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The adherence of patients to therapy is a crucial factor for successful HIV anti-retroviral
therapy. Imperfect adherence may lead to treatment failure, which can cause the emergence
of resistance within viral populations. We have developed a stochastic model that incor-
porates compartments of latently infected cells and virus genotypes with different
susceptibilities to three simultaneously used drugs. With this model, we study the impact
of several key parameters on the probability of treatment failure, i.e. insufficient viral suppres-
sion, and the emergence of resistance. Specifically, we consider the impact of drug dosage,
drug half-lives, fitness costs for resistance, different basic reproductive numbers of the virus
and the influence of pre-existing mutations under various levels of adherence. Furthermore,
we also investigate the influence of different temporal distributions of non-adherent days
(drug holidays) during a treatment. Factors that promote resistance evolution include a
high reproductive number, extended drug holidays and poor adherence. Pre-existing
mutations only have a substantial effect if they confer resistance against more than one
drug. Overall, our study highlights the importance of the interactions between imperfect
adherence, pharmacodynamics, pharmacokinetics and latently infected cells for our
understanding of drug resistance and therapy failure in HIV anti-retroviral therapy.

Keywords: HIV; mathematical model; adherence; treatment failure; resistance
1. INTRODUCTION

In the last decade, there has been a steady progress
towards an increasing number of new anti-retroviral
drugs which often show increased efficacy or reduced
side effects. Especially since the introduction of highly
active anti-retroviral therapy (HAART), HIV has
become a manageable chronic disease. Nonetheless,
despite even the most recent advances in the develop-
ment of new drug classes, such as integrase inhibitors,
HIV has proved to be able to adapt and evolve resist-
ance [1]. Resistance mutations may accumulate in the
viral genome and lead to multi-resistant genotypes.
This might eventually result in complete treatment
failure and therefore reduce the choice for a follow-up
treatment regimen.

Adherence, i.e. the probability that a patient takes the
drugs at the prescribed time-points, plays a key role in
the prevention of resistance. Although present-day drug
regimens facilitate adherence by increasing the interval
between drug administrations and lowering the pill
burden, poor adherence is still a major cause for treatment
failures [2]. Different factors such as young age, basic
education, current drug abuse and psychiatric disorders
are often associated with poor adherence [3].

The different drugs used in HAART affect different
stages in the life cycle of virions. Therefore, the
number of RNA copies per millilitre rapidly declines
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after the onset of therapy. Productively infected cells
have a short half-life, which also results in a decreasing
prevalence of these cells. However, HIV may integrate
its DNA copy into the DNA of a host cell which pro-
duces only little or no virus. Because these latently
infected cells are not actively producing virions, their
number does not quickly decline owing to a shortened
half-life. The occasional re-activation of these cells
makes them serve as a reservoir for the virus. Further-
more, tissues that exhibit poor drug penetration may
serve as sanctuaries for infected cells [4]. The presence
of these protected and latent reservoirs renders HIV
eradication virtually unachievable [5] and therefore
makes lifelong treatment necessary. The possible reacti-
vation of latently infected cells and the short generation
time of HIV also imply that treatment interruptions
will eventually lead to a quick rebound of the viral
load. Because of its slow turnover, the latent reservoir
may also serve as an archive for genotypes carrying
resistance mutations. These genotypes get a head-
start when drug concentrations reach insufficient sup-
pressive levels and spread through the population.
This mechanism further increases the likelihood of the
emergence of multi-resistant genotypes that arise
owing to suboptimal adherence.

Several clinical studies focused on inferring the effect
of adherence on treatment success as well as the factors
determining the level of adherence [3,6,7]. However,
while these studies clearly show that adherence affects
This journal is q 2012 The Royal Society
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Figure 1. Flow diagram of the extended virus dynamics model. It incorporates compartments of eclipsed, fast and slow latently
infected cells. The box sizes roughly correspond to the relative abundance of each cell type. The different genotypes of the virions
and infected cells are not indicated.

2310 Adherence and HIV treatment failure D. Cadosch et al.
treatment outcome, we still lack a theoretical under-
standing of the impact of imperfect adherence,
especially of how adherence interacts with other par-
ameters. The few theoretical studies that have
assessed the impact of adherence were restricted to
mono-therapy [8] or neglected latently infected cells
[9]. Thus, these studies do not adequately capture the
effect of adherence on resistance in the context relevant
for currently practised HAART.

