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Predictability of undesired events is a question of great interest in many scientific disciplines
including seismology, economy and epidemiology. Here, we focus on the predictability of inva-
sion of a broad class of epidemics caused by diseases that lead to permanent immunity
of infected hosts after recovery or death. We approach the problem from the perspective of
the science of complexity by proposing and testing several strategies for the estimation
of important characteristics of epidemics, such as the probability of invasion. Our results
suggest that parsimonious approximate methodologies may lead to the most reliable and
robust predictions. The proposed methodologies are first applied to analysis of experimentally
observed epidemics: invasion of the fungal plant pathogen Rhizoctonia solani in replicated
host microcosms. We then consider numerical experiments of the susceptible—infected—
removed model to investigate the performance of the proposed methods in further detail.
The suggested framework can be used as a valuable tool for quick assessment of epidemic
threat at the stage when epidemics only start developing. Moreover, our work amplifies the
significance of the small-scale and finite-time microcosm realizations of epidemics revealing

their predictive power.
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1. INTRODUCTION

Predictability of catastrophic events such as earthquakes,
epidemics, fracture or financial crashes [1-3] is a topic of
increasing interdisciplinary interest. The predictability of
these events is inextricably linked to the inherent com-
plexity of the phenomena under consideration [1,2].
Here, we focus on epidemiology. Within this context,
many studies have been devoted to prediction of the tem-
poral incidence of epidemics (i.e. the evolution of the
number of infected hosts in the course of an epidemic)
[4—8]. Recently, an increasing number of papers have
also considered the prediction of the spatio-temporal
evolution of epidemics [9—12].

Both the temporal and the spatio-temporal incidence
depend on complex factors related to the transmission of
infection and the properties of the hosts. For instance,
the hosts are not identical in susceptibility and trans-
missibility of infection owing to difference in age,
size, genotype and neighbourhood. [5,9,10,13]. The
transmission of infection is stochastic, meaning that a
healthy host is infected by contact with inoculum
from an infected host with a certain probability only.
Many epidemics, notably those involving transmission
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by invertebrate vectors, or by wind and rain for many
plant pathogens, are subject to variability in weather.
This environmental stochasticity can also influence
the evolution of epidemics in such heterogeneous sys-
tems [14]. All these factors make prediction of disease
incidence an extremely challenging and sometimes con-
troversial task [4,15,16]. Medley [4] suggests that,
although obtaining precise quantitative predictions for
the incidence would be obviously desirable, qualitative
predictions may be more valuable. This is very much
along the lines of ideas from the science of complexity
claiming that, despite the fact that giving accurate pre-
dictions for the detailed evolution of complex systems
might be an illusory task, certain qualitative features
of the evolution, such as occurrence or absence of a cat-
astrophic event, could be more amenable for prediction
[2,17,18].

Here, we address the question of predictability of epi-
demics using a methodological framework inspired by
the science of complexity. The main aim is to estimate
the probability that an emerging epidemic will invade
a significant fraction of the population in the future.
This quantity can be viewed as a qualitative feature
of the complete spatio-temporal evolution of epidemics.

We propose several methods for approaching the pro-
blem that offer different levels of precision. Our results
suggest that the most precise methods do not necessarily
lead to more reliable predictions. Instead, parsimony

This journal is © 2012 The Royal Society
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Table 1. Overview of methods for prediction. (Combination of possible datasets considered in step (i) and methods used for
addressing steps (ii) and (iii) in the prediction process. The first column introduces a label for each set of methods, which are
ordered according to their overall expected precision. The second column gives the format of the data obtained from
observations in step (i). The smallest precision of the data corresponds to methods A and B in which only the incidence, C(t),
is used. Methods C—E use a limited spatio-temporal knowledge of the evolution of the infection given by the shell-evolution
function F(I,t). Method F uses the time of infection of each host, {¢;}, which is typically unknown from observations but can be
inferred in step (iii). In step (ii), RF and CT are abbreviations for the Reed—Frost and continuous-time model, respectively. In
step (iii), we have used several methods for fitting: minimum distance (MD), approximate Bayesian computation (ABC), and
data-augmented Markov chain Monte Carlo (DA-MCMC). Column five lists the parameters involved in each step for
prediction of the fungal invasion in the agar-dot experiment. Methods based on the RF dynamics are parametrized by the
transmissibility, 7, and a time scale 7¢g,. The CT dynamics used in methods E and F is parametrized by 7, a characteristic
time 7y, and a shape parameter for the time-dependence of the transmission of infection, k. The RF dynamics corresponds to
the limit k — oo of the CT dynamics. The MD method for fitting consists in minimizing the parameter d* (last column), which
measures the difference between observations and numerical simulations. The ABC fitting procedure assumes that a simulated
invasion fits well the observed epidemic if d* < &, where ¢ is a free parameter. As shown in the last column, the definition of d?
depends on the descriptors for observations used in step (i). For methods A and B, d? is defined in terms of the observed and
simulated incidences, cobs(t) = Cops(t)/N and cgm(t) = Cim(t)/N, normalized to the number of hosts in the population, N.
In methods C—E, d? is defined in terms of the shell-evolution function for observations and simulations. Sections I and II of the
electronic supplementary material appendix S1 give more details on the definition of models used in step (ii) and fitting

methods used in step (iii).)

