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We discuss a novel atomic force microscope-based method for identifying individual short DNA
molecules (,5000 bp) within a complex mixture by measuring the intra-molecular spacing of a
few sequence-specific topographical labels in each molecule. Using this method, we accurately
determined the relative abundance of individual DNA species in a 15-species mixture, with
fewer than 100 copies per species sampled. To assess the scalability of our approach, we con-
ducted a computer simulation, with realistic parameters, of the hypothetical problem of
detecting abundance changes in individual gene transcripts between two single-cell human
messenger RNA samples, each containing roughly 9000 species. We found that this approach
can distinguish transcript species abundance changes accurately in most cases, including tran-
script isoforms which would be challenging to quantitate with traditional methods. Given its
sensitivity and procedural simplicity, our approach could be used to identify transcript-derived
complementary DNAs, where it would have substantial technical and practical advantages
versus established techniques in situations where sample material is scarce.
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1. INTRODUCTION

Detection of and counting the copy number of a particular
species of short DNA molecule (,5000 bp) in a hetero-
geneous mixture of relatively small sample quantity,
such as might be derived from a tissue biopsy, occupies a
central role in many biotechnology applications (e.g. tran-
scription profiling, exome sequencing, polymorphism
detection, RNA seq, chromatin immunoprecipitation seq,
and so on). In these applications, detection methods
require very high signal-to-noise ratios and the ability to
yield a signal from small numbers (,100) of positive
events [1]. Over the last decades, these applications have
been addressed by PCR, in situ hybridization of species-
specific fluorescent oligos, microarrays and next-generation
sequencing, but not without certain shortfalls and
shortcomings [2]. PCR and in situ probe hybridiza-
tion techniques, which rely on the assembly of highly
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plementary material is available at http://dx.doi.org/
012.0024 or via http://rsif.royalsocietypublishing.org.

anuary 2012
arch 2012 2341
specific molecular complexes, satisfy the high gain require-
ments, but suffer serious problems when used with
high-complexity mixtures. In situations with many differ-
ent targets present at low abundance, the kinetics of
molecular complex formation is unfavourable and many
probe species are required. Typically, this diversity leads
to unacceptable cross-talk between probes or requires the
use of secondary sorting methods to reduce the complexity
of the sample. Microarrays and nextgen-sequencing tech-
nologies are relatively insensitive and require enzymatic
amplification of low-abundance samples. The amplifica-
tion process is slow, technically complex and distorts the
relative abundance of species, particularly those with
high sequence similarity (i.e. transcript variants, gene
family members, and so on) [3].

Nanotechnology-based single molecule approaches
provide a competing approach to such applications
requiring molecular recognition, thus opening new ave-
nues to medical diagnostics, genetic tests and pathogen
detection. In this paper, we explore a novel, alternative
method for identifying individual DNA molecules
This journal is q 2012 The Royal Society
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within a complex mixture, whereby the target molecule
itself becomes the identifying probe, thereby avoiding
many of the problems inherent in the established
methods discussed above. In our approach, the back-
bone of each DNA molecule is decorated with a few
topographical labels, introduced at nicking endonu-
clease recognition sites which are measured very
precisely with atomic force microscopy (AFM), to
form a pattern unique to that species. A key advantage
of this approach is that the labelling chemistry is
simple, highly parallel (a single label used for all mol-
ecules) and no amplification is required. We illustrate
this method based on a ‘self-labelling’ approach in the
context of potential application to an important pro-
blem in molecular biology: identifying individual
cDNA molecules in a low-abundance sample (e.g.
single cell) for the purpose of gene-expression profiling.
2. MATERIAL AND METHODS

