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Plastid DNA in the nucleus
New genes for old
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Nuclear genomes of eukaryotes are
bombarded by a continuous deluge

of organellar DNA which contributes
significantly to eukaryote evolution.
Here, we present a new PCR-based
method that allows the specific amplifica-
tion of nuclear integrants of organellar
DNA (norgs) by exploiting recent dele-
tions present in organellar genome
sequences. We have used this method to
amplify nuclear integrants of plastid
DNA (nupts) from the nuclear genomes
of several nicotiana species and to study
the evolutionary forces acting upon these
sequences. The role of nupts in endo-
symbiotic evolution and the different
genetic factors influencing the time
available for a chloroplastic gene to be
functionally relocated in the nucleus are
discussed.

Eukaryotic cells arose more than a billion
years ago when an ancestor of the
nucleated cell engulfed a free-living
a-proteobacterium1 followed by a cyano-
bacterium2 that were gradually converted
into mitochondria and chloroplasts (plas-
tids) respectively. Since these events, there
is a continuous influx of organellar DNA
entering the nuclear genome.3-5 Organellar
DNA in the nucleus is referred as numts
(nuclear integrants of mitochondrial
DNA6) and nupts (nuclear integrants of
plastid DNA7) or collectively as norgs
(nuclear integrants of organelle DNA8).
These norgs contribute significantly to
eukaryote evolution by providing a major
source of genetic diversity. They also
create new genes,9 new nuclear exons
encoding parts of novel proteins10,11 and
novel gene regulatory elements.12

Interestingly, the large reduction in
organelle genome size that accompanied
endosymbiotic transfer of cytoplasmic
organellar genes to the nucleus did not
greatly change the spectrum of proteins
required for function and biogenesis of
the cytoplasmic organelles.7 Genes derived
from organellar genomes are prokaryote-
like and do not immediately become
functional when transferred to the nuclear
genome. The rare adaptation of an
organellar gene in this new environment
requires the acquisition of nuclear gene
regulatory elements and a target peptide if
the protein is to be functional within the
organelle.13,14 The number of nuclear regu-
latory elements required for function of
an organellar gene presumably varies since
some plastid promoters (e.g., psbA) can
function in the nucleus,14,15 some organellar
genes encode cryptic organellar protein
targeting signals16 and sequences in the
3'UTR of some plastid genes can promote
cytoplasmic mRNA polyadenylation.13,14

To elucidate the molecular mechanisms
by which a norg-encoded gene becomes
functional in the nucleus and replaces
the organellar version, it is necessary to
understand the evolutionary fate of norg
sequences. In general, such studies have
been confined to a few seed plants having
both nuclear and organellar genomes se-
quenced17-22 and are likely to be compro-
mised by large contiguous norg sequences
being excluded as “contaminating” bona
fide organellar DNA during nuclear
genome assembly. The experimental isola-
tion of norg sequences is greatly compli-
cated by the presence of higher copy
numbers of organellar genomes compared
with nuclear genomes in most cells. Pre-
vious studies have relied upon differential
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methylation23 between the organellar and
the nuclear genomes and only allowed the
characterization of norgs that have recently
been inserted. To circumvent these pro-
blems, we developed an innovative PCR-
based method that allows the amplification
of recent and older norgs (up to several
millions of years old) in a range of
eukaryotes. This method, presented in
detail in Rousseau-Gueutin et al.,24 avoids
the amplification of the high-copy number
extant organellar genomes and allows the
specific amplification of norg sequences by

placing a PCR primer in a region recently
deleted from the organellar genome.
Organellar deletion events were identified
by comparison of the organellar genomes
of several closely related species. We have
used this method to amplify nupts of
several members of the Nicotiana genus
as plastomes sequences were available for
three Nicotiana species and four closely
related Solanaceous species. We were able
to sequence seven unrearranged nupts
(25 kb in total) derived from various
plastomic regions which encode several

plastidic genes. The origin of the transfers
and the evolutionary processes that have
acted upon the nupts were then studied by
sequence comparisons with the native
cytoplasmic organellar genomes and those
of closely related species.25 These nupts
were estimated to have been transferred
between appoximately 0.03 and 5.8 million
years ago and we determined that potential
protein-coding and non-coding sequences
were evolving neutrally in the nuclear
genome. Some of the nupts open reading
frames (ORFs) were destroyed by indels