methodology step (i): data step (ii): model step (iii): fitting parameters d?
A mean field (MF), RF MD (i) T, Texp =3, [cam(t) = cons()])?
C(t)
B RF ABC (ii) T, Fexp
(ili) &
C shell, F(, t) RF MD (ii) T, Fexp
D RF ABC (ii) T,%Xp =3 Fan(l,t) = Fons(1, 1))
(iii) &
E CT (ii) 7,70,
(i) €
F site, {t; } CT DA-MCMC () {t}
(ii) Ti7o, k

seems to be the key ingredient for prediction based on
inherently limited observations. The framework pre-
sented below deals with epidemics caused by a broad
class of pathogens leading to permanent immunity of
infected hosts after recovery (or death). There are numer-
ous examples of such diseases affecting populations of
humans [19,20], animals [21] and plants [22]. The advan-
tage in analysis of such epidemics is that they are
characterized by a well-defined final state consisting of
only hosts that were never infected and hosts that were
infected and became immune. In particular, we focus
on the estimation of the probability that an epidemic is
invasive in the final state.

The proposed methods are first applied to predic-
tion of invasion of a pathogen in an experimental
model system in which the fungal plant pathogen,
Rhizoctonia solani, spreads through a population of
hosts represented by discrete nutrient sites. The proper-
ties of the sites, e.g. nutrient concentration, can be
varied for different realizations of epidemics. Such a
system is convenient for generation and observation of
rapid, highly replicated and repeatable epidemics and
it is used as a benchmark for description of our method-
ologies and analyses. The epidemic prediction analysis
for the experimental system is followed by a test of
our methods in numerical experiments for epidemics
spreading on networks of hosts arranged on a regular
lattice. The advantage of investigating such epidemics
is that their properties are known beforehand and
this allows us to provide a precise analysis of the
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performance of prediction methods by comparing with
the expected behaviour.

2. METHODS

The methods follow four steps that are basic for any
scientifically meaningful prediction of the behaviour of
a complex system: (i) observation of the initial evol-
ution of the process over a certain period of time, tg;
(ii) construction of a model for description of the
observed behaviour; (iii) fitting the model to the data
obtained from observations; and (iv) extrapolation of
the behaviour to the future by using the model with
the fitted parameters. These steps are interconnected
and we argue that they should be kept at a similar
level of complexity in order to make their interplay as
consistent as possible. In this paper, we investigate
whether or not such consistency is important for
obtaining reliable predictions by exploring several com-
binations of strategies for steps (i)—(iii) (see summary
in table 1).

For concreteness, we illustrate our prediction methods
for the particular case of fungal colony invasion in micro-
cosms comprising populations of nutrient sites (agar
dots) [23]. In these experiments, the central agar dot in
ensembles with the geometry shown in figure 1 was inocu-
lated by the soil-borne fungal plant pathogen R. solani
and the spread of the fungal colony is scored in discrete
time steps (e.g. daily).
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Figure 1. Steps for prediction used in methodology C (table 1). (a(i)) Discrete spatio-temporal observations of evolution
(spatio-temporal map) of a hypothetical epidemic spreading from the central host in a population of hosts (circles) arranged
on a triangular lattice with lattice spacing a and L hosts per side of the hexagonal boundaries of the system. The arrangement
of nutrient sites in the fungal invasion experiment analysed below is of this type. Numbers inside the circles denote the times, ¢t =
0,1,..., of infection of hosts by the observation time #,,, = 2. Empty circles correspond to healthy (susceptible) hosts by the
same time. The hexagons with dotted lines indicate the shells of hosts at a given chemical distance, [, to the centre of
the system. (a(ii)) The spatio-temporal evolution of the epidemic is described by the shell-evolution function F(I,t) giving the
relative number of hosts in layer [ infected by time ¢. For instance, F(2,2) = 3/12 for the epidemic shown in (a(i)). (b) In step
(ii), the epidemic is described in terms of a susceptible—infected—removed (SIR) model. An infected host, @, remains infectious
during the infectious period 7 which, for simplicity, is taken as being constant over the whole population and set as a unit of time,
7= 1. After the infectious period 7, the host is removed, ®. During the time 7, D can transmit the infection to a neighbouring
susceptible host, @), with probability T (transmissibility). Alternatively, @ can be removed without passing the infection to ©
with probability 1 — T. In the discrete time, Reed—Frost (RF) dynamics used in our approach, the infection is passed instan-
taneously from D to © at t= 7. (¢) In step (iii), the fitting procedure consists in finding the probability density function (p.d.f.)
p(T) for transmissibilities 7' (¢(i)) such that an RF process with 7" and shell-evolution function Fy,(1f) give a good description
of the observed shell-evolution function, Fg,,(l,¢) (c(il)). For visualization clarity in c(ii), an example of Fy,,(1,t) represented by
the blue-grid surface does not fit well the observed shell-evolution function, Fyps(l,t) (the shaded surface). The probability density
function (p.d.f.) p( T) is obtained by running many RF epidemics with random transmissibility and minimizing the parameter d that
quantifies the difference between the observed and the RF shell-evolution functions. (d) Once p( TA’) has been obtained (solid curves in
¢(i) and d(i)), the probability of an invasive epidemic, Piy (L), can be calculated by equation (2.1) which involves the conditional
probability of invasion Py, (T:L) for any given 7' (dashed line in d(i)). The value of Py (L) is represented graphically in d(i) by
the area under the curve (shaded region) for the function Py (7 L)p(T). (Online version in colour.)