2.1. DNA labelling protocol

DNA samples are diluted in 1� NEBuffer 4 (50 mM
potassium acetate, 20 mM Tris-acetate, 10 mM mag-
nesium acetate, 1 mM dithriothreitol, pH 7.9; New
England Biolabs) enzymatically tagged with 1 U nick-
ing enzyme nt.BsmAI (New England Biolabs) for 1 h
at 378C. Linearized and nicked DNA is spin-purified
and eluted with purified water, pH 8.3, or 10 mM
Tris–Cl, pH 8.5 (Qiagen QIAquick Gel Extraction
Kit). Sample concentration is determined by fluoro-
metric quantitation (Qubit Fluorometer) before biotin
incorporation. Biotin dUTP labelling at 30 ends is incor-
porated at nick sites through a terminal transferase
reaction in 1� terminal transferase buffer (Roche),
5 mM CoCl2 (Roche), 0.05 mM Biotin-16-dUTP
(Roche) and 20 U terminal transferase enzyme (New
England Biolabs) for 1 h at 378C. The biotinylated
DNAs are spin-purified and eluted with 10 mM Tris–
Cl, pH 8.5 (Qiagen QIAquick Gel Extraction Kit).
For AFM visualization of tagged nick sites, approxi-
mately 1 mg Streptavidin (New England Biolabs) is
added to the biotinylated sample and incubated at
room temperature for more than 2 h or overnight at 48C.

For the experiments with lambda phage DNA,
samples were prepared from N6-methyladenine-free
lambda DNA (New England Biolabs), cut into 15 frag-
ments in 1�NEBuffer 4 and 5 U ClaI restriction
endonuclease (New England Biolabs) for 1 h at 378C.
Enzyme-digested lambda fragments are spin-purified
and eluted with 10 mM Tris–Cl, pH 8.5 (Qiagen) and
fluorometrically quantified (Qubit Fluorometer).
Equimolar amounts, determined fluorometrically, of
SphI-linearized pUC19 plasmid is linearized and added
as an additional species. The lambda plus pUC19
mixture are then nicked and labelled as described above.
2.2. Atomic force microscopy imaging

Samples are deposited on NiCl2-derivatized mica sub-
strates by fluid shear flow and washed three times
with purified water before being spin-dried in a spin
coater at 4000 r.p.m. for 30 s. Samples are imaged in
J. R. Soc. Interface (2012)
tapping mode in air with the Dimension ICON AFM
(Bruker Metrology) using k ¼ approximately 3 N m21

silicon probes (Nanosensors). Image resolution was
2 nm pixel21. DNA contour lengths and streptavidin
label locations were measured manually with NIH
IMAGEJ. Classification of individual molecule as belong-
ing to a particular species is accomplished using the
same alignment algorithm as in the simulation (see
§2.4.2), with the following exceptions: the universe of
available hypotheses was limited to the 15 fragments
known to be present in the mixture; to be conservative,
the allowed label alignment precision and overall length
measurement precision were taken as 4 per cent, and
the estimated label rate was taken as 50 per cent
and both forward and reverse alignments were scored.

2.3. Analysis of measurement errors

2.3.1. Unlabelled DNA fragments
Eight fragments, ranging in length from 33 to 450 nm
were derived from RsaI restriction digestion of plasmids
pUC19 and pTZ19R, and from a 100 bp sizing ladder
(New England Biolabs).

2.3.2. Linearized, labelled pUC19 and pTZ19R plasmids
Label positions were measured relative to one end of the
template molecule. PUC19 contains four ntBsmAI
sites, and pTZ19R contains two sites. Precision and
mean label position for the streptavidin-labelled sites
in the plasmids was estimated by fitting a mixture of
normal distributions to the ensemble of aligned data,
using a standard expectation maximization algorithm
(MATLAB). Measured lengths are scaled by a factor of
1.02, which corrects for the average compression in
DNA pitch under the experimental conditions versus
the canonical pitch of BDNA (0.33 nm bp21). This scal-
ing factor is stable between experiments using the same
surface deposition conditions.

2.4. Simulation and database matching

2.4.1. Simulated single-cell transcriptomes
Expression data from two distinct reference RNA
samples, Stratagene Universal Human Reference RNA
(UHRR, catalogue no. 740000) and Ambion Human
Brain Reference RNA (HBRR, catalogue no. 6050),
were taken from the publicly available National Center
for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) record GSE5350, generated by the
MicroArray Quality Control (MAQC) project [4].
MAQC expression profile data were generated at mul-
tiple test sites using a variety of microarray-based and
alternative technology platforms (Taq-MAN PCR,
StartPCR, and so on). Gene-expression levels for each
species were according to those measured by the AFFX
platform and TAQMAN platform. Roughly 9000 distinct
transcripts were detected in each sample. Normalized to
reference gene RNA polymerase II (POLR2A), the rela-
tive levels of expression ranged from log10 23.5 to log10