The present study integrates these previous att-
empts to gain an insight into the role of adherence in
the emergence of resistance. Specifically, we developed a
model that incorporates the key aspects that affect the
success of therapy: pharmacodynamics, pharmacokine-
tics, multiple drugs and latently infected cells. With this
model, we investigate a broad range of adherence scen-
arios covering the large variability in patient behaviour.
2. METHODS

The model that has been developed for this article is
based on a stochastic version of the standard virus
dynamics model [10]. It incorporates the discrete
change of target cells, infected cells and virions over
time. The stochasticity was implemented by using the
t-leap method [11]. Newly infected cells first enter
the compartment of eclipsed cells. These target cells
have incorporated viral DNA, but they are still in the
viral eclipse phase and have not become productive
yet. This enables the model to capture the population
dynamics more realistically [12]. Furthermore, the
model has been modified to include two compartments
of latently infected cells to account for the tri-phasic
decay of plasma HIV RNA that is reported to occur
under ongoing HAART therapy [13]. A schematic over-
view of the model is shown in figure 1. After the
initiation of anti-HIV therapy, the virus load typically
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declines with a decay half-life in the order of days.
Thereafter follows a phase with a lower virus decay
and a half-life of several weeks. This second phase is
mainly represented by the compartment of latently
infected cells. During the last phase, the decay of
plasma RNA copies decreases even more, leading to
an estimated half-life of several years. The compart-
ment of slow latently infected cells reflects this third
phase in the course of HIV therapy. In our model, we
assume that these compartments do not contribute
directly to virus proliferation by means of bystander pro-
duction, but instead they constantly replenish the
compartment of infected cells by reactivation. We make
the assumption that self-proliferation and cell death of
latently infected cells are negligible compared with the
reactivation of these cells.

In order to simulate the well-established standard of
combination therapy in HIV, we consider a treatment
that includes three anti-retroviral drugs. Furthermore,
we implement multiple genotypes (gt) that have three
loci each with two alleles, a susceptible and a resis-
tant allele. Thus, the model contains eight genotypes
that have different resistance patterns for three different
drugs. Every resistance allele adds a cost that decreases
the reproductive success of its genotype. If not stated
otherwise, we assume a fitness cost of 20 per cent for
every mutation [14]. For simplicity, we assume that
the acquisition of the resistant allele confers complete
resistance to the corresponding drug. This assumption
does not reflect the full spectrum of clinical obser-
vations, because resistance mutations often just
decrease susceptibility. We generally decided to
assume cautious (i.e. worst-case) parameter estimates
that would favour the emergence of resistance.

Besides the pharmacokinetics, the model also contains
pharmacodynamics that describe the accumulation and
excretion of the administered drugs. Each drug is defined
by its IC50 concentration, its half-life, the dosage interval



Adherence and HIV treatment failure D. Cadosch et al. 2311
and the dose that is chosen relative to the IC50 value. If
not stated otherwise, we set every drug half-life to 12 h
and administered 10 units once a day (qd), when the
IC50 concentration is defined as 1 unit (see appendix A
for the action of drug concentration).

Every run starts with a population of target cells at
the carrying capacity and with an inoculum of 1000
wild-type virions if not further specified. The simulation
is being run for 360 days without any treatment. Within
these 360 days, the infection reaches a stable steady
state, and the treatment starts afterwards with all
three drugs at the same time. If adherence is less than
perfect, all three drugs are missed simultaneously with
a probability of (1 2 p) per day, where p corresponds
to the adherence level. There are two different criteria
for a treatment failure. The first criterion depends on
the overall viral load: under good adherence, the viral
load usually drops very quickly within the first days
of treatment. If the viral load peaks over 106 virions
in two tests, the treatment is considered a failure. The
second criterion checks whether a fully resistant triple
mutant that produces at least 10 slow latently infected
cells is present during any test. In accordance with the
recommendations of the International AIDS Society
USA Panel [15], these criteria are tested every 120
days. The emergence of a fully resistant strain and its
following spread through the population always implies
a treatment failure but the opposite is not necessarily
valid. Therefore, we decided to record and show the
two events independently. Every run simulates a total
of 1080 days and for every parameter set, at least 1000
simulations were run. The adherence parameter has a
resolution of 1022 and the temporal resolution corre-
sponds to 1022d. We used a specified standard set of
parameters (see appendix A for detailed information
about parameters and model equations).
3. RESULTS

In the following, we will consider the impact of different
key parameters on the outcome of HAART. These key
parameters cover drug dosage, drug half-lives, fitness
costs for resistance, the basic reproductive number,
pre-existence of resistance, drug holidays and adher-
ence. Non-compliance with medical advice is a major
obstacle to the delivery of healthcare. A suboptimal
adherence extends the phases of intermediate drug con-
centrations that preferentially select resistance
mutations. Because poor adherence is a regular chal-
lenge to treatment effectiveness, we tested all other
parameters in combination with a continuous gradient
of adherence.