limited. In many cases, the only available information is
the incidence, C(t) (the number of infected hosts), at
subsequent observations, and occasionally the spatial
location of infected hosts is also known, e.g. for epi-
demics in populations of plants [8,22,24,25]. These
limitations have a dramatic influence on subsequent
steps in the prediction process and it is crucial to ident-
ify which quantities are sufficient for prediction of the
catastrophic event (i.e. the probability of an invasive
epidemic in our case). As shown in table 1, we consider
three types of observations. The first consists of discrete
temporal observations of C(¢) (methods A and B in
table 1). The second possibility (methods C—E) considers
discrete spatio-temporal observations giving the evol-
ution of infection at discrete times, t, in shells at a

In the following, we give a general description of
the steps for prediction of epidemic invasion with particu-
lar assumptions suitable for the analysis of the fungal
invasion experiment. The main details of all the method-
ologies are summarized in table 1. The methodology C is
mainly used for illustration of our concepts. Details of
other explored methodologies are given in the electronic
supplementary material, appendix SI. The motivation for
choosing methodology C is twofold: (i) it keeps all the
steps for prediction of the behaviour at a similar level of
complexity, as illustrated by analysis of the fungal colony
invasion in the agar-dot experiment, and (ii) it is a parsimo-
nious methodology that leads to predictions that are, at
least, as robust as (or, arguably, even more robust than)
those based on more sophisticated approaches (table 1).

Step (i). The information that can be extracted from
observation of the time evolution of epidemics is usually
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‘chemical distance’ [ from the initially inoculated host.
As explained in figure la, such observations can be
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properly described in terms of a shell-evolution function
F(Lt). As a third possibility (method F), we use a
method for data augmentation in step (iii) that infers
the unobserved time of infection for each host, {¢;}
[8,24,25].

Step (ii). We describe the evolution of the epidemic
in terms of a spatial susceptible—infected—removed
(SIR) epidemiological model where the hosts can be
either susceptible (S), infected (I) or removed (R)
[19,21,22,26]. This is a prototype model for a wide
class of epidemics where disease leads to permanent
immunity of hosts after recovery or death. In particular,
this paradigm has been shown to be appropriate for
description of fungal invasion [23,27,28]. In principle,
a continuous-time dynamic model is necessary to
provide a precise description of epidemic evolution
characterized by stochasticity in times of infection
and removal/recovery of hosts. Following this idea, it
would be natural to use a model with continuous-time
(CT) dynamics (described in the electronic supple-
mentary material, appendix SI). The drawback of this
approach is that it requires knowledge of the precise
times of infection of hosts, {t;}, which are typically not
available from discrete spatio-temporal observations
in step (i). In order to match an appropriate model with
the level of detail of observations, we consider the
discrete-time dynamics model that reduces the SIR
framework to the so-called Reed—Frost (RF) model [29)].
This simplified description is not expected to capture
the dynamical details of the evolution of the epidemic,
but describes well its final state [30,31]. This is a very
important consequence of the fact that, no matter how
complicated the evolution of the epidemic is, the final
state of an epidemic with death of infected individuals
or permanent acquired immunity after recovery depends
only on the probability T, called transmissibility, that
the infection has ever been passed between each pair of
connected hosts (as shown in figure 1b). Although the
transmissibility is expected to exhibit a certain degree of
spatial heterogeneity in real epidemics, we make the mini-
mal assumption that the trend of the epidemic can be well
approximated by an RF process with a homogeneous
effective transmissibility 7.

Step (iii). The goal of this step is to estimate the
values of the parameters of the model used in step
(ii) that give a good description of the observations.
Consider, for definiteness, methodology C in table 1.
Owing to factors such as stochasticity and heterogen-
eity in transmission, a given observed spatio-temporal
map for infection can occur for different values of the
estimated transmissibility, 7. However, some of these
values for T are more likely to produce the observed
spatio-temporal pattern than others. To account for
this, we introduce the probability density function
(p.d.f.), p(T), which quantifies the probability that
the observed spatio-temporal pattern is reproduced by
a certain value of T. As shown schematically in
figure g, p(T) is calculated by generating a large
number of stochastic realizations of the RF epidemic
with transmissibilities 7" sampled uniformly from the
interval [0,1] and comparing their shell-evolution func-
tions, Fyn(l,t) (see caption of figure 1 for definition),
with the observed one, F,4(1,t). Ideally, the distribution
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p(T) would correspond to the histogram of values for 7'
producing shell-evolution functions Fy,,(/,¢) identical to
Fons(1,t) but obtaining an exact match is computation-
ally very demanding. Moreover, reproducing Fy,s(1,t)
by an RF model is, in general, impossible in realistic epi-
demics for which time is not discrete. Therefore, we use
a minimum distance (MD) algorithm to calculate p(T)
approximately as the histogram of values of T minimiz-
ing the quantity d/% defined in table 1 that measures the
distance between Fy,,(,t) and Fy4(1,t). In this way, the
sampled values of T reproduce F,(,t) approximately
rather than necessarily with distance d/% = (0. This
approach is similar to the approximate Bayesian com-
putation (ABC) method that determines p(7) as the
histogram of values of T for which djzc < &, where ¢ is
a parameter used in the method [32]. Both ABC and
MD algorithms give similar results despite the fact
that MD does not require the use of an additional par-
ameter e. In addition to these approximate methods, we
have fitted the spatio-temporal evolution of the CT
model proposed in step (ii) for comparison by means
of a more standard Bayesian procedure using Markov
chain Monte Carlo (MCMC) method with data
augmentation (DA-MCMC) (method F in table 1).

