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Animals moving under the influence of spatio-temporal scaling and long-term memory gen-
erate a kind of space-use pattern that has proved difficult to model within a coherent
theoretical framework. An extended kind of statistical mechanics is needed, accounting for
both the effects of spatial memory and scale-free space use, and put into a context of ecologi-
cal conditions. Simulations illustrating the distinction between scale-specific and scale-free
locomotion are presented. The results show how observational scale (time lag between reloca-
tions of an individual) may critically influence the interpretation of the underlying process. In
this respect, a novel protocol is proposed as a method to distinguish between some main
movement classes. For example, the ‘power law in disguise’ paradox—from a composite Brow-
nian motion consisting of a superposition of independent movement processes at different
scales—may be resolved by shifting the focus from pattern analysis at one particular temporal
resolution towards a more process-oriented approach involving several scales of observation.
A more explicit consideration of system complexity within a statistical mechanical frame-
work, supplementing the more traditional mechanistic modelling approach, is advocated.
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1. INTRODUCTION

Consider the movement path of a foraging mammal.
After bouncing back and forth on a relatively local
scale for a while, the animal suddenly takes a more
directional and long-lasting displacement, bringing it
to a relatively distant location within a few time incre-
ments. What has happened? From the perspective of
small time increments, an observer will typically look
for local causes: was the food patch depleted to a critical
level, sensu the marginal value theorem [1]? Or had a
predator suddenly emerged in the neighbourhood?
From a coarser temporal perspective, was the individual
just performing one of its more strategic moves (from
the finer-scaled point of view), which just ‘waited to
happen’—with no clear local causation whatsoever?
However, the causation might have been easier to
reveal from a coarser spatio-temporal level of analysis,
where the finer-grained myriad of interactions could
be averaged out as background noise. On the other
hand, fine-grained mechanics also generate seeds for
coarser-grained behaviour. Hence, the real challenge for
a coherent theory regards this kind of multiple-scale
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complexity where processes at various scales interact
in a dual-directional manner.

Below, this challenge is approached in three steps.
First, contemporary issues related to modelling of
animal movement are summarized, with a focus on chal-
lenges relating to scaling and memory. It is argued that a
realistic implementation of these aspects in models
requires an extension of the classical statistical mechan-
ical framework. Second, simulation results illustrate the
qualitative difference between (i) apparently scale-free
space use owing to habitat utilization at different scales
in an inter-independent manner (memory-less composite
random walk) and (ii) true scale-free space use emerging
from an intrinsically scale-free space-use process.
The latter covers a memory-less to memory-influenced
continuum between Lévy walk (LW) and multi-scaled
random walk (MRW) (to be described below). Third, a
novel statistical protocol is described to distinguish
between (i) and (ii) from a set of animal relocations
such as series of GPS fixes.

Many animals relate to their habitat over a range of
spatio-temporal scales, commonly conceptualized as a
nested hierarchy of landscape elements [2]. Hence, habi-
tat heterogeneity generates a tension between fine- and
coarse-scale weighing with respect to what goal to
follow for the next move. In an apparent adaptation to
cope with habitat heterogeneity, many species have
This journal is q 2012 The Royal Society
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developed a cognitive capacity to use past experiences in
a spatially explicit manner. This implies strategic move-
ment, including homing—guided by a memory map
[3–8]. However, transforming the interplay between scal-
ing and memory into actual simulations under a coherent
theoretical framework has proved difficult and contains
many challenges [9–11].

A variety of statistical mechanical models such as cor-
related random walk and LW have been explored in the
context of scale-free versus scale-specific movement, in
particular in relation to optimal foraging, as reviewed
by, e.g. Reynolds & Rhodes [12] and Viswanathan
et al. [13]. However, it has been argued that theoretical
progress in the context of vertebrate space use also
depends on a realistic implementation of the memory
aspect of movement [9–11], including a statistical mech-
anical system description in this regard [14–16]. Thus,
on the one hand, the scaling property observed in real
GPS data over some scale range [13,17,18]—even if the
power-law fit has been questioned for some of the data-
sets [19,20]—requires a deeper understanding of the
processes behind the emergence of scale-free movement.
A statistical description of scaling is given in the context
of vertebrate movement is given below, followed by a
description of how observed scaling may reflect a process
involving long-term memory.

