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One of the main challenges in the development of mathematical and computational models of
biological systems is the precise estimation of parameter values. Understanding the effects of
uncertainties in parameter values on model behaviour is crucial to the successful use of these
models. Global sensitivity analysis (SA) can be used to quantify the variability in model pre-
dictions resulting from the uncertainty in multiple parameters and to shed light on the
biological mechanisms driving system behaviour. We present a new methodology for global
SA in systems biology which is computationally efficient and can be used to identify the
key parameters and their interactions which drive the dynamic behaviour of a complex bio-
logical model. The approach combines functional principal component analysis with
established global SA techniques. The methodology is applied to a model of the insulin signal-
ling pathway, defects of which are a major cause of type 2 diabetes and a number of key
features of the system are identified.
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1. INTRODUCTION

Biological systems typically consist of large numbers of
interacting components and involve processes operating
across a variety of spatial, temporal and biological
scales. Systems biology aims to understand such systems
by integrating information from all functional levels into
a single cohesive model. Mathematical and compu-
tational modelling are a key part of the systems biology
approach providing a method for formally defining and
analysing the structure and the function of a system.

One of the greatest challenges when building math-
ematical or computational models of biological systems
is the precise estimation of parameter values [1]. Values
for specific parameters measured in vivo are rare [2] and
parameters are often estimated from experimental
measurements made in vitro or by fitting of model simu-
lations to experimental data. Consequently, parameter
estimates are often associated with significant uncer-
tainty. Examining the influence of these uncertainties
on the model behaviour is crucial to the successful use
of mathematical and computational models of biological
systems both as predictive tools and as part of an iterative
cycle of modelling and experimentation to understand
the function of biological systems.

Sensitivity analysis (SA) provides a quantitative
approach for investigating the impacts of parameter
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uncertainty on model outputs. SA is used in a variety
of disciplines from environmental science to software
engineering and in many fields is seen as a prerequisite
for model building [3]. In systems biology, SA can be
used in two key areas: quantifying the variation in
model outputs to parameter uncertainty (often referred
to as uncertainty analysis (UA)) thereby providing a
measure of confidence in the predictive capacity of the
model; identifying the parameters that contribute
most to the variation in the model outputs allowing
us to generate hypotheses about the biological mechan-
isms that drive the system behaviour which can be
tested experimentally. By identifying the most influen-
tial parameters we can also improve the predictive
capacity of the model by refining our estimates for
those parameters.

There are two main classes of SA techniques, local and
global. Local SA techniques investigate the effects of
small variations in individual parameters around some
nominal point and have been applied to a number of
signal transduction and metabolic pathway models
[4,5]. Where parameter values have large uncertainties
or models are nonlinear global SA (GSA) techniques
are more appropriate. GSA techniques investigate the
effects of simultaneous parameter variations over large
but finite ranges and allow the effects of interactions
between parameters to be explored [3].

There has been an increased interest in the use of
GSA in biological modelling in recent years. A com-
parative study of local SA and global SA techniques
(partial rank correlation coefficients (PRCC) [6],
Sobol’s method [7] and the extended Fourier amplitude
This journal is q 2012 The Royal Society
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sensitivity test (eFAST) [8]) applied to a model of the
ErK-MAPK signalling pathway by Zheng & Rundell
[2] demonstrated the disparity between the results of
the two approaches, and Marino et al. [9] developed a
methodology for performing global SA of both determi-
nistic and stochastic systems biology models which
combined PRCC and eFAST.

In this paper, we consider two aspects of the appli-
cation of GSA in systems biology: the application of
GSA to time-dependent model outputs and the compu-
tational efficiency of the commonly used global SA
techniques. We describe an alternative methodology
for performing global SA of time-dependent model
outputs and within that methodology compare exist-
ing GSA methods to evaluate their computational
performance and utility in systems biology.

In biological systems, we are typically interested in
understanding the dynamic behaviour of the system.
To investigate how this behaviour depends on the
model parameters, we must apply SA to model outputs
which are functions of time. The application of SA
to time-dependent model outputs is well established.
Sensitivity indices are calculated at each time-point to
produce a set of time-varying sensitivity indices.
These indices provide information on which parameters
are influential at particular times and can be integrated
over time to identify those parameters which are most
important in terms of the entire model output. This
approach has been applied to a variety of biological
systems [2,5,9,10]. However, by looking at individual
time-points, we may miss interesting features in the
model output. For example, it would be difficult to
infer the impact of a parameter on the period of oscil-
lations or the time at which a peak concentration occurs.

Alternatively, one may define a set of scalar features of
the dynamic model output, such as the maximum con-
centration or the period of oscillations, and calculate
sensitivity indices for these derived outputs [4,11]. To
use this approach, we need to identify an appropriate
set of features for the model of interest and construct
algorithms to extract their values from the model outputs.

