furthermore, Arabidopsis
thaliana plants overexpressing ERF4 have less sensitivity to ABA
and are hypersensitive to osmotic stress.25 Thus, we speculate
that AtMBF1s might be interacting with specific ERFs such as

Figure 2. abc- mutant is hypersensitive to ABA during germination. (A) Sterilized and stratified WT, abc-, abc- +c and ein3-1 seeds were plated on ATS
agar medium supplemented with the indicated concentrations of ABA and incubated in the growth chamber. (B) Sterilized and stratified WT, abc- and
abc- +c seeds were plated on ATS agar supplemented with ABA, ACC or the combination of both as indicated. In (A) and (B) the percentage of
germination was scored after 24 h. Approximately, 100 seeds were processed per line in each experiment. Data are mean values (± SE) of five
independent experiments. Different letters indicate a significant difference at p , 0.05 (Tukey’s test).

Figure 3. abc- mutant accumulates ABA in seeds. Seeds from WT, abc-, and abc- +c plants were imbibed in sterile water for the designated times and
assayed for ABA content by radioimmunoassay. Each sample was assessed twice. The results presented are the mean value of two biological replicates ±
SE.
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ABR1 and ERF4 to modulate ABA-dependent germination in
Arabidopsis seeds.

Moreover, higher ABA contents were detected in abc- seeds at
16 h after imbibition, suggesting that AtMBF1 genes positively
regulate ABA degradation during early hours after imbibition
(Fig. 3). Supporting our data, Arabidopsis mutants insensitive to
ethylene also show increased endogenous ABA concentrations.
The ethylene insensitive mutant ein2 accumulates ABA in green
tissue and this accumulation is related to an increased of ABA
biosynthesis.14 ABA levels in mature dry seeds of the etr1–2
mutant were 10-fold higher than in WT seeds.26

The expression pattern of some key genes regulated by ABA or
ethylene in the mutants could provide additional evidences on
MBF1-mediated interaction between these two hormones. Since
it has been suggested that ABA and ethylene may control the
hormonal biosynthesis, catabolism, or signaling of each other to
enhance their antagonistic effects upon seed germination,27 it
would be interesting to further explore the influence of MBF1
genes on these hormone cross-talks.

Materials and Methods

Plant material and growth conditions. Arabidopsis thaliana (L.)
Heynh. wild type, abc- and ein3–1 mutants used in this study
were of ecotype Columbia. The abc- mutant line is a T-DNA
insertion mutant for AtMBF1a (At2g42680), AtMBF1b
(At3g58680) and AtMBF1c (At3g24500) genes. Their genetic
and phenotypic characteristics have been described by Arce
et al.11 The ein3–1 is an ethylene insensitive mutant with a
loss-of-function mutation for EIN3 gene (At3g20770).17 Plants
were grown at 22–24°C under fluorescent light 120 mmol
photons m22 s21 with a16-h-photoperiod. Seeds were sown on
organic substrate placed for 2 d at 4°C in the dark to break
residual dormancy and then transferred to normal growth
conditions. Plants were watered twice a week until senescence.

Germination Assays. To quantify dormancy, seeds 1 mo-old
after harvest were surface-sterilized in 30% commercial bleach

and 0.02% Triton X-100 for 15 min, rinsed four times with
sterile water and stratified or not at 4°C for 2 d in the dark to
break dormancy. Then, seeds were plated on ATS medium with
0.8% agar and placed on a growth chamber at 23°C with a 16 h-
light photoperiod. The percentage of germination (fully emerged
radicle tip) was evaluated after 24 h of incubation. The percentage
of 0.7 stage according to Boyes et al.19 was determined after 48 h
of incubation. Measurements of ABA sensitivity were conducted
with 1 to 3 mo-old seeds. Seeds were surface-sterilized, stratified
at 4°C for 2 d in the dark. Seeds were plated on ATS medium
with 0.8% agar containing various concentrations of ABA in
combination or not with various concentrations of the ethylene
precursor 1-aminocyclopropane-1-carboxylic acid and placed on
a growth chamber. The percentage of germination was scored
after 24 h.

ABA determination. One-mo-old seeds were imbibed in sterile
water for different times at 22°C, lyophilized, powdered, weighed
and stored at –20°C. ABA content was determined by radio-
immunoassay as described in Steinbach et al.28 This method uses
the monoclonal antibody AFRC MAC 25229 and tritiated-ABA
(Amersham-Pharmacia). Each sample was assessed twice.

Statistical analysis. The values shown in each figure are mean
values ± SE. The data were subjected to analysis of variance (one-
way ANOVA) and post hoc comparisons were done with Tukey’s
multiple range test at p , 0.05 level. The statistical software
program used was SigmaStat 3.1.
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