Owing to the high number of virions in an untreated
patient at the steady state and the relatively high
mutation rate, we can expect every possible single
point mutation to be already present at the beginning
of a treatment course. Therefore, we monitored only
the emergence of a fully resistant triple mutant strain.

We monitor three different treatment outcomes: the
emergence of the fully resistantmutant, the treatment fail-
ure due to an elevated viral load but without the triple
mutant, or none of the aforementioned events occurs
J. R. Soc. Interface (2012)
within two years. We show the probability of treatment
failure and the risk for the emergence of the fully resistant
strain as a function of adherence to the treatment.
The probabilityof treatment failure or the risk of the emer-
gence of a resistant strain is given by the proportion of
simulation runs in which such an event has occurred.
3.1. Drug dosage

The dosage of a specific drug may vary greatly because
physicians want to minimize negative side-effects while
at the same time administer enough to achieve optimal
viral suppression. Typical clinical drug concentrations
range from 10 to 100 times the IC50 concentration
[16]. Intuitively, we would expect the probability of
treatment failure and resistance to decline with increas-
ing dose. This is only true if the drug concentrations in
the patient are constantly high enough to reduce the
basic reproductive number of the wild-type and the pre-
sent resistant strains below unity. Otherwise, the drug
concentration might fall to intermediate concentrations
where the wild-type is still under control but mutant
strains may propagate. Therefore, intermediate drug
concentrations promote the selection of resistant geno-
types. If drug concentrations continue to fall below this
mutation selection window, even the wild-type may
begin to increase its numbers and would outcompete the
mutants as a result of its higher fitness [17]. Since drug
half-lives and drug dosage have a major influence on
the drug concentration levels and the rate of its decline,
we looked at the potential of both parameters.

We find in figure 2a that higher drug doses consist-
ently decrease the probability of treatment failure
and the emergence of a resistant strain. However, this
decrease saturates at higher doses. This is mostly
due to the involved pharmacodynamics which cause
the inhibitory effect to level out at increasingly higher
concentrations. Assuming that side-effects become
increasingly severe at high concentrations, it might
therefore be more advisable to switch to another drug
regimen with different pharmacokinetic properties
rather than to simply increase the dosage in order to
increase the efficacy.
3.2. Drug half-lives

Drugs with lower decay characteristics increase the
minimal and the maximal drug concentrations during
perfect adherence to the regimen because these con-
centrations do not drop to such low concentrations
before the next dose is administered (see figure 6).
Therefore, they help in maintaining suppressive drug
concentrations over a longer time period and decrease
the risk of viral blips. Viral blips are bursts of virion pro-
duction that elevate the viral load for a short time
above the limit of detection. On the other hand, if sev-
eral subsequent doses are missed, longer half-lives can
contribute to longer intervals of intermediate drug con-
centrations, which may favour the selection of resistant
mutants. The half-lives of anti-retroviral drugs
vary extensively between classes. Protease inhibitors
generally exhibit rather short half-lives of 2–6 h,
whereas some non-nucleoside reverse transcriptase
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Figure 2. The plots in the left column show the probability of the emergence of a fully resistant strain over the level of adherence.
The plots in the right column show the probability of treatment failure due to insufficient viral suppression over the level of
adherence. (a) Effect of different dosing regimens (solid lines, 10; dashed lines, 20; dotted lines, 50; dashed-dotted lines, 100).
(b) Effect of different drug half-lives. (Left panel: solid lines, 3 short; dashed lines, 2 short; dotted lines, 1 short; dashed-
dotted lines, 3 long; right panel: solid lines, 3 short; dashed lines, 2 short, 1 long; dotted lines, 1 short, 2 long; dashed-dotted
lines, 3 long). (c) Effect of different fitness costs per resistance mutation (solid lines, 0.05; dashed lines, 0.1; dotted lines, 0.2;
dashed-dotted lines, 0.3). (d) Effect of different basic reproductive numbers (solid lines, R0 ¼ 5; dashed lines, R0 ¼ 8; dotted
lines, R0 ¼ 11). (e) Effect of pre-existing resistance mutations in the inoculum (solid lines, wild-type; dashed lines, single
mutant; dotted lines, double mutant; dashed-dotted lines, triple mutant). Please refer to the appendix A for the standard set
of parameters which are kept constant.
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inhibitors may have half-lives of up to two days.
Another complication results from the fact that most
half-lives are only known for plasma concentrations.
The few established examples of intracellular half-lives
indicate that they may be 4–10 times higher than
their corresponding plasma half-lives [18].
J. R. Soc. Interface (2012)
In our model, we tested the interplay of various com-
binations of short (12 h) and long (24 h) half-lives.
Figure 2b shows that longer drug half-lives significantly
decrease the risk of the emergence of the fully resistant
strain and the risk of treatment failure. In particular,
the usage of two long-lasting drugs compared with
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one long-lasting drug grants a substantial advantage
when preventing the emergence of resistance. The
effect is very similar in preventing treatment failure.
3.3. Fitness costs for resistance