A power-law pattern is indicative of an intrinsically
driven scale-free process [21]. In the present context of
movement, the long step tail part of a histogram of dis-
tances L between successive spatial relocations
(e.g. GPS fixes) of an individual at a given observer
time lag tobs often fits a power law [13,22]; i.e. a k
times larger step length appearing with a frequency of
1/k b over a scale range from Lmin to Lmax. The power-
law distribution can then be described by a so-called
truncated LW:

FðLÞ ¼ aL�bj1 , b , 3;Lmin , L , Lmax; ð1:1Þ

where F(L) represents number of displacements falling
within a given bin (range of step length), a is a parameter
for unit bin for the power-law compliance and b rep-
resents the ‘steepness’ of the right-tail part of the
distribution. Lmin is larger than the median step
length, whereas Lmax defines a transition towards a stee-
per cut-off (truncation zone; i.e. typically a negative
exponential form of the distribution for the largest bin
intervals). The truncation could—for example—be due
to maximum movement distance during the observation
interval tobs, environmental constraint or other factors
interfering with large step lengths. Without the trunca-
tion aspect, equation (1.1) is expressing a so-called
Lévy flight, which is characterized by successive abrupt
displacements, rather than a movement with a mean
displacement rate per unit time and a power-law distri-
bution of steps lengths between random directional
turns. Hence, the phrase LW is used here owing to its
closer physical compliance with animal movement, but
the two phrases are often used synonymously in the bio-
logical literature [12]. However, synonymy in the case of
LW requires that tobs is sufficiently large to allow for
observation of large step lengths (rather than cutting
them into pieces owing to too frequent fix sampling).
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Otherwise, the scale-free interval, Lmin , L , Lmax,
may become artificially narrowed. Furthermore, choosing
tobs smaller than this truncation-related limit requires
a more complex equation relative to equation (1.1),
with movement steps expressed more explicitly as a
function of time [23].

To what extent equation (1.1) represents a pattern of
real animal movement has been surrounded by contro-
versy, as reviewed by Viswanathan et al. [13]. This
controversy has been enhanced by simulation results
showing that a superposition of scale-specific pro-
cesses—for example, movement consisting of a mixture
of two BM components with different scale constants
and frequency of occurrence—may generate an LW-like
pattern under specific boundary conditions, and hence
appear statistically as a scale-free process [24–27].
This power-law look-alike paradox from tuning of
scale constants of a composite BM creates serious chal-
lenges for statistical verification of a true scale-free
process for real data. The challenge adds to the fact
that power-law compliance from a purely statistical per-
spective is notoriously difficult to verify owing to the
influence of step-length truncation [19], as expressed
by Lmax. This truncation around Lmax is a function of
the mean path constraint under the Markov process
premise, and the maximum movement speed during
the chosen time intervals for observation (tobs).

However, simulations presented below illustrate how
this ‘power law in disguise’ paradox from a composite
BM may be resolved by shifting the focus from a
purely statistical analysis of step lengths to a more
process-focused kind of hypothesis testing, derived
within the framework of statistical mechanics. Next,
the LW simulation design is further extended to
illustrate the effect from adding long-term memory
mimicking a memory map utilization and homing,
which implies a potential for scale-free dynamics both
in the spatial and the temporal domain (within practical
scale range constraints).
2. SCALING AND MEMORY

An LW-like distribution of step lengths can—as an
alternative to invoking a qualitatively new framework
relative to classical BM and diffusion—be constructed
by fine-tuning a superposition of two BM processes
with different scaling constants (a proxy for mean
step length) and relative frequencies of occurrence.
This composite BM approach—from randomly mixing
bouts of scale-specific movement at different scales—is
feasibly described as intra-patch movement mixed
with less frequent inter-patch movement [24,28].
Plank & Codling [29] extended Benhamou’s [24] exem-
plification of Lévy look-alike processes from composite
BM, by exploring a broader range of scale constants
and conditions for the scale-specific components under
a range of sampling lags on the generated series. They
found that a strong directional persistence (correlated
random walk) for the coarser-scale process in combi-
nation with low frequency of appearance of this
component relative to the finer-scaled process led to
an LW-like pattern. However, their methodology was
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criticized by Auger-Méthé et al. [30] (but see Plank &
Codling [31]). In short, these approaches are stretching
the BM paradigm under classical statistical mechanics
to embed scale-free patterns by adding more Markov
compliant model components under the premise of a
superposition of scale-specific space use.

On the other hand, a power law-kind of pattern has
also been explored in the form of an explicitly postu-
lated scale-free process, the MRW model, which
extends the LW model by adding long-term memory
effects [15,32]. Scale-free space use—mimicked by an
LW component in simulations—is supplemented by
homing in the form of occasional returns to previously
visited locations. The result is a self-organized home
range (an emergent property of site fidelity) with fractal
properties [33]. Contrary to LW, the scaling and
memory aspects are implemented under a postulate of
parallel processing over a continuum of process rates
(see below) rather than assuming Markov compliance
at a specific temporal unit scale t for the simulations
[14,16]. Thus, power-law compliance is explained as
an emergent property from a complex cognitive process,
which may be mimicked in statistical mechanical terms
by the MRW model design.