Here, we present an alternative methodology for the
global SA of biological models based on an idea propo-
sed by Campbell et al. [12]. The methodology combines
existing GSA techniques with functional principal com-
ponents analysis (fPCA) to investigate the parameter
sensitivity of time-dependent model outputs. fPCA is
used to transform the model outputs into an alternative
format that captures the most important features in the
model output. Existing GSA techniques are then used
to identify the parameters, which are important in
generating these features and hence in driving the
associated system behaviour.

To address the second issue, the computational effi-
ciency of GSA methods, we compare the use of two
existing GSA techniques within our methodology.
When a model contains a large number of uncertain
parameters, a common occurrence in biological
models, or has a significant run time, the computational
cost of many GSA techniques can be significant. The
efficiency of GSA techniques becomes increasingly
important if they are to be used as part of an iterative
cycle of model development and experimentation in
J. R. Soc. Interface (2012)
which repeated analysis of the model may be required.
Here, we compare the use of the variance-based
method of Sobol with a more computationally efficient,
but less quantitative design, the Morris method [13], to
evaluate the utility of both techniques in a systems
biology context.
2. METHODS

This section presents an overview of the methodology
including the use of functional principal components
(PCs) and introduces the GSA techniques used in the
methodology. The methodology is demonstrated by
application to a mathematical model of the insulin
signalling pathway which is described in §2.2.

2.1. Sensitivity analysis methodology

Consider a model of the form y(t) ¼ f(u,P,t). The
output of the model y(t) is a set of curves describing
the variation in the model variables over time. The
output is some function (f) of the external model
input (u) and a set of k model parameters, (P ¼
( p1,p2, . . . ,pk)). Often this relationship between the
model input and parameters and the model output
will be described by a set of differential equations that
describe the change in the model variables over time.

We assume that the value of each parameter is
uncertain and that this uncertainty can be expressed
as a probability distribution. The aim of the SA is to
identify how the output of the model depends on the
uncertainty in the parameters.

We begin by generating N parameter vectors Pi ¼

(pi1,pi2, . . . ,pik) for i ¼ 1, . . . ,N from the probability
distributions for each parameter. The number of para-
meter sets and the way in which they are sampled
depends on the chosen GSA technique (see §2.2 and
figure 1a). The model is then evaluated for each Pi to gen-
erate the corresponding model outputs yi(t) (i¼ 1, . . . ,N)
(figure 1b). For convenience, we assume here that the
output of interest is a single model variable but the follow-
ing can be replicated for any number of model variables.

fPCA is then applied to this set of i model outputs to
generate the functional PCs and associated scores. Prin-
cipal component analysis (PCA) is a multivariate
statistical procedure, which is commonly used to ident-
ify the dominant modes of variation in a set of data
consisting of N observations of M variables. PCA
works by transforming the original data onto a new
set of variables known as PCs. The new variables are
such that they describe decreasing amounts of the vari-
ation in the data, i.e. the data vary most in the direction
of the first PC, the second PC describes the second
most important type of variation and so on. A conse-
quence of this is that we can approximate the data
in a subset of the new variables thus reducing the
dimensionality of the data.

When our data consist of N observations of some
function y(t), we can use fPCA to transform the data
into a new set of functions (the functional principal
components (fPCs)) which capture the most important
types of variation in the data. As with multivariate
PCA, the functions describe decreasingly small
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Figure 1. Flow diagram illustrating the main steps in the
methodology for performing GSA of time-dependent outputs
of systems biology models. Consider a model with k uncertain
parameters. (a) An existing GSA technique (Sobol’s method
or the Morris method) is used to generate multiple sets of par-
ameter values for the model. Each parameter set consists of a
vector P ¼ ( p1, . . . ,pk) of values for the uncertain model par-
ameter. (b) The model is then evaluated for each set of
parameters to produce a set of model outputs. (c) fPCA is
applied to the set of model outputs. (d) The PC scores are
passed back to the GSA technique and their sensitivity to
the model parameters is calculated.
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amounts of the variance in the data such that we
can typically represent the original data using only
the first few fPCs. The fPCs can be viewed as a set
of curves j(t) ¼ ( j1(t), j2(t), . . . , jq(t)) such that
each model output yi(t) can be written as a sum of
those curves:

yiðtÞ ¼
X

j

vijjjðtÞ for i ¼ 1; . . . ;N ; ð2:1Þ

where v ij is the PC score for model output i on com-
ponent j. The PC scores (v ij) tell us the amount of
component j contained in output i. For example, if the
first PC, j1(t), represents an oscillatory time course of
period T, model outputs yi(t) which display this type of
dynamics will have high values for the first PC score
(v i1). Details of the computation of the fPCs are given
in the electronic supplementary material.