Mutations that grant the carrier a resistance to a drug
also usually entail a fitness cost relative to the suscep-
tible wild-type. These fitness costs may greatly impair
the reproductive success of the virus. In order to
study the effect of different fitness costs on therapy
outcome, we ran several simulations with 5, 10, 20 or
30 per cent fitness reduction per mutation.

Figure 2c shows that, in the range from 70 to 100 per
cent adherence, the probability of the emergence of the
fully resistant strain is almost identical to the prob-
ability of treatment failure. This suggests that for this
range of adherence frequencies, almost every treatment
failure occurred owing to the emergence of the fully
resistant strain. With an increase in fitness cost, the
probability of treatment failure and drug resistance
decrease in parallel for this range of adherences. For
adherence frequencies below 60 per cent, treatment fail-
ure occurs almost always irrespective of the fitness cost.
3.4. Basic reproductive number

Here, the basic reproductive number refers to the absol-
ute fitness of the wild-type at the within-host level. It is
defined as the expected number of infected cells pro-
duced by a single infected cell in the target cell
population of an uninfected host. Extensive studies esti-
mating the basic reproductive number of HIV have been
conducted. Previous studies postulated an R0 between
5 and 68 in macaques [19]. A more recent article has
found an R0 for humans of about 8 with an interquartile
range of 4.9–11 [20].

In figure 2d, we tested basic reproductive numbers of
5, 8 and 11. Because of its short generation time, the
virus suffers significantly from a low reproductive
number. Accordingly, a relatively small increase can
escalate the risk of both treatment failure and the emer-
gence of resistance. This can be especially dramatic as
there are individuals that exhibit basic reproductive
numbers of 20 and higher [20].
3.5. Pre-existence of resistance

Individuals may get infected by a virus strain that is
already treatment-experienced and that therefore
already carries one or several resistance mutations.
The prevalence of transmitted drug resistance in
Europe and the United States usually varies in the
range of 7–21% [21–24]. In these cases, the virus is at
least partially resistant to the treatment and is expected
to develop full resistance faster. We tested this possi-
bility by replacing our original wild-type inoculum
with either a single, double or a triple mutant that car-
ries all three resistance alleles. It has to be considered
that this model also incorporates the reversion of
mutations. Therefore, in a population of single mutants,
a wild-type is likely to occur that is more competitive in
the absence of treatment.
J. R. Soc. Interface (2012)
While an infection with the single-resistant strain
only very slightly increases the risk of either treatment
failure or triple mutant emergence, the infection with
a double or triple mutant leads under almost all levels
of adherence to certain treatment failure (figure 2e).
It is plausible that a random single mutant inoculum
does not lead to a substantially different rehabilitation
outcome also because with the wild-type inoculum
every possible single mutant is present at the steady
state. Double mutants, on the other hand, usually do
not occur at such high relative frequencies as is the
case with a double mutant infection. Furthermore,
they maintain the large frequencies in the slow latent
reservoir even after they may have been outcompeted
by the wild-type in the acutely infected compartment.
This may be particularly important because the slow
compartment can restore the general population
during treatment interruptions. The double mutant
infection also usually leads to the random generation
of a few triple mutants that outrun the double mutants
as soon as treatment starts. Thus, double and triple
mutant infections almost always lead to imminent
treatment failure and the emergence of full resistance.

3.6. Drug holidays

Drug Holidays are periods during which a patient does
not take his drug on several subsequent days. Such
phases pose a special threat to successful treatment
because the drug concentration is systematically
allowed to decline to sub-inhibitory levels. In order to
make the results of these simulations comparable
to our previous results, we adapt the previously estab-
lished scale of adherence by measuring the fraction of
days on which the drugs are not taken.

fo ¼
dd

dt
; ð3:1Þ

where dd is the number of days during which the drugs
are taken, and dt is the total number of days on the
treatment regardless of whether the drugs are taken
or not. This ensures that we can compare scenarios
with the same number of days off the treatment. Only
the distribution of these days will differ. We tested
drug holidays with preset lengths between 1 and 5
days. The onset of a drug holiday was chosen stochasti-
cally. Drug holidays are allowed to overlap; therefore,
the potential length of a single drug holiday may be
much longer than the preset duration, i.e. before a
drug holiday ends, another drug holiday may have
already started which prolongs the original drug holiday
by a certain number of non-adherent days.