þ1.5, excluding ribosomal RNA. For the purposes of
simulation, we normalized transcript counts to the abun-
dance of gene POLR2A as well, and roughly 1 500 000
cDNA molecules for each transcriptome were simulated
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Figure 1. Topographic labelling with nicking restriction endo-
nucleases. (a) A free 30OH group is generated on one strand of
the double helix by a nicking enzyme (n), followed by enzy-
matic addition of biotin and streptavidin (s) at the modified
site, for the purpose of rendering the site readily identifiable
in an AFM image. This chemistry can be performed in sol-
ution, followed by deposition of the sample on mica for
AFM imaging. (b) Many individual molecules are imaged
together, and the number and spacing of streptavidin labels
is subsequently determined. (c) Experimentally measured
AFM height profiles of linearized pUC19 plasmids labelled
at the nt.BsmAI recognition sequence (50-GTCTC-30), indi-
cated by the red bars in the sequence map, below. The
backbone profiles of five fully labelled molecules are identical,
demonstrating the repeatability of the process.
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(roughly equivalent to three single-cell complements of
mRNA [5,6]), assuming a POLR2A abundance of 200
copies per sample.

We located the recognition sites 50-GTCTC-30 and
30-CAGAG-50 of nicking endonuclease nt.BsmAI on
each transcript in the NCBI Reference Sequence
(RefSeq) database of human mRNAs and obtained its
restriction map. Synthetic transcripts in the database
were excluded. The poly(A) tails at the 30 end of the
mRNAs were removed. Median ATP-binding cassette
(ABC) transcript length is 4.4 kb or 1.47 mm using a
constant 0.33 nm-to-bp conversion factor. Ninety
eight per cent of the transcripts are longer than
500 nm, so for topographic labelling, the expected
label positioning error is of the order of 1.5 per cent of
total transcript length.

2.4.2. Matching single molecule sparse label patterns to
transcript database
The process of assigning fully and partially decorated
cDNA molecules to the library of possible matches pro-
ceeded as follows: a simulated data molecule (D) and an
individual hypothesis molecule (H) are aligned from
the 30 end, which was taken to be labelled. A score is
calculated for each possible alignment:

pairwise alignment score ¼ A
YL

1

1

error
ffiffiffiffiffiffi
2p
p ex ; ð2:1Þ

where

A ¼ plLð1� plÞMpf F ; ð2:2Þ

and

x ¼ �ðdÞ
2

2 error2 : ð2:3Þ

Here L equals the number of aligned labels between
D and H, M equals the number of label sites in H but
missed in D, F equals the number of false labels (i.e.
labels in D but not in H), pl equals expected true
label rate per site, pf equals expected false label rate
per molecule, d equals distance between label pairs
and error is the estimated average label position error.
The best score is taken to be the maximum of the
scores from all possible alignments between H and D.

2.4.3. Matching single molecule short sequence reads
with transcript database
The method used to assign simulated single molecule
short sequence reads with transcripts of origin relied
on standard dynamic programming techniques, and is
detailed by Lipson et al. [7] and used here without
modification. The algorithm results in an alignment
score of 5 for a perfect alignment and lower scores for
imperfect alignments. Following the study of Lipson
et al. [7], only alignments with scores of � 4.3 were con-
sidered. We called a true positive if a short-read
obtained the highest alignment score (and score of
� 4.3) when it is aligned uniquely with its correspond-
ing correct hypothesis. Otherwise, it was recognized as
false positive. By varying the alignment score from
5 to 4.3, we obtained the receiver-operating
J. R. Soc. Interface (2012)
characteristic (ROC) curves of using the single molecule
sequencing approach.
3. RESULTS