GSA techniques are then used to calculate the sensi-
tivity of the PC scores (v ij) to the model parameters
(figure 1d). If the scores for a given PC are sensitive to
a particular parameter, then that parameter is important
in producing the type of behaviour in the model output
described by the corresponding component.
J. R. Soc. Interface (2012)
2.2. Sensitivity analysis techniques

The methodology uses existing SA techniques to gener-
ate the uncertain model parameters and calculate
the sensitivities of the PC scores to these parameters.
Two techniques, the method of Sobol [7] and the
Morris method [14] are compared to evaluate their
utility in the analysis of biological systems.
2.2.1. The method of Sobol
Variance-based methods are a class of GSA techniques
that quantify the importance of a parameter by the
reduction in the model output variance which is
obtained by ‘fixing’ the parameter to its ‘true’ value
[15]. Unlike regression and correlation-based indices
which are only suitable when the relationship between
parameters and model outputs satisfy certain con-
ditions of linearity or mono-tonicity, variance-based
techniques are not dependent on such assumptions
and hence are sometimes referred to as ‘model-free’
methods [3]. Marino et al. [9] identified variance-based
techniques as a key tool in their methodology for apply-
ing GSA in systems biology owing to their ability to
deal with any type of relationship between model par-
ameters and model outputs. The method of Sobol [7]
is one of the most commonly used variance-based
methods, in part because it is relatively easy to
implement compared with the other approaches [16]
and because in its modified form, it is as efficient as
any other variance-based technique including the
eFAST method [17].

The method of Sobol is based on a decomposition
of the model output y(t) ¼ f(u,P,t) into terms of
increasing dimensionality. The function f(u,P,t) can
be written as the sum (note that we drop the depen-
dence on u and t from the following for clarity
of presentation):

f ð p1; . . . ; pkÞ ¼ f0 þ
Xk

i¼1

fið piÞ þ
X

1�i,j�k

fijð pi; pjÞ

þ � � � þ f1;2;...;kð p1; . . . ; p2Þ; ð2:2Þ

where

f0 ¼
ð

V k

f ðPÞdP; ð2:3Þ

where Vk is the k-dimensional space of the parameters.
The total variance of f(P) can be written as:

V ¼
ð

V k

f 2(P)dP � f 2
0 ; ð2:4Þ

and can be decomposed in the same manner as the
function:

V ¼
Xk

i¼1

Vi þ
X

1�i,j�k

Vij þ � � � þ V1;2;...;k : ð2:5Þ

The terms of this decomposition are the contri-
butions to the variance from term fi1...is in (2.2) and
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are given by:

Vi1���is ¼
ð1

0
� � �
ð1

0
f 2
i1���isðxi1 ; . . . ; xisÞdxi1 � � � dxis : ð2:6Þ

The Sobol indices are defined as:

Si1���is ¼
Vi1���is

V
: ð2:7Þ

The term Si1���is gives the fraction of the total variance
which is due to the combination of parameters
ð pii ; pi2 ; . . . ; pisÞ. The first-order sensitivity indices,
Si ¼ Vi/V, describe the effect of individual parameters
on the model output while higher order terms describe
the effect owing to interactions between parameters.

As an alternative to calculating the entire set of indi-
ces, we can calculate the ‘total effects’ [15] which
describe the effect on the model output of a parameter,
both individually and in all its possible interactions. If
we define one set of parameters to contain only pi and
the other set P�i contains all other parameters except
pi then the total variance can be written as:

V ¼ Vi þ V�i þ Vi;�i; ð2:8Þ

the sum of the variance owing to pi alone (Vi), the var-
iance owing to the set of parameters P�i which excludes
pi(V�i) and the variance owing to the interaction
between pi and all other parameters (Vi,�i). The total
variance owing to pi (on its own and in interactions
with other parameters) is then:

V tot
i ¼ Vi þ Vi;�i ¼ V � V�i; ð2:9Þ

and the total effect index is defined as:

STi ¼
V tot

i

V
¼ 1� V�i

V
ð2:10Þ

which describes the total variance accounted for by
parameter i individually and in all possible interactions
with other parameters. The set of Sis and STis provide
an efficient way to quantify the importance of individual
parameters and interaction terms. The Sobol indices
have a number of useful properties. The first-order effects
quantify the amount of variance accounted for by
uncertainty in each individual parameter. The sum of
the first-order effects

P
iSi will be �1 and the difference

between
P

iSi and unity provides a measure of
the amount of variance which is accounted for by inter-
actions. The ‘total effects’ quantify the variance
accounted for by uncertainty in each parameter both on
its own and in combination with uncertainty in other
parameters. For any individual parameter, i, the differ-
ence between Si and STi indicates the extent to which it
is involved in interactions with other parameters.