We ran two sets of simulations: in the first set, the
effect of drug holidays was assessed involving the stan-
dard drug regimen. In the second set, we replaced one
drug with the standard half-life of 12 h with another
that had a half-life of 24 h.

The results in figure 3a indicate a strong impact of
the length of the drug holidays on the probability of
treatment failure and resistance emergence. Therefore,
not only the total number but also the temporal distri-
bution of days off the regimen plays a key role in
preventing treatment failure and drug resistance.
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Figure 3. The plots show the length of a drug holiday over the frequency of adherent days. For the plots in the left column, red
indicates a high probability of the emergence of a fully resistant strain. In the right column, red indicates a higher probability of
treatment failure due to insufficient viral suppression. (a) Effect of drug holidays on treatment outcome under the standard par-
ameters and drug half-lives of 12 h each. (b) Effect of drug holidays with a treatment regimen replacing one drug with another
which has a half-life of 24 h.
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Specifically, drug holidays longer than 4 days show a
very low risk of promoting resistance because intermedi-
ate drug concentrations occur too rarely. Either the
drugs are being taken and the viraemia gets suppressed
or the treatment interruptions are so long that the drug
concentrations drop to a level where there is not enough
selective pressure to favour the resistant mutant over
the wild-type.

Replacing one of the involved drugs with a drug with
a long-half-life changes the picture (figure 3b). For drug
holidays up to 3 days, the risk of treatment failure due
to the emergence of a fully resistant strain or insuffi-
cient viral suppression decreases marginally, similar to
the effect in figure 2b. However, combining a long-
half-life drug with two short-half-life drugs may be det-
rimental (compared with three short-half-life drugs)
because it can select the fully resistant mutant at pro-
longed drug holidays. Also, the risk of insufficient
viral suppression at less than perfect adherence
increases steadily for drug holidays of 4 or 5 days.
This demonstrates that drug regimens involving drugs
with longer half-lives are not in every case the more
successful treatment options. Longer half-lives increase
the time during which the drug concentration remains
in the mutation selection window while the patient is
on a drug holiday. Concentrations of drugs with a
shorter half-life decrease more rapidly, and quickly
leave the range in which the wild-type is inferior to
the resistant strain.

Additional simulations, figures and results have been
performed to allow a more detailed insight into single
patient infections, and can be found in §§A.2 and A.3.
4. DISCUSSION

In this article, we compared the relative impact of
different parameters on therapy failure and drug
J. R. Soc. Interface (2012)
resistance under various levels of adherence. In general,
most of our results suggest that treatment failure due to
insufficient suppression or the emergence of a resistant
mutant is a considerable risk because it seems to arise
even at slightly less than perfect adherence levels. But
it should be noted that our model parameters,
especially those regarding the drug properties, favour
a negative treatment outcome. In particular, many
drugs have higher genetic barriers and therefore the
virus requires multiple mutations to become signifi-
cantly resistant. Furthermore, there is uncertainty
concerning the actual costs of resistance mutations,
detection intervals between viral assessments and the
values of f1 and f2. In order to capture the consequences
of this uncertainties, we repeated our simulations with
modified ranges of these parameters and show the
results in §A.2. For these reasons, our model results
should not be considered as quantitative predictions
of the risk of treatment failure and resistance evolution
but rather as a qualitative assessment of the main
factors that determine treatment outcome.

Our results show that all tested parameters signifi-
cantly change the probability of the emergence of a
fully resistant strain and the probability of treatment
failure. Particularly, the influence of the basic reproduc-
tive number is rather surprising, especially compared
with the influence of the fitness costs per mutation.
Both parameters directly affect the reproductive fitness
of mutant strains. But decreasing the costs per
mutation from 30 to 20 per cent only moderately
increases the risk of a triple mutant, raising the basic
reproductive number from 5 to 8, which has about
the same affect as that of a 15 per cent reduced
adherence level.

Also, the clinically relevant case of pre-existent
mutations deserves further notice. An inoculum consist-
ing of single mutant virions poses about the same threat
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as the standard wild-type inoculum. An infection with a
strain that carries mutations to two or even three
drugs on the other hand is almost guaranteed to
spawn a fully resistant strain. This effect would not
be visible without the introduction of latently infected
cells. Because, even though we allow for reversion of
mutations, the (in the absence of treatment) more com-
petitive single mutants or wild-type strains are not able
to drive the less fit strains to extinction. The resistant
strains will still prevail in considerable abundance in
the latently infected compartment, which has a slower
turnover than the productively infected compartment.
This is why the latent compartment serves as a kind
of archive for every strain that was at some point
sufficiently frequent.