3.1. Labelling efficiency and measurement errors

To introduce topographic labels, DNA molecules were
nicked multiple times using a frequent cutting nicking
endonuclease (e.g. nt.BsmAI, ‘5GTCTC3’), followed
by enzymatic addition of biotinylated nucleotides at
each nick site via terminal transferase. The biotin-
labelled molecules were then reacted with an excess of
streptavidin in solution, for the purpose of rendering
the site readily identifiable in an AFM image. The pos-
ition of the streptavidin labels, and their spacing along
the molecule, corresponds with high accuracy to the
pattern of nicking enzyme recognition sequences pre-
dicted from the molecule’s underlying base-by-base
sequence. Figure 1a–c depicts the imaging and
measurement process flow, and shows actual AFM
height profiles of labelled molecules. Achievable label
site position error and labelling efficiencies are the key
determinants of matching specificity in this approach.
We conducted a series of experiments using
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Figure 2. Labelling efficiency and functional form of label positioning error. (a) Four constructs derived from linearized plasmids
pUC19 and pTZ19R used to estimate topographic labelling efficiency and positional measurement error. Red marks indicate the
location, in nanometres, of the nt.BsmAI nick sites with respect to the left end of each molecule. (b) Labelling efficiency per site
determined from measurement of populations of each of the four constructs. (c) Plot of measured versus expected label position
and total contour length for labelled constructs (green) and unlabelled DNA molecules (blue), as determined by AFM. The error
bars represent +1 s.d. about the mean. (d) Plot of measurement precision (s.d.) versus size for labelled constructs (green) and
unlabelled DNA molecules (blue).
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topographically labelled, linearized plasmids and short
unlabelled restriction fragments to ascertain the func-
tional form and variance of point-to-point positional
error, and to determine achievable label decoration effi-
ciency per nick site (figure 2). Median labelling
efficiency per site was 79 per cent (range 67–96%).
Incorrect labels, taken as labels located greater than
5 per cent from their predicted position, were observed
on average once per 33 molecules. These false labels
were owing either to spurious nicks or non-specific
binding of the streptavidin. The DNA contour length
measured by AFM was directly proportional to the
theoretical contour length over the range of interest,
0–1000 nm, a result consistent with other studies
[8–10]. The standard deviation of length/label position
measurement, shown in figure 2d, was 2.2 per cent of
the measured contour length, plus constant term, 3.6 nm.

We define label position error as the uncertainty in
localizing a topographic label occurring somewhere
between the 30- and 50-ends of the molecule. Taking
the ‘average’ label position to be the centre of the mol-
ecule and thus average label position error is (1 3 L)/2,
where 1 is the overall precision achievable for measuring
the total length, L, of a given molecule. This estimate
allows us to obtain a lower bound for the achievable
label position error for a species of a given length. The
actual label position error will also include the effect
J. R. Soc. Interface (2012)
of the random variation in absolute accuracy of label pos-
ition, a, after correcting for systematic bias. This is
estimated from the standard error of the residuals in the
linear regression of the absolute sizing data (figure 2c)
to be of the order of 5 nm. The covariance between the
error e and a is unknown, but following the logic above,
we can estimate the range of the convoluted errors to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 þ a2Þ=2

p
on the lower end, and (e þ a)/2 on

the higher end. Given e is equal to 2.2% � L and a
equal to 5 nm, this step yields an expected range for aver-
age label position error of between 1 and 2 per cent for
molecules of total length 400–1000 nm.
3.2. Identifying and counting DNA species in a
complex mixture

