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Rat prostatic binding protein: the complete sequence of the C2 gene and its flanking regions
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The complete sequence (2879 bp) of the androgen-controlled rat
prostatic binding protein C2 gene and 1023 bp of the 5'- and 2127

bp of. the 3'-flanking regions have been determined. The gene
contains three exons (93, 203 and 147 bp) and two introns (1630
and 806 bp). It is flanked by two homopurine-homopyrimidine

stretches of 55 and 131 nucleotides respectively, located at po-
sitions -405 and 4151. These sequences are remarkably sensitive
towards S1-nuclease, indicating an altered DNA conformation under
superhelical stress. 8Several palindromes and dyad structures are
observed in the 5'-upstream region of the gene and at position
-457, an 80% homology to the consensus sequence of a glucocorti-
coid receptor binding site is found.

INTRODUCTION

Prostatic binding protein (PBP) is an androgen-controlled,
steroid-binding protein in the rat ventral prostate. It consti-
tutes the main protein fraction in this organ, where it is se-
creted into the seminal fluid (1-4). It consists of three dif-
ferent polypeptide chains, C1, C2 and €3, arranged in two non-
identical dimeric subunits C€1C3/C2C3 (5). The amino acid se-
quences of these three polypeptides have been determined by our
group (6-8). Since PBP is under hormonal control, we believe it
to be a useful model system for the study of androgen regula-
tion.

cDNA clones for the three PBP mRNA's have been prepared both
by us and other groups (9,10), and these have been used for the
isolation of the corresponding genes from rat genomic libraries
(11-15). To date, we have identified one C1-, two different C2-
and three different C3-specific clones. Work is wunder way to
establish whether the C2 and C3 sequences are truly different
genes or whether they represent allelic differences of the same
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gene. There is evidence for at least two non-allelic C3-genes
(13,14). All these genes contain three exons with similar exon-
intron arrangements and their coding sequences span a genomic DNA
region of approximately 3 kb. In this report we present the se-
quence of the C2 gene and of the 5'- and 3'-flanking regions. 1In
addition, we have studied the sensitivity of this gene to S1-nu-
clease, a test which 1is indicative for structural conformation
changes in DNA under superhelical stress (42).

MATERIALS AND METHODS
Enzymes

Restriction enzymes were from BRL, Amersham or Boehringer-
Mannheim. The Klenow fragment of E. coli DNA polymerase I was
from P.L. Biochemicals. 81 nuclease, T4 DNA ligase and Exonucle-
ase III were from BRL. Bal 31 nuclease was from Boehringer-
Mannheim. Nucleotides and sequencing primers were from

Boehringer-Mannheim or P.L. Biochemicals. @?’éFdNTP's (3000 Ci/
mmol), [«22B-dATP (3000 Ci/ mmol) and [w*®g-dATP (600 Ci/mmol)
were from Amersham.
gtrains

E. coli WB373 and M13 vector mWB2348 (16) were obtained
through the courtesy of Dr. J. Vanderleyden (F.A. Janssenslabo-
ratorium voor genetica, K.U.Leuven, Belgium).
clones

Clone p21B1, a 6 kb Pstl subclone of the C2 gene in pAT153,
was obtained from Dr. M. Parker (Imperial Cancer Research Fund
Laboratories, London). This clone contains the entire C2 gene
and approximately 1 kb and 2 kb of 5* and 3. flanking sequences
respectively. A 2.7 kb Psti-Xbal fragment containing the 5'- part
of the gene was inserted into the M13 vectors mWB2348, mpi8 and
mp19, giving rise to subclones mWBC2PX9, mp18C2PX1 and mp19C2PX2

respectively. The same was done for the 3.3 kb Psti-Xbal frag-
ment containing the 3'- part of the gene (clones mWBC2PX8,
mp18C2PX2 and mp19C2PX3). mC2AH? and mC2AC11 are deletion sub-