Drug holidays represent a special scenario of adher-
ence. The patient does not take his medication for a
certain number of subsequent days. With our parameters,
these treatment interruptions repetitively allow drug con-
centrations to fall within the mutation selection window
or to sub-inhibitory levels where even the wild-type can
proliferate. These phases of intermediate drug con-
centrations are responsible for the selection of drug-
resistant strains. Interestingly, we observed a rather
sharp boundary in the length of drug holidays beyond
which the fully resistant strain is not selected anymore;
if drug holidays are too long, the relative amount of
time during which resistant strains are favoured is not
large enough. The same holds true for extremely low
adherence levels in other simulations. In these cases,
treatment failure will occur mostly just because of the
insufficient suppression of wild-type viraemia but the
emergence of a fully resistant mutant will not contribute.
Therefore, it is possible that longer drug holidays even
slightly decrease the risk of detecting treatment failure.

Combination therapy with at least three drugs has
become standard in treating HIV patients. The concept
of latently infected cells is well established in the
literature, but models that consider these slow turnover
cells are still rare. In order to capture this situation, we
have developed a within-host model of combination
therapy in HIV that incorporates latently infected
cells, pharmacokinetics, pharmacodynamics and imper-
fect adherence. Many of our observations would not
have been visible, or at least not to the same extent, if
our model had not included these aspects of infection
and therapy. Especially when studying the mechanisms
that lead to the emergence of resistance, the latent
compartment becomes almost indispensable. Our
results suggest that taking these complexities into
account is crucial for the understanding of resistance
evolution in HIV.

We thank Pia Schulz zur Wiesch, Jan Engelstädter, Huldrych
Günthard, Helen Kirsty Alexander, Laurence Läser and
Pleuni Pennings for their valuable comments.
APPENDIX A
A.1. Model equations

The change of target cells T as well as the different
genotypes of eclipsed infected cells Egt, productive
infected cells Igt, slow and fast latently infected cells
J. R. Soc. Interface (2012)
Lgt and Lgt
* and virions Vgt over time is given by the

following set of equations:

dT
dt
¼ mTmax � Tb

Xn

gt¼0

Vgtð1� 1gtÞ � mT ; ðA 1Þ

dEgt

dt
¼ Tbð1� 1gtÞVgt � tEgt � mEgt; ðA 2Þ

dIgt

dt
¼ tEgtð1� ð f1 þ f2ÞÞ þ a1 Lgt þ a2 L�gt

� dIgt; ðA 3Þ
dLgt

dt
¼ tEgtf1 � a1 Lgt; ðA 4Þ

dL�gt

dt
¼ tEgtf2 � a2 L�gt ðA 5Þ

and
dVgt

dt
¼ LgtNvgtIgt � cVgt; ðA 6Þ

where m is the death rate of target cells and Tmax is the
carrying capacity of the target cells. n is the number of
genotypes which is 2 to the power of l, where l is the
number of loci, which in our case was three. With
three loci and two alleles each, we defined eight differ-
ent genotypes: a wild-type, three single mutants, three
double mutants and a fully resistant triple mutant. t
is the rate at which the incubated infected cells
become productively infected cells [12]. f1 and f2 rep-
resent the fraction of infected cells that remain in the
fast or slow latently infected compartment while a1

and a2 are the activation rates of the two types of
latently infected cells. The infection rate of target
cells b is determined by the basic reproductive
number R0,

b ¼ cdR0

NTmaxe�mt
; ðA 7Þ

where c is the death rate of virions, d is the death rate
of infected cells and N is the viral production rate.
This formula assumes that infected cells that are not
yet productive have the same death rate as uninfected
target cells [20].

The inhibitory effect of a drug acts solely on the
infectivity of the virus but does not affect their pro-
duction. This assumption was made for mathematical
convenience. In our model, we implemented two
drugs, A and B, belonging to the same class and there-
fore having an additive effect, while the third drug C is
from another class and has an auxiliary multiplicative
effect. This combination reflects the widespread use of
two reverse transcriptase inhibitors, together with
a protease inhibitor [15]. The inhibitory effect on a
specific genotype 1gt was calculated using a formulation
for multiple synergistically and non-synergistically
acting drugs [25].