In short, three qualitatively different space-use
processes—Markov compliant and scale-specific compo-
site BM; Markov compliant and scale-free LW; and
memory-enhanced and scale-free MRW—may all
explain the statistical pattern in equation (1.1).
Hence, this field of research is currently in a state of
confusion and controversy. Not only has the traditional
approach towards testing for log–log linearity based on
equation (1.1) (regression analysis) been questioned and
more sophisticated statistical methods advocated (in
particular, the Akaike model approach), but even
these advanced approaches have been cast in doubt
for some parameter range of b [29]. Thus, some alter-
native protocols for distinguishing between these
processes from a statistical mechanical perspective, by
studying fractal properties of space use, have been
proposed [16,34].

Below, an additional statistical mechanically
inspired protocol—as opposed to a more pattern-
focusing statistical approach—is illustrated by
simulation results. This method is based on analysis
of the traditional double-log-transformed distribution
of step lengths and testing for power-law compliance
using linear regression, by some considered ‘obsolete’
in the light of the Akaike approach [31,35]. However,
a supplementary aspect of this linear regression
approach is in focus here. Rather than struggling
statistically to estimate the degree of (non)linearity
and the power-law parameter b, the regression line’s
y intercept and its dependence on observation lag tobs

is applied to reveal a compliance with scale-specific or
scale-free space use. While both correlated random
walk and LW can show ‘super-diffusion’, i.e. by satisfy-
ing that the r.m.s. deviation from a path’s starting point
expanding more rapidly than proportionally with the
square root of time, only a Lévy-like process (i.e. truly
scale-free) will maintain this property over a substantial
range of observational scales. To visualize and analyse
this distinction, a double-log plot where step-length
J. R. Soc. Interface (2012)
distributions from several observational lags are
superimposed is applied to estimate the behaviour of
the scatter plot and the regression line (linearity and
intercept). Hence, this statistical distinction not only
provides a novel approach to test for scale-free space
use, but also points towards the deeper qualitative differ-
ence between Markovian- and non-Markovian-based
statistical mechanics.
3. METHODS

Appendix S1 in the electronic supplementary material
provides details on the simulation methods, which are
summarized below. A composite BM—an LW ‘look-
alike’—was simulated as a superposition of four
movement components, representing inter-independent
spatial scale levels of space use, j ¼ 1–4, with increasing
characteristic step length lj and decreasing relative fre-
quency of occurrence (relative weights: 0 , wj , 1).
Successive steps of length LBM were generated from
LBM( j ) ¼ 2lj ln(RND). RND is a random number
between 0 and 1. For each of the respective levels j,
this algorithm leads to a statistical step-length distri-
bution F(L) ¼ @e2@L, where 1/@ is the mean
movement length [27]. In other words, in a statistical
mechanical context, 1/@j ¼ lj represents the mean free
path of the moving object at spatial scale j and tem-
poral scale t. A higher frequency of short-range steps
at the expense of long ones is reflected in a larger @.
In contrast, the power-law function that defines LW
does not contain the scale specificity defined by 1/@
and l.

Successive steps LBM were randomly performed in
compliance with scale level 1–4, with relative weights
wj (probability of occurrence), with proportionally
smaller wj for larger lj (the product lj� wj ¼ constant).
Hence, the algorithm followed the superposition prin-
ciple, where the individual during a unit step interval
t is postulated to obey the rule for one specific level only
(as expressed by lj), in order to obey the Markovian prop-
erty. For example, when the individual is traversing in an
inter-patch mode—by moving more persistently and uni-
directionally in comparison to finer-level intra-patch
foraging—it follows this coarser level’s characteristic per-
ception of its environment. Thus, potential direction-
influencing inputs at finer resolutions are filtered away
and ignored. In other words, to mechanistically mimic a
difference in mean free path between the levels within
the BM paradigm the animal is assumed to turn a blind
eye to environmental input at finer spatial resolutions
than the level j characterizing the current step. If a
foraging individual opportunistically interrupts its cur-
rent high j level step to take advantage of a smaller
grained food patch, then the composite BM structure
would not be maintained. Hence, a superposition of
independent BM components puts strong constraints on
the biological–ecological interpretation of the processing
algorithm.

An LW process implies that the scale-free part of
the distribution of step lengths originates from intrinsic
(i.e. cognitive) causes alone, and not from a combination
of the cognitive process (flipping between movement
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‘moods’) and environmental forcing, expressed by the
product lj� wj and the respective resulting mean free
paths under the composite BM design.