The integrals in (2.3) (2.4) and (2.6) can be evalu-
ated using Monte Carlo integrals of the model outputs
generated using random or quasi-random sampling of
the model parameters. Using the procedure proposed
by Saltelli [17], an estimate of both the first-order and
total effects can be obtained at the cost of N(k þ 2)
model evaluations, where N is of the order of a few thou-
sand. The main weakness of variance-based techniques
is their high computational cost. If the model is
J. R. Soc. Interface (2012)
expensive to evaluate or the number of parameters, k,
is large, the use of variance-based techniques can be
impractical. An alternative is the use of more efficient
screening techniques such as the Morris method [14].
2.2.2. Morris’ screening design
Screening techniques have a lower computational cost
than the variance-based techniques however the trade-
off for this economy is that they tend to only provide
qualitative measures of sensitivity, that is, they rank
the parameters in terms of importance but give no
information about how much more important one
parameter is than another.

A number of screening designs have been proposed in
the literature including the Morris method [14], iterated
fractional factorial design (IFFD) [18], sequential bifur-
cation (SB) [19] and Cotter’s design [20]. IFFD and SB
are both group-screening techniques [3] in which the
model parameters are combined into groups prior to
the analysis. IFFD produces good results only if a
very small number of parameters determine the varia-
bility in the model output while SB requires the user
to know the signs of the effects (i.e. whether a par-
ameter has a positive or negative influence on the
output) before the analysis is performed [21]. Cotter’s
design may miss important parameters if they have
effects on the model output which cancel each other
out [15,21]. Morris’ method does not depend on any
of these assumptions and is therefore regarded as the
most widely applicable of the screening designs [22].

The Morris method is a one-at-a-time (OAT)
approach. OAT designs are typically forms of SA in
which the parameters are varied individually by small
amounts around the nominal point. The results of the
analysis only identify the model behaviour in the
small region of the parameter space around this point
and if the model contains strong nonlinearities selection
of a different nominal point can produce vastly different
outcomes. In addition, standard OAT approaches do
not measure the effect of parameter interactions.
These problems can be overcome by using the OAT
method proposed by Morris [14].

Consider a model with k parameters where
P ¼ ( p1,p2, . . . ,pk) is a vector of parameter values and
y(P) is the output of the model at parameter point P.
Each parameter may take one of q values. The Morris
method defines the elementary effect of the ith
parameter at nominal point P as:

di ¼
½yð p1; . . . ; pi�1; pi þ D; piþ1; . . . ; pkÞ � yðPÞ�

D
;

ð2:11Þ

where D is selected such that P þ D is still in the set of
allowable values for each parameter k.

Morris’s method removes the dependence of OAT
methods on the choice of nominal point, P, and cap-
tures the importance of parameter interactions by
calculating r elementary effects for each parameter at
different nominal points, P1, . . . ,Pr. The nominal
points are chosen such that each parameter is varied
over its entire range. r is typically in the region of 10
[23,24]. The key to the Morris method is an efficient
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design that requires r(k þ 1) model runs to generate the
r elementary effects for each of the k parameters [14].
Details of the algorithm can be found in the electronic
supplementary material.

The mean and s.d. of the sample of r elementary
effects for each parameter provide an approximate
global sensitivity measure. They summarize the effects
of varying the parameter across its entire range and
capture the dependence of its sensitivity on the values
of other parameters. A high mean, m, indicates a
parameter with an important overall effect on the
output. A high s.d., s, indicates a parameter with non-
linear effects on the output or one which is involved in
interactions with other parameters.

If the sample of elementary effects for a given par-
ameter contains both positive and negative elements,
that is the relationship between the parameter and
the model output is non-monotonic, they may cancel
out producing a low value of m for an important par-
ameter. To overcome this, it has been suggested [22]
that the mean of the absolute values of the elementary
effects, denoted m* should be used. This modified
Morris measure has been shown empirically to be a
good proxy for the total effect indices, STi, of the
variance-based measures [24].

It is also important to consider the scaling of the
elementary effects. Because the calculation of the
elementary effects involves division by the parameter
step size D (see equation (2.10)) the size of D will influ-
ence the sensitivity results; parameters with small
values will produce larger effects. This can cause the
incorrect classification of the importance of parameters.
The use of relative sensitivities is well established and
has been emphasized in the context of the Morris
method by Sin & Gernaey [25]. The relative elementary
effect for parameter i at point P is given by:

di ¼
½yð p1; . . . ; pi�1; pi þ D; piþ1; . . . ; pkÞ � y(P)�

D

s pi

sy
;

ð2:12Þ

where sy and spi are the s.d. of the model output y
(in this case the PC scores) and parameter pi. The scal-
ing of the elementary effects also removes the
dependence on the magnitude of the model output.
This allows the effects of a parameter on different
outputs to be compared.