1gtðtÞ ¼ 1� 1
CAðtÞ
ICA

50
þ CBðtÞ

ICB
50
þ 1

� �
CCðtÞ
ICC

50Þ
þ 1

� �
:

ðA 8Þ

Here CA(t), for example, is the concentration of drug
A at time t. The IC50 value is a specific concentration
of a drug at which 50 per cent inhibition is achieved.
If a specific genotype carries a resistance allele then
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Figure 4. The plots in the left column show the probability of the emergence of a fully resistant strain over the level of adherence.
The plots in the right column show the probability of treatment failure due to insufficient viral suppression over the level of
adherence. (a) Effect of the random assignment of resistance costs (solid lines, 0.2; dashed lines, random 0–0.5). (b) Effect
of different detection intervals between viral assessments (solid lines, 120 days; short dashed lines, 60 days; dotted lines, 30
days; dashed-dotted lines, 7 days; long dashed lines, 1 day). (c) Effect of different fractions of latently infected cells. The standard
values for f1 and f2 are 1022 and 1024, respectively (solid lines, standard; dashed lines, fn � 0.1; dotted lines, fn � 10).
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the corresponding drug is assumed to have no effect at
all. For simulation, the IC50 values of all drugs were set
to 1 unit.

The force of infection per genotype Lgt corresponds
to the rate with which an infected cell of type gt con-
tributes to the population of virions of every other
genotype gt0 and its own genotype gt.

Lgt ¼
Xn

gt0¼0

Mgt!gt0 : ðA 9Þ

The mutation matrix Mgt!gt0 is given by the
per-locus mutation rate m. For the three-loci/
two-alleles case considered here, no mutation occurs
with a probability (1 2 m)3, one mutation mutation
occurs with probability m(1 2 m)2, two mutations
occur with probability m2(1 2 m) and all three
mutations occur with probability m3.

When the drugs are taken, the concentrations of all
three drugs are assumed to increase instantaneously by
10 units, if not stated otherwise. The drug concentrations
decay afterwards according to the following function:

CAðtÞ ¼ CAðt0Þ2ðt0�tÞ=tA
1=2 ; ðA 10Þ
J. R. Soc. Interface (2012)
where t1/2
A is the half-life of drug Awithin the patient, and

t0 is the last time point where the drugs have been taken.
We decided to modify the reproductive success of a

specific genotype by implementing a suppressive force
on the virus production. Possible fitness effects that
would affect the infectivity of a virion were neglected
for mathematical convenience. The replicative fitness
of every genotype vgt is influenced by the cost ql

that each of the three loci being considered may exert.
In the case of the wild-type allele, ql would be 0.

vgt ¼
Yl

gt¼0

ð1� qlÞ: ðA11Þ

If not stated otherwise, we choose ql to be 0.2 for
every loci with the resistance allele [14].
A.2. Additional results

Besides the results presented in the main article, we also
ran some additional simulations to look at the effect of
random distribution of resistance costs as well as differ-
ent detection intervals. In the first simulation, the costs
for any resistance in any run of the simulation were ran-
domly assigned to a value between 0 and 0.5. This was
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Figure 5. The plots in the left column show the probability of the emergence of a fully resistant strain over the level of adherence.
The plots in the right column show the probability of treatment failure due to insufficient viral suppression over the level
of adherence. (a) Effect of drug regimens involving drugs with short half-lives and doses 10 times above the IC50. (b) Effect of
drug regimens involving drugs with short half-lives and doses 50 times above the IC50. (c) Effect of drug regimens involving drugs
with short half-lives and doses 100 times above the IC50. Solid lines, 4 h; dashed lines, 6 h; dotted lines, 12 h; dashed-dotted
lines, 24 h.

Table 1. Model parameters. The provided references support the order of magnitude of the parameters, not the exact value.

parameter value description/explanation

Tmax 107 [26] carrying capacity of target cells
m 0.1d21 [27] death rate of target cells
t 1d21 [28] activation rate of non-productive infected cells
d 1d21 [13] death rate of infected cells
N 1000d21 [29] viral production rate
c 10d21 [30] death rate of virions
b determined by R0 infection rate of target cells
a1 determined by t1/2,a1

activation rate of fast latently infected cells
a2 determined by t1/2,a2

activation rate of slow latently infected cells
t1/2,a1

30d [31] half-life of fast latently infected cells
t1/2,a2

360d [31] half-life of fast latently infected cells
f1 1022 fraction of cells going to the fast latently infected cells
f2 1024 fraction of cells going to the slow latently infected cells
m 3.5 � 1025 [32] mutation rate
R0 8, if not stated otherwise [20] basic reproductive number
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compared with the standard case where every resistance
mutation always exerts a cost of 0.2. For the second
simulation, we changed the interval between the tests
where the viral load or a fully resistant strain could be
detected. As mentioned earlier, two positive tests
above 106 virions are necessary to suggest insufficient
J. R. Soc. Interface (2012)
viral suppression. To conclude the emergence of a
triple mutant, only one positive test is sufficient.