In a series of 26 563 steps, on average 20 000 were set
to take place at level j ¼ 1, 5000 took place at level j ¼
2; 1250 at level j ¼ 3; and 313 at level j ¼ 4 (in random
order during step iteration, with l1 ¼ 100; l2 ¼ 400;
l3 ¼ 1600 and l4 ¼ 6400, i.e. forced power law scaling
from boundary conditions; lj� wj ¼ constant). One
series consisting of N ¼ T ¼ 26 563 steps was simulated,
and all N steps were collected for analysis; tobs ¼ t ¼ 1
(unit lag). Three additional series were generated and
collected at lag tobs ¼ 10, 100 and 1000, respectively,
with a similarly increasing series length factor to com-
pensate for sub-sampling. These series represented T
increased by a factor of 10, 100 and 1000, but with a
constant N. This approach by analysing the space-use
pattern over a range of observational scale, 1� tobs�
1000, will influence specific parameter estimates. This
variation may allow for a simple protocol to distinguish
a look-alike scale-free process (composite BM) from a
true scale-free process.

Four separate BM series of length Nind1 ¼ 20 000,
Nind2¼ 5000, Nind3¼ 1250 and Nind4¼ 313 steps were
also run. The respective scaling constants were similar
to the four-level composite BMs: lind1¼ 100, lind2¼ 400,
lind3¼ 1600 and lind4¼ 6400. These separate single-
level series were produced to compare space use by a
population of independently moving individuals where
the LW-like pattern is apparent at the population
level only (by pooling the set of movement lengths
from several individuals, each showing classical BM in
isolation but responding to a direction-influencing
interrupts at different scales). The total time period T
was defined to be equal for the four individuals despite
a difference in N, implying a difference in relative unit
time owing to a difference in relative step frequency
(electronic supplementary material, appendix S1). All
individuals were postulated to move with the same
speed, but owing to a postulated longer interval with-
out directional interruption for the coarser-graining
individuals, they will on average show a larger net
displacement per unit time than their finer-scale
responding conspecifics.

LW was simulated as a set of successively independent
steps with length LLW ¼ a(RND)21/(b2 1) with a ¼ 1
and b ¼ 2. It was implicitly assumed that during a
given step at unit lag t, a sufficient number of (virtual)
micro-steps at finer spatio-temporal resolutions had
taken place to ensure (i) an absence of inter-step direc-
tional persistence even for high-frequency fix sampling
at tobs¼ t and (ii) a Lévy-stable distribution of step
lengths [21]. These two assumptions imply that a simu-
lated path was conjectured to represent coarse graining
to the statistical mechanical level of system abstraction
even at the simulation’s temporal execution scale. Four
series were run at t ¼ tobs ¼ 1, and additionally sampled
at lag tobs ¼ 10, 100 and 1000, respectively, for a final
sample size of 20 000 steps from each series (thus, the
fourth series was run for 20 million steps to compensate
for larger lag). A maximum step length was set to 40
000 length units at lag t ¼ 1, to mimic a simplified
step truncation effect.
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MRW was simulated and sampled under the same
conditions as for LW, but extended with its algorithm
expanded with a rule for memory-dependent strategic
return steps: on average at every 100th time increment,
the individual jumped back to a randomly chosen pre-
vious location in the series (electronic supplementary
material, appendix S1).

When generating successive steps from a movement
process at coarse lags (the assumption behind the present
simulations), an LW pattern is expected to be similar to
a Lévy flight pattern owing to self-similarity, and thus
allowing for equation (1.1) in the text. However, influ-
ence of step-length truncation is expected and should
be accounted for [12]. By assuming that the simulations’
execution scale reflects coarse-grained lags, one also cir-
cumvents the chronically difficult issue of defining
‘move length’ (between successive re-orientations) at
the mechanistic level t of the true movement process.
What is a re-orientation event? Reynolds & Rhodes
[12] and others have proposed various rules of thumb
when analysing real data, but these remain subjective.
By defining the simulations’ execution scale to represent
a coarser statistical mechanical level, a given step
distance is normally the result from a series of what in
mechanistic terms would have been defined as indepen-
dent, successive moves. Thus, at this coarser scale,
successive step directions become randomized and
uniformly distributed over 0–2p.
4. RESULTS

Figure 1a shows the spatial distribution from an ensemble
of fixes collected from four independent BM paths (repre-
senting four individuals) with the different scaling
constant lind and frequency of occurrence, and observed
at tobs¼ 100 (total time span T is equal between the
series, T¼ 100 � 20 000 unit time increments). Under a
small-l regime, movement consists of many small
steps, and under a large-l regime steps are larger but
fewer over the defined time span. Owing to the premise of
fewer direction-influencing interrupts per unit time under
a large-l condition, space use becomes more extended.