clones of mWBC2PX9? (see below).
DNA - i deleti

Deletion clones were prepared according to different sequenc-
ing strategies. First, the "kilo-sequencing" procedure of Barnes
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and Bevan was used (16). In short, 10 ug of supercoiled mWBC2PX9
DNA was treated with 150 ng DNase I in the presence of 500 ug/ml
ethidium bromide to produce singly-nicked molecules. The DNA was
then treated with 25 U Exonuclease III in a volume of 50 ul for
10 minutes at 25°C in order to widen the nick to a small gap.
The gap was cut across by nuclease Bal 31 or 81 and the ends were
filled in by the Klenow fragment of DNA polymerase I. Xbal link-
ers were added, and after removal of unligated linkers by
Sepharose 4B chromatography, the DNA was cut with an excess of
Xbal, thus generating the deletions by removing the insert frag-
ment between the nick and the Xbal site on the vector. After re-
circularization of the deleted molecules, they were transformed
into competent WB373. Another sequencing approach was to resect
the isolated ékb insert from p21B1 with Bal 31 nuclease. At dif-
ferent time points (1 to 15 minutes), aliquots were removed from
the reaction mixture and phenol-extracted. After "polishing"™ the
ends with Klenow polymerase, the molecules were cut with Xbal and
ligated into mp18 cut with HincII and Xbal. Finally, some parts
of the sequence were obtained by subcloning suitable restriction
fragments into mp18 or mpit9. For sizing of the insert lenght,
individual plaques were grown in 2ml volumes of L-broth, 40 ul
aliquots of culture supernatant were brought to 0.1% 8DS and
electrophoresed on 0.8 % agarose gels in Tris-borate buffer (pH
8.3). Sequencing was done according to Sanger et al (17). Se-
quence ladders for comparison with Si-treated DNA were prepared
by 6'-end or 3'-end labeling of the appropriate restriction frag-
ment, cutting off the label at one end followed by Maxam-Gilbert
sequencing (18).
] I oy . .

Digestions of supercoiled DNA with 81 nuclease were performed
in a 100 ul volume containing 50 mM Na-acetate PpH 4.5, 0.3 M
NaCl, 4 mM ZnSO4, 3-10 ug DNA and 30-200 U of S1 nuclease. Incu-
bation was at 37°C for 5 (fine mapping) or 60 minutes after which
15 ul 1 M Tris pH 8 and 3 ul 0.5 M EDTA were added. After phe-
nol extraction and ethanol precipitation, the DNA was cut with
different restriction enzymes and the fragments separated on
agarose gels. For fine mapping of the hypersensitive sites at
the nucleotide 1level, S1-treated mC2AH9 or mC2AC11 DNA was cut
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with XbaI, 3'-end or 5'-end labelled and electrophoresed on 8%
polyacrylamide-urea gels after removal of the label at one end by
HaelII cutting.

RESULTS AND DIGCUSCION
A 6 kb Pstl fragment of the C2 genomic clone p21B1, covering

the entire gene and approximately 1 kb and 2 kb of the 5'- and 3t:
sequences respectively, was used for the determination of the C2
sequence. Two Xbal-Pstl fragments of this clone, containing the
5§'-half (2.7 kb) and 3'-half (3.3 kb) of the gene respectively
(fig. 1), were subcloned into M13 phages mWB2348,mp18 and mp19
(see materials and methods). Initially, all cloning was done in
the M13 vector mWB2348, wusing E. coli WB373 as a host, because
this vector allows a stable incorporation of very long inserts
(16). However, due to the lack of suitable cloning sites in this
vector, we later switched to the mp18 and mpt19 vectors, grown in
E. coli JM109. To facilitate dideoxy sequencing, we prepared
several progressively deleted clones, using the "kilo-sequencing”
procedure of Barnes and Bevan (16) or using Bal 31 nuclease to
degrade insert termini. This enabled us to deduce all of the exon
and 5'-upstream sequence and most of the intron sequence from
both strands while the sequence of the 3'-flanking region was ob-
tained from one strand.