The use of the Morris and Sobol techniques in
the analysis of time-dependent model outputs is com-
pared by applying the methodology presented in §2.1
to a model of the insulin signalling pathway which is
described below.

2.3. Insulin signalling model

The SA methodology described in §2.1 is applied to a
model of the insulin signalling pathway. The actions of
insulin are initiated when the hormone binds to its cell
surface receptors triggering a signalling pathway which
has pleiotropic effects in virtually all tissues [26]. The
pathway is a key part of the blood glucose regulatory
system and defects in the pathway are important in the
development of insulin resistance, a major cause of
type-2 diabetes. Identifying the parameters which drive
J. R. Soc. Interface (2012)
the dynamic behaviour of the model may further our
understanding of the mechanisms underlying insulin
resistance and other related pathologies.

The model is based on a previously published model
[27] which has been used in a number of other studies
[28–31] and was originally developed to study the
regulation of glucose uptake by GLUT4, the major
insulin-dependent glucose transport in fat and muscle
tissue [32]. Here, the model has been modified as part
of efforts to model the liver–pancreas blood glucose
regulatory system using a modular approach to model
construction [33]. While there is some evidence that
insulin may regulate glucose transport in hepatocytes
via increased internalization of GLUT2 [34], the pri-
mary role of insulin in the liver is to regulate the
synthesis of glycogen. The model was therefore
extended to consider the inactivation of GSK3, a key
regulator of glycogen synthesis.

The model consists of three subsystems representing
receptor binding, receptor recycling and the post-
receptor signalling pathway. The processes included in
the model are shown schematically in figure 2 and
described briefly below. The mathematical details of
the model can be found in the electronic supplementary
material together with a more detailed description of
the processes included in the model.

Binding of insulin to its receptor results in increased
tyrosine kinase activity of the receptor towards its
substrates. This activity is negatively regulated by
dephosphorylation of the receptor by protein tyrosine
phosphatases (PTPs) [35]. There are at least nine sub-
strates of the insulin receptor four of which are varieties
of the insulin-receptor substrate (IRS) protein [36]. IRS
proteins are phosphorylated by the kinase activity of
the receptor and act as docking sites for molecules
which contain specific sequences known as SH2 domains
including phosphoinositide 3-kinase (PI3K). The recruit-
ment of PI3K to the plasma membrane places it in
the vicinity of its physiological substrate, phosphatidyl-
inositol (4,5) bisphosphate (PI(4,5)P2) which it
phosphorylates to produce PI(3,4,5)P3 (PIP3) [37].
PIP3 binds a variety of signalling molecules includ-
ing phosphoinositide-dependent kinase 1 (PDK1) and
protein kinase B (PKB), also known as Akt, modifying
their activity and intracellular location. The co-localiz-
ation of these molecules allows PDK1 to phosphorylate
and activate Akt which in turn phosphorylates and
inactivates glycogen synthase kinase (GSK3). GSK3
downregulates the activity of glycogen synthase hence
the inactivation of GSK3 results in an increased rate of
glycogen synthesis.
3. RESULTS

This section presents the results of applying the new SA
methodology described in §2.1 to the insulin signalling
model to analyse the sensitivity of the GSK3 dynamics
to uncertainty in the model parameters. The method-
ology produces a set of fPCs describing the key types of
variation in the GSK3 output and, for each component,
a set of sensitivity indices which measure the importance
of the model parameters in producing the variation in
GSK3 described by the corresponding component.
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The methodology is applied using both the Sobol
(n ¼ 2000) and Morris (r ¼ 20; q ¼ 4) methods and the
results compared. For each method, 21 parameters were
allowed to vary in a uniform range of+50% of their nom-
inal values (see supplementary material). The external
input to the model, u, is the concentration of insulin
and is modelled as a step function of magnitude 1 �
1026 M from t ¼ 0 to t ¼ 30 min. The model is evaluated
to t ¼ 60 min, sufficient time for dephosphorylation of
GSK3 following removal of the insulin stimulus.

3.1. Principal components

The left-hand panels of figure 3 show the first three
fPCs of the GSK3 dynamics generated via the Sobol
method. The fPCs produced from the Morris method
are qualitatively the same, that is, they describe the
same types of variation in the GSK3 output (plots
are included in the electronic supplementary material).
It should be noted that because the parameter sampling
is different for the two GSA methods, the PCs gener-
ated by the two methods may differ particularly if
insufficient sample sizes are used. Together the first
three PCs account for 99.7 per cent of the variation in
the model output therefore we only present results for
these three components. Other components describe
minimal amounts of the variation in the model outputs.