Step (iv). In the final stage of the prediction process,
given p(T), we evaluate the probability Py, (L) that the
observed epidemic will ever invade a system of size L.
The epidemic is defined as being invasive if the final
cluster of removed hosts has reached at least one node
on each of the six edges of the system. Otherwise, the
epidemic is classified as being non-invasive. The con-
ditional probability of invasion Py (7:L) in a system
of size L by an SIR process with a given transmissibility,
T, can be calculated numerically by running many sto-
chastic realizations of the epidemic and counting the
fraction of invading events. As shown in figure 1d,
PinV(T;L) exhibits a sigmoidal dependence on T which
indicates a non-invasive (invasive) regime of epidemics
for relatively small (large) values of T. Once Py (T:L)
and p(T) are known, the estimated probability of
invasion can be calculated as follows:

1
P (L) = L Puo(T; L)p(T)dT.

(2.1)

This formula defines the probability that the inva-
sion occurs given our knowledge about the effective
transmissibility encoded by p(T) (see a simple graphical
interpretation in terms of the shaded area in figure 1d).
Importantly, equation (2.1) gives an extrapolation of
the behaviour of the epidemic to its final state without
necessarily providing a detailed description of the
actual evolution leading to such a state.

3. APPLICATION TO FUNGAL INVASION

In the fungal invasion experiments, the spatio-temporal
maps of infected agar dots were scored daily over 21
days (see two typical patches of colonization after
21 days in figure 2a). The transmissibility in this exper-
iment corresponds to the probability of fungal
colonization between two adjacent agar dots and it
was controlled by variable lattice spacing, a =8, 10,
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Figure 2. Fungal invasion in the system of agar dots placed on a triangular lattice. (a) The observed mean probability of invasion
P, obtained by counting the relative number of invasive epidemics after 21 days is shown by the solid line. The probability of
invasion after 21 days was estimated for each replicate by observing the initial evolution of colonization during ¢,,s = 10 days. The
corresponding mean over replicates with the same value of a is shown with a different symbol type (the same as in figures 4 and 5)
for each method for prediction. The inserts show the invasive (left) and non-invasive (right) state of the epidemic after 21 days
for two representative replicates with lattice spacings ¢ = 10 mm and a = 14 mm, as marked by arrows. Solid (open) circles in
the inserts represent colonized (not colonized) dots. (b) Prediction of Py with different methodologies for individual replicates
of the epidemic in a large system of size L = 51 obtained from observations during #.,,s = 21 days of the smaller experimental
system (L < 8). The mean of Py,, over replicates for each value of a is shown by different symbol types corresponding to different
methodologies. The mean probability of invasion P, obtained by counting the relative number of invasive epidemics after 21

days is shown by the solid line. (Online version in colour.)

12, 14, 16, 18 mm. Clearly, the experimental set-up is
restricted both in space and time. Our aim is to use
these limited observations to estimate the probability of
invasive epidemics in larger systems and for longer
times. The analysis is performed for each individual realiz-
ation of the experiment (six replicates per value of a).

In order to make a proper comparison between the
experimental observations with the RF model used in
methods A—D, it is necessary to rescale the time step
of the RF dynamics with dimensionless 7=1 to T,
measured in days. The value of 7.y, is not known and
it is treated at the same level as the transmissibility.
More explicitly, we deal with a bi-variate p.d.f,
P2 (T, Texp), which can be determined for each epidemic
with a simple extension of the methods explained
in §2 (step (iii)) for obtaining p(T). The estimated
Py is obtained from equation (2.1) by defining p(T)
as the marginal p.df, p(T)= J; (T, Fexp)dFexp-
As explained in more detail in the electronic supple-
mentary material, §I of appendix SI and summarized
in table 1, the continuous-time SIR model used in
methods E and F involves three parameters: T, 7y and
k. The fitting of the data results in a p.d.f. p3(T; 7, k)
from which we obtain p(T) = [;'ps(T, 7, k)drodk. The
probability of invasion is then calculated from equation
(2.1) in the same way as for methods A—D.

3.1. Uncertainty of the estimated
transmissibility

The functions p(T) obtained for the fungal invasion
experiments typically exhibit a pronounced peak (see the
results for one replicate in figure 3 and similar results for
more replicates in the electronic supplementary material,

figure S1 of appendix SI). The peaked shape of p(T)
suggests that 7' can be suitably described in terms of
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its mean value (TY and standard deviation
or=(T")— (T)Q)l/ % For each methodology, figure 4
shows the average over replicates of (1) and o as a func-
tion of the lattice spacing. These estimates correspond to
observations of the evolution of infection during #.,; = 21
days. All the methods give similar values for (T) which
have a clear and expected tendency to decrease with
increasing a. The uncertainty in 7, quantified by o, exhi-
bits greater variations between methodologies but it takes
values that are smaller than (7 for all the methods and lat-
tice spacings (figure 4b). This means that () is a good
measure of the typical value of the transmissibility. How-
ever, the value of (T) on its own does not necessarily
provide a good approximation for Pj,, because the width
of p(T) can bring a significant contribution to the integral
in equation (2.1). This is explicitly shown in §4.