We used the topographic labelling scheme to identify
individual nt.BsmAI-labelled species, molecule-by-
molecule, from within a mixture of short DNA
molecules (figure 3a). Within this mixture, eight of
the 15 fragments contained at least one nt.BsmAI rec-
ognition site. Figure 3b shows typical AFM-derived
height profiles of single, labelled molecules (blue
trace) and the accompanying predicted location of the
nicking restriction endonuclease recognition sites (red
bars), determined by nucleotide sequence. Figure 3c
shows experimental results from AFM analysis of a
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Figure 3. Identifying individual species in a mixture. (a) Nt.BsmAI sequence maps (red bars) of 15 fragments from a ClaI digest of
lambda phage genomic DNA ordered by total length. The smallest fragment, species ‘a’, is 354 bp or 177 nm, and the longest
fragment, species ‘o’, is 4398 bp or 1451 nm. (b) Height profiles of 2000 molecules, comprising equal amounts of species a-o,
were matched uniquely to the known patterns for the 15 species. The data are represented as 2000 row�15 column matrix,
where each row represents a single molecule, and the likelihood that it matches one of the 15 patterns, a-o, is given by the
colour in the corresponding column. (Note that not all 2000 rows are resolved owing to the resolution of the printed figure).
The large majority of molecules were assigned to a specific species with high confidence (green colour, probability of match
.80%). The ‘raw data’ are ordered column-wise by pattern length. The data were re-ordered using a pairwise hierarchical cluster-
ing algorithm; the resulting order of the columns represents the relative similarity between the species’ nt.BsmAI labelling
pattern and the area of the ‘blocks’ in each column is proportional to the number of assigned counts for that species. (c) Typical
AFM-derived height profiles of single, labelled molecules (blue trace), and the accompanying predicted location of nt.BsmAI rec-
ognition sites (red bars). (d) Plot of the total counts (log2) determined by AFM analysis of approximately 2000 tagged molecules.
The median number of counts per species is 90. The solid line is a linear fit to the abundance of fragments versus length, excluding
the outlier ‘a’. The standard error, indicated by the dashed lines on the plot, is +15 counts (0.28 log2). This corresponds to a
median estimated coefficient of variation (CV) of approximately 17%.
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mixture of 2000 cDNA-sized molecules, comprising
equal amounts of species a–o. These data were pooled
from four independent, similar replicates and measured
blindly—the experimenter knew neither the number of
species in the mixture nor their sizes and labelling pat-
terns. In this experiment, each molecule was measured
and converted to a ‘fingerprint,’ which was matched
uniquely to the known patterns for the 15 species (see
§2). In the figure, results of the matching process are
depicted schematically: the data are represented as a
2000 row � 15 column matrix, where each row rep-
resents a single molecule, randomly ordered, and the
likelihood that it matches one of the 15 patterns, a–o,
is given by the colour in the corresponding column. A
large majority of the counts were assigned to a specific
species with high confidence (green colour, probability
of match greater than 80%). For the ‘raw data’, the
columns of the data matrix are ordered by pattern
length. To better visualize the relationship between
the different patterns, the columns were re-ordered
using a pairwise hierarchical clustering algorithm,
J. R. Soc. Interface (2012)
whereby the probability that a specific molecule
matches a specific pattern is treated as a ‘distance’,
and all the ‘closely spaced’ molecules are grouped
together; the resulting order of the columns represents
the relative similarity between the species’ nt.BsmAI
labelling pattern and the area of the ‘blocks’ in each
column is proportional to the number of assigned
counts for that species.

We recorded a median of 90 counts per species, and
individual members of the mixture were correctly quan-
tified within the range of log2 typically demanded by
gene-expression studies (figure 3d). There is a clear
inverse relationship between counts per species and
species length, a behaviour consistent with the known
adsorption kinetics of DNA on derivatized mica [11]. In
the size range most typical of mRNAs/full-length
cDNAs, 500–2500 bp, the coefficient of variation (CV)
of counts per species is approximately 0.5 log2. Adjusted
for surface capture bias, the CV is less than 0.3 log2, or
+15 counts (CV 17%), which is in line with the typical
variance for qPCR quantification of 75–100 molecules
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per species [4]. Note that approximately 60 per cent of
the observed variance in counts is owing to stochastic
sampling noise. Depending on the stringency parameters
used in the matching algorithm, 67–75% of all molecules
were uniquely identified. Therefore, one could expect the
lower limit of absolute sensitivity to surface adsorbed
molecules to be less than 10.
3.3. Identifying transcript isoforms—
comparison with direct single-molecule
sequencing