The right-hand panel of figure 3 shows the mean
GSK3 output (averaged over all model runs) plus and
minus some multiple of each of the fPCs. Such plots
are useful in visualizing the variation in the GSK3
time-course described by the PCs [38]. Here, they
J. R. Soc. Interface (2012)
clearly show that: the first PC, which captures 90.6
per cent of the variation, describes a vertical shift in
the time-course of inactive GSK3 with the greatest
increase in the steady-state concentration; the second
PC, which accounts for a much smaller amount of vari-
ation (8.4%), captures variation in the dynamics after
the stimulus is removed (t . 30) and GSK3 is re-
activated owing to dephosphorylation; the third PC
(0.7% of the total variation) describes variation in the
inactivation phase of GSK3 by phosphorylation.

3.2. Sensitivity indices

Figure 4 shows the SA results. The results of both
methods are consistent, identifying the same subset of
10 parameters as important. All the important par-
ameters are involved in the post-receptor signalling
pathway with the exception of k23, the rate of insulin
dissociation from the receptor. This is consistent with
the view that post-insulin receptor defects represent
the primary sites leading to insulin resistance [39].
Studies have found that insulin binding is normal in
diabetic individuals and no difference has been found
in receptor numbers in over half of type 2 diabetic
patients [40]. The lack of importance of the receptor
recycling subsystem parameters supports the recent
findings of Giudice et al. [41] that internalization of
insulin receptors is not important in the activation of
the Akt pathway.

The first PC primarily affects the maximal phos-
phorylation of GSK3. The production and breakdown
of PI(3,4,5)P3 (k9st) and the de/phospohrylation of
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GSK3 (k215 and k15) are shown to be particularly
important in producing variation in the scores on this
component. The lipid phosphotases PTEN and SHIP2
which hydrolyse PI(3,4,5)P3 to PI(4,5)P2 and
PI(3,4)P2, respectively, have been shown to be negative
regulators of insulin signalling and have been proposed
as possible therapeutic targets for type 2 diabetes
[42,43]. The lesser importance of PI3K regulation (k8

and k28) supports the experimental observations that
reduced insulin-stimulated activation of PI3K does
not affect the downstream activation of Akt [44,45].
There is little interaction between parameters as
indicated by the minimal difference between the first-
order and total effects for individual parameters and
the difference between the sum of the first-order indices,P

iSi ¼ 0.97 and unity. Similarly, the low values of s

obtained via the Morris method imply that interactions
between parameters are not significant.

The uncertainty in the second PC score is dominated
by k23 which accounts for approximately 65 per cent of
the variation in this component according to the Sobol
method. k23 describes the deactivation of insulin recep-
tors resulting from the dissociation of insulin and the
dephosphorylation of the receptors by PTPs. This
explains its importance in controlling the reactivation
J. R. Soc. Interface (2012)
of GSK3 following removal of the external insulin
input (the behaviour described by the second PC).
This result is consistent with experimental evidence
that insulin signalling can be enhanced by reducing the
activity of PTPs [46]. As a consequence of this, there
has been a focus on the study of PTPs as potential
therapeutic targets for the management of insulin
resistance [35]. One particular study has shown that
inhibition of PTP-1B expression in obese, insulin-
resistant non-human primates can reduce fasting
concentrations of glucose and insulin [47]. Figure 4
also shows that there is an increased role of interactions
in the second PC (

P
iSi ¼ 0.74, higher values for s).

The third PC (which describes the initial phos-
phorylation of GSK3) is largely controlled by k215,
the dephosphorylation rate of the kinase. This is in
line with the view that processes downstream of Akt
are crucial in propagating the insulin signal [48].
Hoehn et al. [49] have shown that only relatively small
amounts of Akt phosphorylation are required to pro-
duce a maximal downstream response suggesting that
defects in the regulation of Akt may be of less impor-
tance. As with the second PC, there is a significant
interaction effect, especially for the parameters k8,
k9st, k11d and k15d (which describe association of the
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IRS protein with PI3K, the conversion of PI(4,5)P2 to
PI(3,4,5)P3, the phosphorylation (activation) of Akt
and the rate of phosphorylation (inactivation) of
GSK3, respectively) The importance of interactions
highlights the need to use GSA methods to understand
the behaviour of biological systems. Local methods, in
J. R. Soc. Interface (2012)
which parameters are varied one at a time, do not
allow the effects of interactions to be explored.