The results show that the C2 gene insert in p21Bt1 contains 3
exons of 93, 203 and 147 nucleotides respectively, which are
separated by two introns of 1630 and 806 nucleotides, and flanked
by a 65'-upstream and a 3'-downstream region of 1023 and 2127 bp.
Our data largely agree with the cDNA sequence and with that part
of the genomic sequence (nucleotides -240 to 160) published by

—

P —— e S —

Fig. 1. Restriction map of the C2 gene with indication of 8i1-
nuclease hypersensitive sites (S8HS1 and 2). Restriction enzymes
used are : Aval (A), BamHI (B), BStEII (Bs), HindIII (H), MspI
(M), PstI (P), 8stlI (8) and Xbal (X). Arrows indicate the direc-
tion and extent of nucleotide reading.
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Table 1. Overview of the different repeat and dyad structures in
the C2 gene promotor.

Dyad symmetries :

-1010 =242
TTCCCATGTATG and CATACACATGGGAA
-254 -167
GCAGAAATT and AATTTCTGC

-63 =55

CTTGCCT and AGGCAAG

=57 -40

TGAGGC and GCCTCA

Direct repeats :
TGATAAAAT at -744 and -687
Inverted repeat :

CCAAATACATACATAAACC at -665

Parker et al. (43,11). However, in the 5'-flanking and first
intron region 5 single-base discrepancies occur (positions -231,
-182, -18, 117 and 132) while in the exon sequences several more
differences with the data of these authors are found. These
result in one "silent™ codon change (pos. 1743), one amino acid
insertion (pos. 1747-1749), one amino acid substitution (pos.
2740), one reading frame shift (pos. 2762) and two changes in the
3'-noncoding region (pos. 2846 and 2854). The amino acid sequen-
ce deduced from our C2 genomic sequence is in complete agreement
with the protein sequence published by Peeters et al. (7). Ex-
cept for the T's at positions 1924, 1925 and 1930, the two exon-
intron junctions correspond with the consensus sequence
(2AG/GI‘2AGT) of a splice donor site, while the two intron-exon
junctions correspond with the consensus sequence of a splice ac-
ceptor site ch%AG/G). except for the C at position 1724 (19). A
TATAAA sequence occurs at 29 bp upstream of the transcription
start. Two CAAT motives occur at postions -126 and -168 but
since they show little homology to the consensus CAAT box (20)
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and because of their large distance from the transcription start,
their functionality is doubtful.

An interesting feature in the sequence is the presence of
several repeat and dyad sequences. From position -63 to -49, the
15 bp palindromic sequence CTTGCCTGAGECAAG is found, partially
overlapping a dyad structure at nucleotides -57 to -52 and -40
to -35 (fig.2). 8ince these sequences occur immediately upstream
of the TATA box, they might be involved in transcriptional regu-
lation. Other direct and inverted repeat structures further up-
stream of this sequence, are indicated in table 1. gimilar
palindromes have been detected at position -63 (18 bp) of the
rat prolactin gene (21), at position -24 (12 bp, located after
the TATA box) of the human thyroglobulin gene (22), in the Herpes
virus thymidine kinase gene promotor (23) and in several
Drosophila heat shock gene promotors (24). More interesting, the
rat prostatic binding protein C3(1) gene (25), the rat seminal
vesicle F and 8 genes (26-28) and the mouse renin 2 gene (29),
all androgen-controlled genes, also show short inverted repeats
in their promotor regions. However, since most genes do not con-
tain such elements, their function, if any, remains to be estab-
lished.