We considered the efficiency with which one could use our
method to uniquely identify transcript isoforms—alterna-
tively spliced mRNAs and transcripts from evolutionarily
related gene families—which share sequence homology
and thus are hard to differentiate using hybridization
probes, microarrays or short-read sequencing. As a test
case, we considered transcript variants from the ABC
gene family, a highly homologous family of genes encoding
multi-subunit membrane transporter proteins; it con-
tains 81 members, 54 of which are variants. Among the
members of this family include the cystic fibrosis trans-
membrane conductance regulator gene (CFTR), which
in mutant form is responsible for cystic fibrosis, and
MDR, MRP1 and MXR, a group of proteins that confer
multi-drug resistance when overexpressed.
J. R. Soc. Interface (2012)
For comparison, we have conducted a similar analysis
of a simulated single molecule base-by-base sequencing
experiment, using the sequencing method proposed by
Pushkarev et al. [12]. We have chosen this technology
for comparison because it is by far the most mature
and well-published alternative unamplified, small
sample transcript profiling method which does not rely
on species-specific oligonucleotide probes. It is also the
only one of the single molecule sequencing approaches
to have been demonstrated to be able to directly
sequence unamplified cDNA from relatively low
abundance samples (approx. 1000 cells) [13].

Figure 4 shows a schematic of the simulated exper-
iment using the AFM method. We generated 100
hypothetical cDNA molecules originating from each of
the 81 ABC transcripts. Each hypothetical cDNA was
‘corrupted’ using a stochastic model that follows exper-
imental and measurement errors: 50 truncation owing to
incomplete reverse transcription, incomplete nick site
labelling, inaccurate label positioning and spurious
false labelling. In particular, each simulated cDNA mol-
ecule was derived from its hypothetical mRNA while
truncating 0–20% (uniformly distributed) of length
from the 50 end simulating less than full-length cDNA
synthesis. We assumed that site-labelling efficiency is
80 per cent, false labels occur in every three of 100 mol-
ecules and site position error owing to imaging varies in
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the range of +0.5–2% (normally distributed). Each
simulated cDNA molecule was compared with 29 563
human mRNA transcripts from the NCBI RefSeq data-
base, and scored pairwise using the alignment
procedure described in §2. We quantitatively evaluated
the matching performance using ROC analysis. ROC
analysis is a common method for quantifying the trade-
off between sensitivity and specificity of discrimination
methods or diagnostic tests across a series of sensitivity
thresholds. The results of the ROC analyses are typi-
cally displayed as a two-dimensional plot of the true
positives versus false positives achieved by the method
under study, for any one sensitivity threshold. For the
ROC analysis, we define an alignment as a true positive
if the simulated molecule matches with its corres-
ponding hypothesis molecule (i.e. yields the highest
alignment score among the population) and the align-
ment score is higher than the given threshold;
otherwise, the alignment is regarded as a false positive.
By varying the alignment score threshold, we obtained
the ROC curve of each transcript in the ABC gene
family by counting the number of true and false
positives out of 100 simulated molecules.

For the single-molecule sequencing approach, the
simulation schema was identical to that described in
figure 4, with the exception that simulated short reads,
generated from random locations within each cDNA,
replace simulated nt.BsmAI sparse tag patterns. We
employed the read length distribution present in Push-
karev [12], and applied errors of deletions 3 per cent,
insertions 1 per cent and substitutions 0.5 per cent, to
simulate 100 short-reads for each of the 81 ABC genes.
These 8100 simulated short-reads are aligned with all
the 29 563 hypothetical background transcripts in the
database using the Smith–Waterman-based alignment
algorithm described by Lipson et al. [7] (see §2) and
the ROC analysis was conducted as described above.
J. R. Soc. Interface (2012)
Figure 5 compares the ROC results yielded by both
approaches. To better illustrate the difference in perform-
ance, we have divided the genes into two sets: transcript
variants andnon-variants. In figure 5a, the successful rate
of the single molecule sequencing method in identifying
27 non-variants was about 55 per cent owing to the fact
that only reads greater than or equal to 24 bp match
the transcript sequences uniquely. On the contrary, the
AFM approach obtained a 65–90% successful rate
depending on label site positioning error. Increasing
the site position error from 0.5 to 2 per cent would
increase the probability of faulty alignment and, thus,
the number of false positives. In figure 5b, owing to the
high similarity of subsequences among transcript iso-
forms, the single molecule sequencing approach fails to
uniquely identify most variants in the ABC family. The
AFM approach reports about a 50–68% successful rate
in uniquely distinguishing a transcript variant.
3.4. Simulation of full transcriptomic profiling of
single cells

ROC analysis demonstrates superior performance of
topographic labelling versus single molecule short-read
sequencing. It is true, however, that expression levels
of the same gene can vary greatly between samples in
some cases, and that the quantities of potential interfer-
ing transcripts (false positives) in the same sample can
also vary by orders of magnitude.