Comparison of (1), orand p(T) for different methods
leads to the following conclusions.

— Given a level of description (step (i)) and a model
(step (ii)), the estimates of the transmissibility
obtained with ABC and MD methods are, in general,
in good agreement (cf. method A with method B, and
method C with method D in figures 3 and 4).

— Given a level of description (step (i)) and an esti-
mation method (step (iii)), the posteriors obtained
using discrete- and continuous-time models are in
reasonable agreement (cf. method D with method
E in figures 3 and 4). The only difference is a
trend for p(T) corresponding to CT dynamics to
have a ‘heavy tail’ for large values of T (see the
replicate 4 in the electronic supplementary material,
figure S1, appendix SI). Large values of T are corre-
lated with large values of the time scale 7y (i.e.
slower processes with high 7) and small values of
the shape parameter k, that are ruled out by the
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Figure 3. Estimates of the transmissibility for fungal invasion in the system of agar dots. The p.d.f.’s p(f’) obtained with different
fitting methodologies are plotted for the fungal colony invasion in a population of agar dots with lattice spacing a = 10 mm. Esti-
mates correspond to observation of the fungal spread during t,,s = 21 days. Different symbol types correspond to different fitting
methodologies, as marked in the legend. Electronic supplementary material, figure S1 in appendix SI shows similar plots for six
replicates of the system. (Online version in colour.)

(@) 15 ®
O A
- <.> B 0.2~ *
1.0 - D +
« * E - *
@t E or -
’7‘ 0.1 2
05l A * ¢ o & O ¢
5
K . A < B
N &
-
P I N R R R PN S R E R R
8§ 10 12 14 16 g8 10 12 14 16
a (mm) a (mm)

Figure 4. Statistical characteristics of the estimates of the transmissibility for fungal invasion in the system of agar dots. Depen-
dence on the lattice spacing of (a) the mean value (1), and (b) standard deviation o7 of the transmissibility calculated from the
p.d.f. p(T) corresponding to observations during t,,s = 21 days. For clarity, each symbol gives the average of (a) (1) and (b) o
over six replicates of the experiments for each lattice spacing, a. As marked in the legend, different symbol types correspond to
different methods for addressing the steps (i) (iii) summarized in table 1. (Online version in colour.)

RF model. This effect becomes more important for
larger values of the lattice spacing, as indicated by
the large values of (T) and oy corresponding to
Method E (asterisks in figure 4).

The estimates from DA-MCMC (methodology F)
are, in general, different from those obtained by
other methods. Moreover, the p.d.f.’s p(T) obtained
with MCMC show no systematic trend with respect
to the other methods. With respect to, e.g. the p(7)
obtained with MD, they can be located at slightly
higher (replicates 5 and 6 in the electronic sup-
plementary method, figure S1) or lower (replicates
2 and 3) values of T, or approximately at the same
value (replicates 1 and 4). Moreover, the variation
in the peak position of p(T) between different
replicates is larger than for the other methods.

J. R. Soc. Interface (2012)

This suggests that the MCMC method is more
sensitive to fine details of the evolution of the epi-
demic. A possible explanation is that DA-MCMC
involves the inference of the unobserved colonization
times and thus is intrinsically individual-based, in
contrast to shell-based (or mean-field) methods,
which try to match the colonization times in an
approximate manner only.

3.2. Comparison of fitted models with

experimental data

In order to assess the quality of the assumptions used
for estimation, we compare the fitted models with the
available experimental data. For methods A-D, we
compare the incidence and shell-evolution function
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Figure 5. Comparison of fitted models with experimental data. Mean root mean square (r.m.s.) distances (a) Ac and (b) AF
between observed and simulated fungal invasions in populations of agar dots. The mean value of r.m.s. distances is obtained
by averaging over 10 stochastic realizations of simulations and over six replicates for each lattice spacing, a. Simulations are
based on fits to observations over #,,, =21 days. Different symbols correspond to different methodologies summarized in

table 1, as marked in the legend. (Online version in colour.)

obtained numerically (RF dynamics) with values for T
and Tey, sampled from p, (T, Texp) estimated by means
of the spatio-temporal maps at maximum observation
time f,,s =21 days with the actual incidence and
shell-evolution function for each epidemic. Similarly,
the fits from methods E and F are compared with exper-
imental observations by running numerical epidemics
with parameters for the CT dynamics sampled from
the p.d.f. p3 (T, 7o, k). We make a quantitative compari-
son based on squared distances dz and d7 (cf. table 1)
between simulated epidemics and experimental fungal
invasions. More explicitly, we define the root mean
square (r.m.s.) distances,

d2 1/2
Ac= <At> (3.1)
and
0 \1/2
aF— (-5 (3.2)
Atlmax ’

where At= 21 days is the time interval used for calcu-
lations of & or dj%. The quantity l,., is the maximum
chemical distance to the centre of the system of agar
dots. Its value decreases with the lattice spacing and
ranges from [, = 2 for a = 16 mm to [, = 8 for a =
8 mm [23]. From the definition of d> given in table 1,
it is easy to see that Ac gives the typical deviation of
the simulated incidence per unit host at a given time,
Csim(t), from the observed incidence per host at the
same time, c,,4(t). Similarly, AF gives the typical devi-
ation of the simulated shell-evolution function, Fy,,
evaluated at any spatio-temporal coordinates (I,) from
the observed value at the same coordinates.