Also noteworthy is the presence of the sequence
TGACTCAATTGTTCT at position -456, which shows 82% homology with
the proposed consensus sequence (EGGTN%CA%%NTGTECT) for the binding
site of the glucocorticoid receptor (30). Although there has not
been shown any glucocorticoid effect on PBP expression to date,
it has been suggested (31) that the regulatory elements of dif-
ferent steroid hormones could be either similar or at least share
structural features. Indeed, similar sequences are found in the
promotor regions of several other steroid-controlled genes, such
as the chicken lysozyme gene, which is controlled by four classes
of steroids : oestrogens, progestins, glucocorticoids and andro-
gens and where the progesterone receptor was shown to bind to the
same sites as in the MMTIV promotor (31). Other homologies to
this consensus sequence occur in the oestrogen receptor binding
site of the vitellogenin promotor (32) and in the progesterone
receptor binding site of the ovalbumin promotor (33). Further-
more, Parker et al (34) noted significant regions of homology
-between the consensus sequence of the progesterone receptor DNA
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Fig. 3. A) 81 hypersensitive site mapping on plasmid p21B1, con-
taining the entire C2 gene. Plasmid p21B1 was cut with PstI,
HindIII, SstI, BamHI, Xbal or EcoRI either directly (lanes 2,4,6,
8,10,12 respectively) or after S1 treatment (lanes 1,3,5,7,9,11).
The lanes at the sides contain HindIII size markers.

B) Restriction map of plasmid p21B1. B:BamHI, H:HindIII,
P:PstI, R:EcoRI, S8:8stl, X:Xbal. The C2 gene insert is indicated
by a double line and the exons by black boxes.

binding site and parts of the PBP C3(1), C3(2), C2 and C1 genes.
In this respect, the homology between the androgen -regulated PBP
C1 and C2 polypeptides and the progesterone-controlled rabbit
uteroglobin, as indicated by Baker (35), may be interesting.
This author suggested a common ancestor existing for these pro-
teins, which would imply that the control of the expression of
these genes switched from one steroid hormone to another during
‘evolution. Buch a shift could be more readily explained if there
‘were indeed a relationship between the control elements of dif-
ferent steroid-dependent genes.

One of the most striking features in the PBP C2 gene is the
presence of two long homopurine-homopyrimidine stretches at posi-
tions -405 and 4151. The homopurine-homopyrimidine tract in the
5'-upstream region contains 12 repeats of the tetranucleotide
GGAA, while the one in the 3'-downstream region is mainly com-
posed of the GGAAA and GGGAA basic sequences. These sequences
resemble the one found in the promotor region of the human thyro-
g8lobulin gene, where a 82.5% homology with the sequence (AGGA).o
is found (22). 8Similar homopurine-homopyrimidine sequences have
been found in a number of other genes including the mouse renin 1
and 2 genes (29), the rat casein gene (36), the rat somatostatin
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Fig. 4. A) 81 hypersensitive site mapping on M13 clone mWBPBS,
containing the 5'-half of the C2 gene. 8upercoiled phage DNA was
cut with BamHI, Xbal, HindIII or BglII directly (lanes 2,4,6,8)
or after 8i-treatment (lanes 1,3,5,7), lane 9 contains super-
coiled mWBPBS DNA and lane 10 HindIII size markers.

B) Restriction map of mWBPB5. Bg:BglII, H:HindIII,
P:PstI, X:XbalI. The insert (the 5'-part of the C2 gene) is indi-
cated by a double line and the first and second exons are boxed.

gene (37) and the chicken ovotransferrin and ovalbumin X and
pheasant ovotransferrin genes (38).