3.3. Computation times

The Sobol method requires N(k þ 2) model evaluations.
With n ¼ 2000, k ¼ 21 and a model evaluation time
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on the orderof 2 s, this equates to approximately 1.06 days
of computation on a desktop computer. This is compared
with a computational time of approximately 15 min for
the Morris method (r(k þ 1) model evaluations, r ¼ 20).
4. DISCUSSION

We have presented a new approach for the SA of time-
dependent model outputs which combines fPCA with
established global SA techniques. The application of
the approach to a model of insulin-dependent GSK3
inactivation identified a number of interesting features
of the system. The important model parameters, with
the exception of the rate of dissociation of insulin
from the receptor, were restricted to the post-receptor
signalling sub-model supporting the view that defects
in the intracellular pathway represent the primary
sites leading to insulin resistance. The analysis also
identified an important role for insulin receptor
deactivation suggesting that the PTPs which depho-
sphorylate the receptor may be potential targets for
therapeutic interventions. These results support many
of the existing theories about the function of the insulin
signalling network which have been uncovered through
experimental studies.

Liu et al. [31] have also analysed a version of the Seda-
ghat insulin pathway model [27] embedded in a larger
model of glucose regulation. They performed a local SA
(varying one parameter at a time) to calculate sensitivity
indices at multiple time points in the simulated concen-
tration of glucose. These indices were averaged to
provide a single sensitivity measure for each parameter
which describes its total effect on the glucose output.
Consistent with our results they found that parameters
governing PI(3,4,5)P3 conversion were particularly
important. However, by combining fPCA with SA, we
were able to identify different sets of parameters which
affected different aspects of the model output. This is
the key advantage of our methodology over the standard
application of SA to time-dependent model outputs from
which it is not so straightforward to infer the qualitative
effect that parameters have on the model output. How-
ever, given that the main computational cost of most
SA techniques is in the evaluation of the model and not
the calculation of sensitivity indices, it is possible to cal-
culate and compare both time-varying and PCA-based
sensitivity indices for a model at minimal additional cost.

If we are interested in the sensitivity of a particular
scalar feature of a dynamic model output (for example,
peak concentration), it may be possible to evaluate that
feature from each model run and calculate indices for it.
This approach has been used in biological modelling but
has its limitations. In their local SA of the oscillatory
behaviour of the NF-kB signalling pathway, Ihekwaba
et al. [50] found that for certain parameter values, the
chosen features (amplitude and period of oscillations)
could not be evaluated. This would cause problems in
GSA techniques such as the Sobol method, where we
require the complete set of model outputs to calculate
the sensitivity indices. By using fPCA, we can avoid
this problem as the features that we perform the SA
on are identified from the data itself. The limitation
J. R. Soc. Interface (2012)
of the fPCA-based approach is that it may not identify
a type of output behaviour which is of biological inter-
est if it does not contribute sufficiently to the variation
in the model outputs. Similarly features of biological
interest may be combined into single PCs.

A number of other studies have used mathematical
modelling approaches to investigate insulin signalling.
Giri et al. [28] used steady-state analysis of an insulin
signalling model to investigate the translocation of
GLUT4. They looked at the effect of changing the con-
centrations of various components in the model to
replicate the variation in protein expression levels
observed in pathological states. While we have focused
on parameter sensitivities, GSA techniques can be
applied to the initial conditions of a model in the
same way to investigate similar questions. Cedersund
et al. [51] and Brännmark et al. [52] used a model-
based hypothesis testing approach, in which they
compared different classes of models to experimental
data, to identify the mechanisms which must be
included to generate the changes observed in the insulin
receptor substrate (IRS1) following exposure of cells to
insulin. The GSA techniques presented in this paper are
not commonly used to study the impact of qualitative
inputs (such as model structure) on model outputs
and instead typically focus on quantitative factors
such as parameter values or initial conditions.

The selection of appropriate parameter distributions
is an important part of global SA methods because the
results of the analysis may be dependent on the choices
[53]. This dependence on the choice of parameter distri-
butions should be remembered when interpreting the
results of the analysis of the insulin signalling model
presented above. It can also be the most difficult and
time-consuming stage of performing the analysis [3].
The choice of distribution is often governed by the
availability of data but should also be guided by the
purpose of the analysis. In the case of a biological or
physiological system, a SA may have a number of differ-
ent aims. If we are interested in understanding the
behaviour of the system under normal conditions, we
need to select ranges that represent the variation in
the parameters observed in normal subjects. Alterna-
tively, we may wish to investigate the important
parameters in a particular disease state or condition.
In this case, we should extend the ranges to include plaus-
ible values associated with the pathology of interest.
More generally, we may be interested in investigating
the parameters that the model output is sensitive to,
for example, to identify potential targets for therapeutic
interventions. In this type of analysis, the uncertainty
distributions need not be based on the experimentally
observed uncertainty in the model parameters. Instead,
we may include parameters whose value is not regar-
ded as uncertain to investigate the potential effects of
artificially perturbing those parts of the system. A con-
venient form of input distribution in these cases is to
adopt uniform ranges based on a percentage of the
nominal parameter values.