Figure 5 shows the mean of the r.m.s. distances
obtained by averaging over stochastic simulations and
over replicates with given lattice spacing. The low
values of the r.m.s. distances (Ac < 0.2 and AF < 0.3)
indicate that the observed C(t) and F(l,t) are stati-
stically well described by the fitted models. For
any given method and lattice spacing, we obtained
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Ac < AF, which is expected because reproducing the
spatio-temporal evolution represented by F(Lt) is
more demanding than capturing the temporal evolution
of the colonization given by ¢(t). Both Ac and A F' tend
to be larger for a around 10—12 mm which, as shown
below, corresponds to cases that are close to the inva-
sion threshold (i.e. where P;,, decreases from 1 to 0
on increasing a as shown by the solid line in
figure 2a). Variability between replicates of epidemics
with given T is larger around the invasion threshold,
which is associated with a critical phase transition
and characterized by large fluctuations [13,21,23,26—
28]. As a consequence, the quality of fits is lower in
the vicinity of the invasion threshold and this leads to
larger values of Ac and AF.

Methodology C gives a good balance between
performance and number of parameters involved.
Methods C—E based on an approximate spatio-temporal
description of epidemics given by F(I,¢) result in more
accurate predictions than methods A (squares in
figure 5) and B (diamonds) that neglect spatial features
of invasion. Moreover, the approximate methods C—E
also perform better than even methodology F (triangles
in figure 5), despite the fact that the latter aims for
a more precise spatio-temporal description. A more
qualitative and visual comparison of estimated and
observed C(t) reveals similar differences between all the
methodologies (see details in the electronic supplementary
material, §IIT of appendix SI).

3.3. Two applications for prediction methods

As a first application of the proposed methods, we have
studied the predictive power of the estimates of the
probability of invasion and the incidence by calculating
p(T) from the early stages of the actual epidemic, i.e. for
tons < 21 days. In particular, based on the estimated
p(T) for t,, = 10 days, we have obtained estimates for
the probability of invasion at time ¢= 21 days and
compared them with the probability P, of invasion
at ¢ = 21 days obtained directly from the experimental
data. The observed probability of invasion, P, is
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Figure 6. Comparison of the predicted and observed evolution of fungal invasion in the system of agar dots. Predictions of the
fungal spread in the period of time between days 10 and 21 are made from observation of the initial spread during #,,, = 10 days.
The vertical axes show the mean over replicates of the r.m.s. distances (a) Ac and (b) AF between observed and predicted fungal
evolution during the time interval 11 —21 days. The mean value of r.m.s. distances is obtained by averaging over stochastic realiz-
ations of simulations and over six replicates for each lattice spacing, a. Simulations are based on fittings to observations over
tons = 10 days. Different symbols correspond to different methodologies summarized in table 1, as marked in the legend.

(Online version in colour.)

estimated by counting (for each a) the fraction of repli-
cates in which the fungus has reached the six outer
edges of the experimental system by 21 days. The
mean of Pj,, averaged over replicates with the same
value of a (symbols in figure 2a) gives a reasonable esti-
mate for the observed mean of P, (solid curve in
figure 2a) after t= 21 days for most of the methods.
Overall, the best predictions for Pj,, are obtained
with methodology C (solid circles in figure 2a). As
expected, Py, decreases with increasing a for all meth-
odologies, illustrating the existence of the threshold for
epidemics around ¢ >~ 12 mm [23]. Similarly, the exper-
imentally observed incidence and shell-evolution
function are statistically well captured by the numerical
extrapolation for their simulated counterparts up to
time ¢=21 days obtained from observations over
times f,,s < 21 days. A visual illustration of the agree-
ment between the observed and predicted incidence is
given in the electronic supplementary material, §IV of
appendix SI. Figure 6 shows the r.m.s. distances
between the observed and predicted evolutions from
day 11 to day 21. The time interval used to calculate
Ac and AF from equations (3.1) and (3.2) is At=11
days. The relative trends of Ac and AF between methods
and lattice spacings are similar to those reported in
figure 5 for the comparison between observations and
numerical simulations with #,,,. The main difference is
that the values of the r.m.s. distances corresponding to
predictions of the evolution of colonization (figure 6)
are systematically larger than those obtained by simply
comparing observed evolutions with their respective fit-
tings (figure 5). This is in agreement with the intuitive
idea that predicting the a priori unknown evolution of
a system is more challenging than reproducing a fitted
evolution.