Figure 1b shows a modified single-individual BM pro-
cess, expressing a four-level superposition of space use
where the respective levels have lj, and relative fre-
quency of occurrence wj similar to the inter-individual
values in figure 1a. For pedagogic reasons (to concep-
tually illustrate inter-level process independence),
figure 1b was generated by pooling the 20 000 þ
5000 þ 1250 þ 313 ¼ 26 563 fixes from the four individ-
uals in figure 1a and scrambling the step succession.
Because each of the original series reflected BM
dynamics over a time span of T ¼ 100 � 20 000 unit
time steps, the total time span for the pooled series in
figure 1b is implicitly assumed to be T ¼ 100 �
80 000 ¼ 8 � 106 time steps.

Figure 1c apparently shows a pattern similar to
figure 1b: high frequency of small steps intermingled by
less frequent longer steps. However, even if some aspects
may appear similar in a statistical sense (see §5), then the
process under the pattern is distinctly different at a fun-
damental level from a statistical mechanical perspective.



BM: four-individual
superposition

(a) (b)

(c) (d)

BM: four-level
superposition

N = 26 563

N = 100

N = 100
N = 100

N = 20 000

Lévy walk

N = 20 000

MRW, truncated

Figure 1. (a) Brownian motion compliant movement from four individuals is marked by successive relocations (‘fixes’ with indi-
vidual-specific colour) over a total simulation time span T ¼ 100 � 20 000 t time units, and sampled (‘observed’) every 100th time
unit. All individuals move with a constant average speed, but different mean free path for the respective individuals leads to
difference in number of steps and diffusion rate (net displacement during T ). A 10-step sequence for the two series with the lar-
gest mean free path (black and blue) is shown with line segments inter-connecting the successive observed fixes. Owing to the
time lag of 100 t for sampling, on average 100 times as many direction-influencing events have taken place between successive
fixes for each of the four individuals, relative to sampling 20 000 fixes at unit time interval t. Thus, the straight line segments
illustrating step vectors hide some finer-grained jaggedness of the respective paths. (b) The fixes from the four individuals in
figure 1a are pooled and scrambled, to mimic a four-level single-individual BM. A 100-step representative sequence from the
series is enlarged, to visualize the random successive mixture of steps from various scale levels. (c) N ¼ 20 000 fixes from a
Lévy walk, collected at lag tobs ¼ 100 (i.e. total time period T ¼ 100 � 20 000, which equals the total series length at unit
time scale prior to sampling at lag 100). With reference to the iteration procedure specified in Methods, b ¼ 2 was used.
(d) N ¼ 20 000 fixes from multi-scaled random walk under condition b ¼ 2, collected at lag tobs ¼ 100. Owing to return steps
taking place at the same time scale (frequency 1 : 100 on average), successive fixes are collected from the transition zone for a
spatially auto-correlated and non-auto-correlated series. At a smaller tobs, successive fixes would have tended to appear closer
together than more distant fixes in time, as illustrated by the LW in figure 1c.
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Figure 1c shows an LW that represents a kind of space-
use process where the true distribution of step lengths
is both continuous (i.e. not discretized to a four- or
larger component superposition of inter-independent
movement levels) and scale-free in a dynamical sense.

Figure 1d illustrates fixes from the scale-free and
memory-enhanced MRW series, with data sampling at
frequency 1 : 100. Owing to return steps happening at
the same frequency 1 : 100 on average, the shown
sequence of 100 fixes appears less spread out relative
J. R. Soc. Interface (2012)
to the LW condition in figure 1c. Hence, the space
use becomes more constrained, with a very fuzzy (stat-
istical-fractal compliant) and multi-modal ‘home
range’ pattern.

Figure 2a verifies that a four-component superposi-
tion of BM under the chosen boundary conditions
generates an LW look-alike distribution of step lengths.
After double-log transformation, the slope is approxi-
mately linear with a slope close to 22.2 that satisfies
b � 2.2 in an LW parametrization (equation (1.1)).
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The power-law pattern is very resilient to coarse grain-
ing over an observational range 1 � tobs � 1000. The
linear regression slopes for the various levels of tobs right-
shifted by a factor of ca log2(

p
10)� log2(3.2)¼ 1.7

when tobs is increased by a factor n ¼ 10. In other
words, when the inter-observation interval is increased
n-fold, the animal on average performs a

p
n times as

large net displacement for all bins in the set L. Cru-
cially, this ‘diffusion rate’ regards all four levels in the
composite BM, leading to maintenance of the log–log
linear relationship in the superposition series. Further-
more, this diffusion rate (as observed at a given scale
tobs) is compliant with a BM-compliant process, a
‘Fickian diffusion’. In other words, the mean square
net step length for all bins of L, L2, expands proportion-
ally with time, despite LW-like (rather than a negative
exponential) distribution of step lengths at any given
observational scale tobs. Figure 2a extends the illus-
tration of this generic and well-known statistical
mechanical law of diffusion, by showing that an individ-
ual that is moving in accordance to a superposition of
independent BM components follows the same law,
under a premise of maintenance of the relative magnitudes
lj and relative frequency of occurrence wj during T.
Thus, the overall impression of a power-law step-length
distribution is also maintained.