The results in figure 4a show that a random distri-
bution of resistance costs may result in extreme cases
where the costs for the three resistance alleles are
accidentally all very low or very high. Accordingly, the
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cells) in an example patient, which is 60% adherent. The
treatment starts at day 30. No discrimination is being made
between genotypes. All other parameters are as described
in table 1.
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probability of a resistant strain or a treatment failure
already begins to increase for slightly less than perfect
adherence levels. On the other hand, the probability for
the emergence of a resistant strain is lowered at inter-
mediate adherence levels because random combinations
of very high costs render the triple mutant almost
non-competitive. This effect is less visible when looking
at the probability of a treatment failure because the
normal wild-type strain that does not suffer from
resistance costs can also cause treatment failure.

As can be seen in figure 4b, a shorter detection inter-
val between examinations can increase the likelihood of
discovering a treatment failure. However, it has no
influence on the detection of a fully resistant strain.
Therefore, the earlier mentioned increase is based
solely on the enhanced detection of insufficient viral
suppression. Although this enhancement is very mini-
mal, above a 30 day interval and below that it is
either impractical or misleading because a single viral
blip might get scored twice. Detection intervals
should not be longer than 120 days because they
increase the time a patient is on a failed regimen and
should probably receive second-line treatment.

The f1 and f2 parameters in our standard set are only
known approximately. To assess their influence on
treatment outcome, we decided to change them by
one order of magnitude in either direction. This
should allow to evaluate whether the actual fraction
of cells that remain latently infected is of major impor-
tance or whether a large deviation would be misleading.

We find that a 10-fold increase of f1 and f2 causes
almost always treatment failure owing to insufficient
viral suppression (figure 4c). The comparison of the
two plots suggests that the emergence of a fully resist-
ant strain does not account for this outcome. Instead,
the results indicate that (for these values of f1 and f2)
the higher prevalence of latently infected cells does
serve as a reservoir that is almost able to supply
enough reactivated cells and indirectly virions that it
can cause on its own detectable viral loads. A 10-fold
change in the other direction does not have such a
major impact. The risk of treatment failure due to the
emergence of a fully resistant strain or insufficient
viral suppression decreases only marginally. As long as
the latent reservoir is able to maintain a chronic infec-
tion that prevents the eradication of infected cells and
provides an archive for a substantial number of
mutants, its function is retained. Therefore, we can con-
clude that as long as the fraction of latently infected
cells is not largely overestimated, the standard par-
ameter choice for f1 and f2 (table 1) remains a
reasonable approximation. Most importantly, the fact
that full virus suppression is achieved during therapy
of most patients indicates that this is indeed the case
(i.e. the reservoir is not substantially larger than
assumed in the standard parameter values).

Besides the changes of viral parameters and treat-
ment monitoring, we also further examined
substantial pharmacokinetic deviations. The concen-
tration measurements of protease inhibitors in the
plasma indicate half-lives in the order of a few hours.
Our standard value of 12 h is based on the fact that
other classes of anti-retroviral drugs have higher half-
J. R. Soc. Interface (2012)
lives and on the assumption that the intracellular
half-life is much higher than the one in the blood
plasma [18]. Nonetheless, we tested a combination
therapy with sets of drugs that each have half-lives of
6 h or 4 h. Because such short half-life leads (with the
standard dosage) almost always to therapy failure,
which is clearly not observed, we counterbalance the
shorter half-lives with higher dosage regimens of 50 or
100 units.

Figure 5a shows that half-lives which are much lower
than 12 h always lead to the emergence of a fully resist-
ant strain, even if the patient is highly adherent. With
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such low half-lives, the drug concentrations rapidly
enter the mutation selection window, which increases
the frequency of resistant genotypes. Not surprisingly,
in those cases, the treatment fails independent of the
level of adherence—either due to the selection of the
fully resistant mutant or due to insufficient suppression
of the wild-type. If higher drug doses are given
(figure 5b,c) these negative effects are reduced. At per-
fect adherence, the patient is now again able to avoid
the selection of a fully resistant strain and also to sup-
press the wild-type. However, with half-lives of 4 h
and doses 100 times above the IC50, the patient is still
likely to have treatment failure at slightly less than
perfect adherence.
A.3. Examples

The plots in figures 6 and 7 represent single runs of indi-
vidual patients visualizing different aspects of the
model. Figure 6 shows the time course of the drug con-
centration, while figure 7 depicts the population
dynamics of infected CD4þ cells. All parameters corre-
spond to the standard case as described earlier.
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