As a second application of our methodology, we have
calculated Pj,, at the end of the epidemic as a function
of the lattice spacing in systems of size L = 51, i.e. larger
than the experimental samples of sizes L=2,...8,
which decrease with increasing lattice spacing (see

J. R. Soc. Interface (2012)

the two populations for different values of a shown in
figure 2a). Such predictions are based on estimates for
the transmissibility obtained from observations up to
tons = 21 days. As expected, Py,, decreases with increas-
ing a. The results of applying each of the prediction
methods are shown in figure 2b for the mean probability
averaged over replicates for each value of a. All the
methods except E give similar predictions for Py,.
The large values of Pj,, predicted by method E are a
consequence of the ‘heavy tail' of the p.d.f. p(7),
which gives a significant weight to the high values of
Py, for large T in equation (2.1). The dependence of
P,y on a differs from the observed probability of inva-
sion, Pey, (solid curve in figure 2b). The difference can
be qualitatively understood by recalling that Py,
gives an extrapolation both in space and time. Indeed,
Py > Peyp because some epidemics that are non-inva-
sive after 21 days have a certain probability to invade
a system of size L =51 for ¢t> 21 days. In addition,
both infectivity and susceptibility are expected to be
subject to heterogeneity in the agar-dot system owing
to, e.g. inherent variability. Based on the results pre-
sented in §4 for numerical experiments with
heterogeneity in transmission, we expect the estimated
Py, to give an upper bound to the actual probability
of invasion. This can also contribute to the difference
between Pj,, and Py, for large values of a.

4. NUMERICAL EXPERIMENT

The quality of the predictions presented in §3 is influ-
enced by the quality of the observations in step (i),
the suitability of the model chosen in step (ii) for
description of the data, and the fitting procedure used
in step (iii). In principle, the effect of these factors on
predictions could be minimized by optimizing the pro-
cedures used in each step for prediction. Stochasticity
associated with the transmission of infection also
influences the ability of making reliable predictions.
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In contrast to the previous factors, stochasticity is
inherent to the nature of the system and its negative
effect on predictions cannot be minimized without mod-
ifying the system. In this section, we present a
sensitivity analysis of our methods by applying them
to prediction of invasion for numerically simulated
epidemics, where the main factor compromising predict-
ability is the intrinsic stochasticity in transmission of
infection. The advantage in this case with respect to
more realistic situations is that both the transmissibil-
ity, T, and the probability of invasion, Pi,.(T:L), are
known and it is then possible to investigate the per-
formance of the estimates for p(7) and Py (L) by
comparing with the known quantities.

We first consider the simplest situation when the
observed epidemics follow the RF dynamics with homo-
geneous transmission (i.e. 7T'is the same for all pairs of
nearest neighbours in the population). The idea is to
run numerical experiments with known 7, observe the
evolution of the epidemic over an initial interval of
time, fons, and then apply the methods described
above to calculate Py, (L) assuming that T is unknown
(as it occurs for real epidemics).

For concreteness, we consider the arrangement
shown in figure 1la and use methodology C for steps
(i)—(iii). RF epidemics are observed during f,s= 77
with the aim of estimating the probability that they
will invade a system of size L = 51. Note that over the
time interval t < #,,, = 7, the epidemic at most invades
a hexagon of size L =15. Then, the behaviour of the
epidemic is extrapolated both in space and time. We
proceed by, first, calculating the p.d.f. p( T) for the esti-
mated transmissibilities 7' compatible with observation
(spatio-temporal map). Figure 1c¢ shows an example of
p(T) obtained from the analysis of the evolution of an
epidemic with 7= 0.4. In general, the most probable
estimate for the transmissibility, T*, corresponding to
the maximum of p(T) for a single epidemic, differs
from T but not significantly. In many cases, T lies
within the 68 per cent confidence interval for p(7)
around its maximum (see a more detailed discussion
in the electronic supplementary material, appendix
SI). The distribution p(T) allows the probability of
invasion P,y (L) in the system of size L = 51 to be esti-
mated using equation (2.1). We have applied this
prediction method to many (~10%) spatio-temporal
maps created with known transmissibility 7" spanning
the interval [0,1]. For each value of estimated Pin (L),
the distribution p(7T) is represented by a horizontal
slice of the shaded area in figure 7 (see the slice along
the dashed blue line corresponding to P,y (L) = 0.2
with darker colour corresponding to higher probability
relative to the maximum of p(7)). The black ridge
in the shaded area corresponds to the most probable
transmissibility, T, for each value of Py (L).

To test the quality of the predictions, the estimate
of the probability of invasion Pinv(T;L) is compared
with the probability Py,.(7T:L) that would be obtai-
ned if the exact value of T was known a priori (see
line marked by circles in figure 7). Making such a com-
parison we can see that for epidemics with low
transmissibility where invasion is possible but not

highly probable, P, (L) overestimates P, (T:L) for
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Figure 7. Numerical experiments of SIR epidemics with homo-
geneous transmissibility. Hosts are placed on the nodes of a
triangular lattice of size L =51 (cf. figure 1a). The evolution
of epidemics starting from the central host is observed over
time ¢ <t ="T77. The line marked by circles shows the
dependence of the conditional probability of invasion,
P,,(TiL), on transmissibility obtained by the simulations in
the system of size L= 51. The shaded region shows the
levels of confidence in percentage of the p.d.f p(7T) around
the most probable transmissibility, T (solid black line) cor-
responding to each value of PinV(L). The horionntal dashed
line illustrates the case of estimations giving Py, (L) = 0.2.
If the observed epidemic has a value of the transmissibility
such as 7T) that is to the left of the curve for P, (line with
circles), the estimated va(L) overestimates P;,,. By contrast,
for values of the transmissibility that are to the right of the
curve for Py, (e.g. Th), the probability va(L) underesti-
mates Pi,,. (Online version in colour.)