Figure 2b shows how an LW process (truncated at
length scale log2(40 000)¼ 15.3 length units at execution
scale t¼ 1) also right-shifts its step-length distribution
under a coarser observational lag. However, contrary to
the composite BM process in figure 2a, the diffusion
rate for LW reflects the expectation from a true scale-
free movement: net displacement changing proportionally
with observational scale tobs, i.e. the set of step lengths L
is changing (showing parallel-shift in the histogram) pro-
portionally with observational lag. For example, a 10-fold
increase in tobs leads to a 10-fold increase in net displace-
ment for a given step length bin. With reference to the
log2(L) axis in figure 2b, log2(10)¼ 3.3. This diffusion
rate, mean square deviation (L2 in the present context)
increasing proportionally with time squared, characterizes
LW in general (i.e. super-diffusion). Figure 2b also illus-
trates that the step-length truncation is not visible for
tobs , 1000, under the given boundary conditions (b¼ 2
and N¼ 20 000). At the level tobs¼ 1000, the truncation
becomes apparent as a reduced frequency in bins for
steps close to and larger than log2(40 000)¼ 15.3, relative
to the expectation from a non-constrained LW. The fre-
quency of step lengths larger than 40 000 is not 0 at
tobs¼ 1000, because there is a slight probability for two
or more displacements of this magnitude among any
given intermediate sequence of 999 steps (executed at
scale t) between each sampled location.

Figure 2c illustrates a scale-free process under the
influence of long-term memory; a truncated LW-like
space-use process with a superposition of return events
to a previous location at frequency 1 : 100 relative to
execution scale t ¼ 1. For observational levels tobs¼ t ¼
1, i.e. tobs� 100 (to avoid step truncation owing to
return steps), this MRW condition reflects a step-
length distribution similar to a generic LW. However, a
tendency for a ‘hockey stick’ pattern—an elevated fre-
quency of large steps relative to the expectation from a
J. R. Soc. Interface (2012)
power law—is increasing in magnitude with tobs

approaching 100 t, the defined scale for return steps. As
tobs is increased beyond 100 t, the step-length distribution
from the return step process—in combination with the
step-length truncation—dominates the overall process.
The power law aspect of the movement—when expressed
through equation (1.1)—then becomes ‘hidden’ at finer
temporal scales, as previously shown by Gautestad &
Mysterud [15]. Hence, if an animal space-use process is
both scale-free and memory-influenced, then it is crucial
to estimate the level of spatial auto-correlation prior to
testing for power-law compliance. Unless tobs is chosen
substantially smaller than the transition level between
spatial auto-correlation and non-auto-correlation (tobs �
100 t in the present simulations, with spatially non-
auto-correlated fixes at tobs� 100 t), the step-length dis-
tribution may (i) either appear hockey stick-like owing to
the increasing dominance of the return step component
for the large-step classes at these levels of observation or
(ii) appear BM-like (closer fit to a negative exponential,
as seen at levels tobs¼ 100 and tobs¼ 1000 in figure 2c),
owing to influence from step-length truncation of both
intrinsic (‘mood’ to return) and extrinsic origin.

Hence, figure 2c shows a double-interference with the
power-law pattern—a combination of the influence
from return events (a superposition of a return step dis-
tribution, which leads to a hockey stick pattern when
tobs! 100 t) and an influence from a truncation of
steps beyond a given size (physical limit to movement
speed at scale t, and/or environmental constraint such
as territorial borders). In combination, these indepen-
dent factors may lead to either a steeper or shallower
slope of the step-length distribution for the largest bins
relative to unconstrained LW, or they may even more
or less cancel each other out at the chosen tobs.