To address this question further, we conducted an
additional simulation of two full single-cell transcriptomic
profiles and assessed the ability of the topographic labelling
scheme to accurately determine the relative changes
in transcript abundance. The measured abundances of
roughly 9000 transcripts from two representative human
samples, Stratagene UHRR and Ambion HBRR, were
obtained from the NCBI GEO database. These two
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samples have been extensively profiled with various micro-
array and PCR platforms as part of the ongoing MAQC
project [4]. A single cell’s worth of mRNA (roughly 1 500
000 molecules) from each sample type were generated,
with the abundances of each individual species taken
from the MAQC data and normalized to the abundance
of RNA polymerase II gene POLR2A.

Eight thousand seven hundred species were present in
both the UHRR and HBRR samples. After matching the
simulated transcripts to the RefSeq database, 5600
species were identified with high confidence. Roughly
4500 species were detected with counts above a hypothe-
tical limit of detection of two background transcripts.
The fold-change in transcript abundance of the HBRR
sample versus the UHRR sample is plotted in figure 6a.
On the x-axis is the actual log2 change in transcript abun-
dance used in the simulation, and on the y-axis is the
measured abundance recovered after matching the simu-
lated transcripts to the RefSeq database. The data are
linear (slope ¼ 0.98, r2 ¼ 0.91) across the entire fold-
change range of 26 log2 to þ8 log2. The performance
of topographic labelling compares favourably with that
obtained by the MAQC study for the same samples
between replicates of RT–PCR and StartPCR, for
example (slope¼ 0.78, r2 ¼ 0.81) [4]. Twenty-four dis-
tinct ABC isoforms were present in both samples (all
were detected), and the measured fold-change for those
transcripts is plotted separately in figure 6b, for clarity.
Here, the fold change is well preserved even accounting
for the potential interfering effects of thousands of
alternative transcripts.
4. DISCUSSION

Our results address several critical issues with regard to the
potential effectiveness of this ‘self-labelling’ strategy for
identifying cDNA transcript abundance. (i) The ability
to distinguish transcript species in a mixture is a strong
function of (a) label decoration efficiency and (b) accurate
measurement of label site positionwithin themolecule.Our
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experiments establish both (a) and (b) in the context of the
nick-labelling chemistry. We have carefully modelled the
label positioning error to show that the variance is a
linear function of label-to-label distance, plus a small con-
stant term. (ii) In addition to the label positioning error,
our simulation explicitly addresses the likelihood that
sample preparation, labelling efficiency and measurement
accuracy will be imperfect in practice. It included the sto-
chastic effects of incomplete cDNA synthesis, incomplete
label site decoration and spurious false decoration, using
parameters derived from experiment. The results confirm
our earlier analysis that a minimum level of label efficiency
and positional measurement accuracy are required in
order to resolve many species in a complex mixture.
(iii) Finally, the potential effectiveness of this method to
distinguish transcript isoforms is one of its primary
strengths. This advantage stems from the fact that
rather than sampling the molecule in one location, as in
the case of probe hybridization or ‘tag’ sequencing, the
topographic labels are distributed along the entire mol-
ecule length and precise measurement of their spacing
reveals alternative exon splicing in many cases. Answering
the question of whether the experimentally achievable
label efficiencies and positional accuracies will allow
isoform discrimination was a key motivation for simulat-
ing experiments with the highly isomorphic ABC gene
family. The estimated success of this approach for
this ‘hard case’ strongly suggests that many human
transcripts will be similarly distinguishable.