The comparison of two SA methods, the Sobol
method and Morris’ screening design, has demonstrated
that the Morris method is capable of providing qualitat-
ive sensitivity information for biological models which is
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consistent with the Sobol method at a greatly reduced
computational cost. The Morris method, therefore, pro-
vides a practical approach for the analysis of models
with large numbers of parameters or long compu-
tational run times. It also offers a useful approach for
studying parameter sensitivities under multiple scen-
arios (for example, different external model inputs) in
a realistic time frame. When more quantitative sensi-
tivities are required, for example, to assess the relative
reduction in output variance which could be achieved by
interventions that target different steps in a signal
transduction pathway, variance-based techniques such
as the method of Sobol must be used. The compu-
tational cost of a quantitative analysis can potentially
be reduced by first performing parameter screening
using the Morris method to identify non-influential par-
ameters and thus reducing the dimension of the
parameter space to be studied in further analysis.

Systematically exploring the impact of parameter
uncertainty on model outputs is an important part of
the modelling cycle. Global SA provides a powerful
tool, which allows us to identify the model parameters,
and hence biological mechanisms that drive the system
outputs. This information may support the existing
understanding of the system or be used to suggest new
hypothesis which can be tested experimentally. The
methodology presented here provides a new way to
apply global SA to investigate the function of dynamic
models of biological systems in a computationally
efficient manner.
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G. & Strålfors, P. 2010 Mass and information feedbacks
through receptor endocytosis govern insulin signalling as
revealed using a parameter-free modeling framework.
J. Biol. Chem. 285, 20 171–20 179. (doi:10.1074/jbc.
M110.106849)

53 Lipton, J., Shaw, W. D., Holmes, J. & Patterson, A. 1995
Short communication: selecting input distributions for use
in monte carlo simulations. Regul. Toxicol. Pharmacol. 21,
192–198.

http://dx.doi.org/10.1186/1742-4682-1-2
http://dx.doi.org/10.1007/s10439-005-9065-5
http://dx.doi.org/10.1007/s10439-005-9065-5
http://dx.doi.org/10.1016/j.mbs.2009.07.005
http://dx.doi.org/10.1111/j.1432-1033.1994.tb18550.x
http://dx.doi.org/10.1111/j.1432-1033.1994.tb18550.x
http://dx.doi.org/10.1098/rsif.2011.0141
http://dx.doi.org/10.1098/rsif.2011.0141
http://dx.doi.org/10.1152/ajpendo.00004.2009
http://dx.doi.org/10.1023/A:1006808100755
http://dx.doi.org/10.1023/A:1006808100755
http://dx.doi.org/10.1023/A:1006806722619
http://dx.doi.org/10.1023/A:1006806722619
http://dx.doi.org/10.1016/S0960-9822(02)00777-7
http://dx.doi.org/10.1016/S0960-9822(02)00777-7
http://dx.doi.org/10.1172/JCI10582
http://dx.doi.org/10.1016/j.mcna.2004.04.013
http://dx.doi.org/10.1016/j.mcna.2004.04.013
http://dx.doi.org/10.1242/jcs.076869
http://dx.doi.org/10.1016/j.mce.2009.05.018
http://dx.doi.org/10.1016/j.mce.2009.05.018
http://dx.doi.org/10.1016/j.pharmthera.2006.06.001
http://dx.doi.org/10.1172/JCI6928
http://dx.doi.org/10.3904/kjim.2010.25.2.119
http://dx.doi.org/10.1023/A:1006812218502
http://dx.doi.org/10.1210/en.2008-0885
http://dx.doi.org/10.1210/en.2008-0885
http://dx.doi.org/10.1172/JCI8216
http://dx.doi.org/10.1016/j.cmet.2008.04.005
http://dx.doi.org/10.1016/j.cmet.2008.04.005
http://dx.doi.org/10.1049/ip-syb:20050050
http://dx.doi.org/10.1049/ip-syb:20050050
http://dx.doi.org/10.1074/jbc.M110.106849
http://dx.doi.org/10.1074/jbc.M110.106849

	A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling
	Introduction
	Methods
	Sensitivity analysis methodology
	Sensitivity analysis techniques
	The method of Sobol
	Morris’ screening design

	Insulin signalling model

	Results
	Principal components
	Sensitivity indices
	Computation times

	Discussion
	References