Figure 2d illustrates how a MRW without influence
from step truncation may make the extreme part of the
step-length distribution more ‘noisy’ in the extreme
part of the tail. This jaggedness of F(L) for large L is
mainly owing to chance effects from the early phase of
a given simulation series. Return steps lead to a self-rein-
forcing use of some locations at the expense of others (i.e.
a positive feedback), and the emergence of a multi-modal
distribution function of density of fixes [33]. Initial
chance effects with respect to relative distance between
the ‘winning’ clusters from the early-phase self-organiz-
ation of space use will influence the distribution of
return step lengths: of the dominant clusters happen to
appear relatively far apart, return steps of length similar
to this inter-mode distance will tend to be over-rep-
resented (A. O. Gautestad 2012, unpublished results).
As shown in figure 2d, these inter-mode distances will
vary stochastically from one simulation sequence to the
next owing to early ‘pattern locking’ from the positive
feedback process, and the peaks in the step-length
distribution will vary accordingly.
5. DISCUSSION

The present results lead to four main take-home mess-
ages. First, put closer attention to the process behind
the statistics. A purely statistical approach, for example,
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Figure 2. (a) Double-log histogram showing the distribution of binned step lengths from a four-level BM process, observed at differ-
ent temporal resolutions (lags). (b) A truncated Lévy walk shows the expected linear slope in a log–log transformation of the step-
length distribution, but the scale-free pattern beaks down for step-length bins larger than the truncation scale. (c) The step-length
pattern from a truncated multi-scaled random walk (truncated LW-like, but extended with memory influence and return steps)
shape-shifts from power-law compliance (tobs¼ 1), through a ‘hockey stick’ pattern (tobs¼ 10) to a truncated power-law pattern
(larger tobs). (d) A multi-scaled random walk without step-length truncation shows a relatively noisy step-length frequency over
the extreme step-length bins. Two independent distributions, dashed and solid lines, are included for the two observational
scales tobs ¼ 100 (blue-coloured) and tobs ¼ 1000 (red-coloured), to illustrate how the frequency peaks over the noisy range vary sto-
chastically between series when tobs is similar to—or larger—than the temporal scale for return steps (in these iterations, a return
event at frequency 1 : 100 on average). The reason for the noisiness at these coarse levels of observations is explained in §4.
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by defining a scale-free process as a Lévy flight is a
random walk for which each movement step is indepen-
dently drawn from a probability distribution that has a
heavy power law tail and then use this property as the
sole criterion for testing [19], may contribute to an elev-
ated level of confusion and controversy in this field. This
definition is an excellent description of the expected pat-
tern from the ideal model, but misses the dynamic
aspect of the real-life process. For example, the physical
aspect describes the degree of deviation from an ideal
power-law pattern in the form of truncation of the tail
of the step distribution, and underscores the importance
of distinguishing a Lévy flight from an LW. Only the
latter has relevance for animal movement [12]. A Lévy
flight differs from an LW by showing immediate displa-
cement regardless of distance between successive fixes,
whereas an LW describes a movement process with
physical realism in the context of observing animal
paths at fixed intervals [13,30]. For example, if an indi-
vidual has a maximum movement rate of 5 km h21, a
scale-free kind of movement sensu equation (1.1) will
have a step distance of 5 km as the upper limit for suc-
cessive fixes. This time-dependent aspect of step-length
truncation, Lmax, will thus influence the double-log
J. R. Soc. Interface (2012)
linearity for bin sizes approaching this limit, and sup-
plement the truncation effects from memory (if the
power law distribution arise from MRW) and environ-
mental border effects (e.g. a fish in a lake). Thus, if
equation (1.1) and double-log linearity is used as a cri-
terion for testing for power-law compliance, then the
test will produce a false negative if the magnitude of
tobs is large enough to impose truncation effects on the
observed pattern. Further, as illustrated by Benhamou
[24] for a two-component model and figure 2 for a
four-component model, composite BM may produce an
LW in disguise pattern under specific combinations of
scale constants. In this case, a false positive may be
found from a purely statistical approach. Thus, for a
true LW process, equation (1.1) should always be
expected to show strong dependence on tobs with respect
to the power-law compliant range from Lmin to Lmax [26].
A purely statistical approach to the power law aspect
does not explain the influence of observational scale on
the observed pattern (e.g. the shape-shifting of a
MRW step-length pattern from LW-like, to hockey
stick-like and finally towards BM-like by increasing tobs).

Second, the notoriously difficult statistical verifica-
tion (or falsification) of a true scale-free space-use
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process—as reviewed in the section Scaling and memory
above—may be simplified by estimating the constancy
or variability of the diffusion rate over the set of step-
length classes L, as a function of observational scale,
tobs. The difference expressed between figure 2a and
figure 2b–d underscores the potential from this
approach. The statistical signal from the parallel shift
as a function of tobs is supplementing the compliance
with true double-log linearity, and may even survive
temporal coarse-graining better than linearity compli-
ance. Thus, analysing space-use data (for example in
the form of GPS fixes) at several lags tobs to observe
the process over a temporal scale range may provide a
clearer distinction between composite BMs (including
correlated random walk variants) and LW through
multi-scale estimates of diffusion rates. This approach
also provides a test to distinguish between LW and
MRW by looking for hockey stick and truncation in
the transition zone between spatially auto-correlated
and non-auto-correlated steps.