The engineering details of cost and throughput
are beyond the scope of this manuscript, however
we note that automated sample-handling and image
analysis can be easily implemented using standard
methods, as we and others have shown previously
[10,14], and that AFM technology has progressed to the
point that image capture rates can approach that of
optical microscopy [15–19], which would allow deep
and sensitive sampling of a wide range of cDNA
samples in many practical applications (see the electronic
supplementary material).
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Like all transcription profiling methods relying on
cDNA, which includes qPCR, amplified microarrays
and direct sequencing, this AFM method is subject to
biases of the reverse transcription process. Molecules
shorter than approximately 100 nm (300 bp) will be
challenging to identify using a single nicking enzyme
label because of the few sites available on average and
the minimum label positioning error, which becomes
limiting for very short molecules. The use of the pro-
posed method will be limited by how efficiently the
transcriptomes of a small number of cells can be iso-
lated, converted to cDNA, labelled and captured on
the surface for AFM imaging. These issues are beyond
the scope of the present work and need to be addressed
in future studies. The subject of efficiently purifying
cDNA from small samples, down to single cells, is cur-
rently an active area of research by many groups (for
example, [20]). The simulation presented here does
not include the effects of ‘confounding’ background
molecules such as genomic DNA fragments that would
be confused with cDNA or inadvertently reverse-
transcribed ribosomal RNAs (rRNAs). However, we
note that both genomic DNA and rRNAs can be greatly
reduced or eliminated using DNase and RNase at the
appropriate steps in the cDNA synthesis procedure.

From a methodological perspective, this study is, to
our knowledge, the first time sequence mapping using
nicking restriction enzymes has been applied to short
molecules in any context, and the first time it has
been used to detect individual nucleic acids in a com-
plex mixture. Previous studies [21,22] have shown that
sequence-specific topographic labelling of DNA is poss-
ible, but the labelling chemistries used could not
produce tags with the needed frequency and fidelity
for recognizing large numbers of cDNA-sized nucleic
acid species in a mixture, as do the nicking enzymes
used here. Nicking enzymes have been used previously
with fluorescent labelling to map sequences on single
DNA molecules using optical microscopy [23,24]. How-
ever, because of resolution limitations, only rare cutting
nicking enzymes could be used, so that the average dis-
tance between label sites is large (e.g. 7-cutter
nb.BbvCI, average spacing 16 kb or 5.4 mm), and map-
ping was necessarily confined exclusively to long
molecules, such as 48 kb (approx. 16 mm) lambda
phage genomic DNA, which are approximately 10–
100 times longer than a typical cDNA. Furthermore,
to achieve the required accuracy and precision, these
mapping studies average results from a large ensemble
of identical molecules. By contrast, here we have
demonstrated high accuracy and precision in localizing
many individual, distinct labels on many individual
single molecules.
5. CONCLUSIONS

In this report, we address specifics of topographic label-
ling chemistry and investigate the effect of experimental
variables on transcript isoform detectability through
computer simulations. As a demonstration, we accurately
measured the abundance of individual cDNA-sized DNA
species from a complex, 15-species mixture. We then
J. R. Soc. Interface (2012)
extrapolated those results, via computer simulation
with realistic parameters, to the hypothetical case of
distinguishing 81 individual transcripts from the highly
isomorphic ABC superfamily from a background of
30 000 alternative human transcripts. This simulation
indicated that topographic labelling identified the
ABC transcripts accurately, including transcript iso-
forms which would be challenging to differentiate using
traditional methods. We conducted an additional simu-
lation of two full single-cell transcriptomic profiles and
assessed the ability of the topographic labelling scheme
to accurately determine the relative changes in transcript
abundance. We found that this approach can distinguish
transcript species abundance changes accurately in most
cases, including transcript isoforms which would be chal-
lenging to quantitate with traditional methods. Taken
together, these two simulations show that transcripts
from the ABC gene family can be identified with high
sensitivity and specificity, even in the background of
tens of thousands of alternate transcripts.

A key advantage of the topographic labelling
approach is that the labelling chemistry is simple,
highly parallel (single label used for all molecules) and
no amplification is required. Nicking enzymes retain
the main advantages of regular restriction enzymes:
extreme specificity and low cost. In theory, this label-
ling process can be conducted with multiple nicking
restriction endonucleases, applied in a serial fashion
and labelled with different chemical moieties to identify
several different sequence motifs on a single molecule
simultaneously, with the AFM.

Funding for this work was provided by National Institutes
of Health grant R01GM094388 to J.R. and R21GM080999
to J.K.G.
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