In fact, simple satellite-like DNA-sequences seem to be ubi-
quitous repetitive components of eucaryotic genomes (39). In the
case of homopurine-homopyrimidine tracts, these sequences often
show hypersensitivity towards single strand-specific nucleases
(e.g. 81 or mung bean nuclease) (40,41,42) when under super-
helical stress. When p21B1 (the entire C2 gene contained in
PAT153) was treated with low amounts of 81 nuclease, followed by
restriction analysis, two different 81-sensitive sites could be
mapped: one in the 5'-flanking region (8H81) and one in the 3'-
flanking region (8H82) of the gene (fig.3). The position of the
S1-sensitive site in the 5'-upstream region was further confirmed
by digestionlof mWBPB5 (an M13 vector containing only the 5'-half
of the gene) with the nuclease (fig.4). This analysis enabled us
to map the site more precisely in the region of the homopurine-
homopyrimidine tract at position -405. The position of the second
hypersensitive site was located in the region of the homopurine-
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Eig, 5. A) High resolution mapping of nuclease 81 cutting sites
on the upper (coding) strand of the C2 gene promotor.
lanes 1-6 : SHS mapping on mC2 C11.
lanes 1-3 : +81, 6-ladder and -81, 2 hours electrophoresis
lanes 4-6 : +81, G-ladder and -81, 4 hours electrophoresis
lanes 7-9 : 8H8 mapping on mC2 H? : +81, €6-ladder and -81 res-
pectively, 2 hours electrophoresis.

B) High resolution mapping of nuclease 81 cutting sites
on the lower strand of the C2 gene promotor on mC2 C11.
lanes 1,4 : +81, lanes 2,5 : C-ladder, lanes 3,6 : -81.
Electrophoresis was for 2 (lanes 1-3) or 4 (lanes 4-6) hours.

C) Indication of 81 cutting sites on both strands of the
homopurine-homopyrimidine region of the C2 gene. The length of
the arrows corresponds with the extent of nuclease digestion.
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homopyrimidine stretch at position 4151 to 4281. 1In the case of
8HB81, we have also used a fine-mapping procedure to localize the
exact position of the 81-cuts in the DNA. Two Mi3-deletion
clones, mC2A C11 and mC2AH9, of which the 3' end is located res-
pectively at 260 and 97 nucleotides downstream of the (G6GAA),2
repeat were Si1-digested under conditions which produced few or
no linear molecules, cut at the Xbal site and 3'- or 5'-labelled.
After a second HaeIll digest to create fragments labelled
uniquely at one end, the DNA was loaded on a 8% polyacrylamide-
urea sequencing gel alongside a Maxam-Gilbert sequencing ladder
of the same fragment (fig.5). This enabled us to localize the 81
nicks at the nucleotide level. From the results, it is clear
that the 81-digestion pattern 1is slightly different on both
strands of the DNA. on the top strand, the nicks are mainly
found around the 5'-part of the (GGAA),2-cluster and on a stretch
of 13 alternating purine-pyrimidine nucleotides just in front of
it (nucleotides -417 to -405). On the bottom strand, an addi-
tional (but less pronounced) S1-sensitive region is observed to-
wards the 3'-end of the (GGAA),2 cluster (nucleotides -362 to

-357). This corresponds only partly with the results of
Christophe et al. (22), reporting the generation of "staggered
ends™ after Si-digestion. Furthermore, in the 8S1-sensitive re-

g8ion of our clones, the nuclease seems to cut mainly after A- and
T-residues, while in the alternating purine-pyrimidine region
there seem to be no preferred nucleotides for nuclease attack.

The presence of an Si-sensitive site in the alternating
purine-pyrimidine tract at position -416 to -404 is not surpris-
ing since this region can potentially adopt a Z-DNA conformation,
and Z-DNA has been reported to be a preferential target for 81-
nicking (37, 42).

The role, if any, of these B1-sensitive sites is still un-
clear. The presence of such sites in the promotor or upstream
regions of many genes is however striking, and it is tempting to
assume that they are indeed functional in gene expression or reg-
ulation. Possibly, B81-sensitive sites reflect the presence of
conformational alterations in the DNA, which could act as general
recognition signals for the nearby presence of a transcription-
initiation or promotor region. These conformational changes
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might facilitate or direct the binding of transcription or regu-
latory factors to more specific sequences on the promotor.
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