Third, by analysing the data with different tobs relative
to system-specific boundary conditions, two observers
may reach very different conclusions with respect to
step-length compliance with a negative exponential or a
power law. Both may in fact be right! In particular, if
the animal in question has used its habitat under the
influence of long-term memory, then the observed pattern
at temporal level tobs may shape-shift from power law,
through a hockey stick pattern, to a truncated power-
law pattern (figure 1c), and ultimately to a negative
exponential (BM compliance) if tobs is chosen large
enough. Hence, this paradox may to some (testable)
extent be rooted in a relative difference in observational
scale between the respective studies.

Fourth, the advice to study both the spatial scaling
(distribution of step lengths) and the temporal scaling
(a parallel shift of the double-log regression line as a
function of tobs) is rooted in an explicit consideration
of statistical mechanical properties of movement. Stat-
istical mechanics—which regards the dual nature of
process and statistics from a meso- and macro-scale per-
spective—is key to a deeper understanding of (and
solution to) the paradox of two observers finding quali-
tatively different patterns in the example in the
foregoing paragraph. The statistical mechanical
approach implies paying closer attention to classes of
meso- and macro-scale laws that emerge from mechan-
istic micro-scale interactions but where these
interactions are analysed from the perspective of a coar-
ser observational scale tobs� t. Contrast this with a
mechanistic approach, which dominates individual-
based modelling [36] and puts the focus on behavioural
mechanisms (algorithmic rule-execution close to level t)
and looks for statistical patterns that can be compared
with similar analyses of data from real individuals. As
an example of the coarser-perspective statistical mech-
anical perspective and what it offers as a supplement
to the mechanistic analysis, consider a drunken
walker—the random walk archetype. In the long run
(or walk), walking with a variable step length and ran-
domly chosen direction for successive steps will be
found to bring the person a distance from the starting
point which (from statistical mechanical expectation)
J. R. Soc. Interface (2012)
increases proportionally with the square root of time
T from start to the point of location. When averaging
over many series of walks, a 100 times larger T will
bring the walker 10 times further away. Then contrast
this with a very sober walker, who carefully determines
direction and goal for successive steps, based on avail-
able information at the given point in time. This
information is then churned through an extensive set
of ‘if-then’ kind of movement rules, and out comes the
step decision. The next step is then taken independently
of previous step decisions. The various rules under the
algorithm may be purely deterministic, purely
stochastic (such as the drunken walker scenario) or a
combination. The well-established fact from statistical
mechanics is that—again in the long run—the sober
and the drunken walker produce the same expectation
of r.m.s. distance after time T. Hence, a walk with a
simple rule of random steps follows the same statistical
mechanical law as a walk with very detailed and more
or less deterministic movement algorithm! What they
have in common is the Markovian, memory-less proces-
sing of successively independent movement-influencing
events. Emerging from the hidden world of zillions of
micro-scale step (in)decisions at mechanistic level t
come the meso- and macro-scale observables at level
tobs� t, such as the exponential or power-law function
of step-length distribution (telling us about main
classes of movement), the over-all movement rate
(mean square deviation as a function of T, offering
important biological and ecological information) and a
method to distinguish between a scale-free process
such as LW or MRW and a look-alike scale-free process
(composite scale-specific walk).

A statistical mechanical approach, representing a
bridge between mechanistic and statistical analysis,
may thus have a lot to offer to the theory of animal
locomotion and space use. In some sense, the controver-
sies in this field may be rooted in too large a distance
between the ‘statistical’ and the ‘mechanistic’ camps
of system analysis. It has clearly created a counter-
productive distance between these complementary
approaches. A more explicit statistical mechanical
approach may bridge the two traditions, for example
by paying closer attention to a broader range of the
qualitative differences between a scale-specific and a
scale-free process and the importance of observational
scale [14,16].
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walk? Comment. Ecology 89, 2347–2351. (doi:10.1890/07-
1688.1)

28 Johnson,C.J.,Parker,K.L.,Heard,D.C.&Gillingham,M.P.
2002 Movement parameters of ungulates and scale-specific
responses to the environment. J. Anim. Ecol. 71, 225–235.
(doi:10.1046/j.1365-2656.2002.00595.x)

29 Plank, M. J. & Codling, E. A. 2009 Sampling rate and mis-
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