Figure 1. Possible evolution pathways of a chloroplastic gene transferred to the nucleus. (A) A plastidic region (in gray) including a plastidic gene
(gray box) and some plastidic non–coding sequences (gray line) are inserted into nuclear DNA (black line). The asterisk represents the stop-codon of the
potential protein-coding sequence. (B) Non-exhaustive list of the different evolutionary scenarios showing how this plastidic gene may be prevented
from becoming functional in the nucleus because of indels or substitutions causing premature stop codons or because of substitution within the protein
active site. Substitutions are represented by small black squares on top of the gene. (C) Gain of function when the plastidic gene in the nucleus acquires
nuclear gene regulatory elements such as a promoter (black arrow) and a target peptide encoding sequence (black square). (D) Non-exhaustive list of the
evolutionary scenarios that cause the subsequent inactivation of the duplicated nuclear gene, resulting in the maintenance of the plastid copy.
These events will elicit repetition of the endosymbiotic transfer cycle [i.e. back to (A)]. (E) The plastidic gene functionally transferred to the nucleus
relocates irrevocably to the nuclear genome because of the loss of functionality of the gene in the plastome.
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leading to frameshifts and/or nucleotide
substitutions causing premature stop
codons (Fig. 1A and B). However, in
several instances potential protein coding-
sequences maintained intact ORFs (no
indels but some substitutions). The oldest
of these surviving ORFs was approxi-
mately 5.8 million years old, suggesting
that lengthy periods are sometimes avail-
able for transferred chloroplast genes to
gain nuclear function. This time will
presumably vary depending upon the
length of the ORF, the nature of its
coding sequence, the conservation con-
straints on the amino-acid sequence, the
physical location in the nuclear genome
and to chance due to the stochastic
nature of random mutations.

In rare cases of activation of an
organellar gene in the nucleus (Fig. 1C),
two functional copies will coexist in two
separate genetic compartments of the cell
until one became defunct. If the nuclear
and organelle-encoded copies were equally

efficient, loss of functionality is presum-
ably the result of chance mutation silenc-
ing one or the other copy.26,27 Prime face
this would generally favor the retention of
the organelle copy since there is a higher
substitution rate in the nuclear genome
than in the plastome.28 In addition
organellar genes are organized in operons
and are usually uniparentally inherited,
again favoring the status quo.29 If the
nuclear copy becomes defunct (Fig. 1D),
the whole process can be repeated with
another nupt. However if the organellar
copy looses its functionality, then the
nucleus becomes the permanent location
of that gene (Fig. 1E). This explains the
net diminution of cytoplasmic organellar
genomes and the increased genetic influ-
ence of the nucleus. It is noteworthy that
this kind of functional relocation of
organellar genes to the nucleus has ceased
in animals but is still occurring in plants,
although other genetic effects of norg
integration (e.g., creation of new exons10

or increased genetic diversity) still con-
tinue in both kingdoms.30

Why have some genes remained in the
cytoplasmic organelles? While some genes
may remain in the plant plastome for
reasons of maintaining redox balance,31

others could perhaps be relocated, but
have so far failed to do so despite the long
time available and the frequent transfer of
organellar DNA. However, a few plastidic
genes (e.g., accD, infA, rpl22 and rpl32)
have recently relocated to the nucleus of
some plants (reviewed in ref. 32) and more
may soon be identified as a number of
essential genes have been lost from the
plastome in a variety of angiosperms.33

The process of organellar genome reduc-
tion therefore appears to be ongoing.
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