most of the possible values of T contributing to
Py (L) (the shaded area including the ridge region cor-
responding to the typical values of T is mainly above
the line marked by circles in figure 7). This means
that the estimations are biased upwards and most
likely is that the actual probability of invasion will be
smaller than predicted. In other words, such predictions
will typically give a safe bound for the probability of
invasion. Obviously, there is a non-zero probability
that the observed epidemic has a large value of the
transmissibility (such as T3, in figure 7). In this case,
Piyw(L) would underestimate the actual probability
Py,. For more invasive epidemics (i.e. epidemics with
P,20.5), the shaded area is mainly below the line
marked by the circles in figure 7 meaning that the pre-
dicted probability of invasion Pj,, underestimates Pj,,
for most of the possible values for T, including the
most probable, T'x. In these situations however, both
P;y and P,,, are large and the predictions allow for a
reasonable assessment for invasion to be done. In the
electronic supplementary material, §VI of appendix
SI, we show mathematically that differences between
Piv(L) and P;,, evaluated at the most probable trans-
missibility 74 are mainly dictated by the curvature of
Py, around Ty and is intrinsically linked to the non-
zero width of the p.d.f. p(T). This general result implies
that the biases in the probability of invasion at low and
high transmissibility are independent of the fitting
method (table 1) because all methods lead to a p.d.f.
p(T) with non-zero width.
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The results presented above correspond to RF epi-
demics with homogeneous transmission. A similar
approach has been used to deal with more realistic
epidemics where the transmission of infection is hetero-
geneous owing to variability in the infectivity and the
susceptibility of hosts. As already mentioned in §3, the
estimated Py (L) for such epidemics usually gives a
bound to the actual probability of invasion that is even
safer than that obtained for cases with homogeneous
transmissibility (see the electronic supplementary
material, §V.B, appendix SI for more detail).

5. DISCUSSION

The methodology introduced here focuses on the predic-
tion of relatively simple but important features of
epidemics. This is in contrast to much previous work
dealing with the prediction of quantitative properties of
epidemics such as the detailed spatio-temporal evolution
of the incidence. The advantage in dealing with simple
characteristics of epidemics is that they can be more
easily predicted in terms of simplified description of the
spatio-temporal evolution. Our results demonstrate
that, under quite general assumptions, it is possible to
give reliable prediction of the final state of an epidemic
with permanent immunization from the early stage of
its evolution. Such a prediction is possible even for a
single realization of an epidemic and thus the framework
is relevant to inherently unique real-world epidemics. In
fact, our approach can be applied for prediction of epi-
demics in real systems characterized by a wide range of
space and time scales (e.g. crops) based on micro- or
meso-cosm experiments of finite size and over finite time.

The results obtained for experimental fungal inva-
sion by using approximate methods (C—E in table 1)
are more robust than those based on supposedly more
precise methodology F. This might be a consequence
of the interplay between the high-fitting precision for
MCMC methods involving data augmentation with a
poor description of the actual dynamics given by the
continuous-time model fitted to the observations. A
model capturing dynamical details at a level consistent
with that offered by the fitting procedure might exhibit
more predictive power than that presented here. This is
an illustration of the importance of keeping all the steps
involved in prediction at a similar level of complexity in
order to give reliable predictions. For practical appli-
cations, the particular method to be wused for
obtaining the most reliable prediction depends on the
problem in hand. The general rule that seems to
emerge from our analysis is that a reasonable method
should use as much information as available from obser-
vations, and avoid inferring data that are not directly
available unless it is strictly required by the problem.
This is the case for methods C—E in our particular
study of fungal colony invasion in the population of
agar dots. Methods A and B use less information than
available from observations (i.e. they use C(t) instead
of F(I,t)), while method F infers information that is
not available from observations.

The proposed methods assume that epidemics can be
approximately described by an effective transmissibility
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that is constant over time and homogeneous in space.
However, their applicability goes beyond epidemics
with constant transmissibility. In particular, we have
shown that the method gives reliable predictions in
the presence of spatial heterogeneity in the transmission
of infection. We expect that the methodology can also
be successfully applied to cases where the transmissibil-
ity changes over time but it remains within the bounds
for the effective transmissibility estimated from the
early stage.

We have characterized the final state of epidemics by
the probability of invasion. This quantity is suitable for
systems with well-defined boundaries such as the popu-
lation of agar dots analysed above. In cases where hosts
are placed on the nodes of more complex networks, the
boundaries of the system are not mnecessarily well-
defined [33] and it is more convenient to characterize
the final state of epidemics in terms of the mean
number of removed (i.e. ever infected) hosts, Ng. Our
approach also applies to such complex networks. The
formula given by equation (2.1) provides an estimated
size, Nr(L), if PinV(T;L) is replaced by the function
NR(T;L) giving the size of SIR epidemics with given
transmissibility, 7.

Our methods have been applied under the assump-
tion that the network of contacts between hosts
remains unchanged during the course of epidemics.
Such an approximation has been widely used in the
past [33] and it is reasonable for cases in which the
rate of change of the configuration of contacts is much
smaller than the removal rate of hosts (i.e. ~7 ' in
our notation). This condition is clearly satisfied for
the fungal colony invasion of the population of agar
dots considered here and also for many other epidemics
associated with pathogens spreading in, e.g. networks of
plants [22], farms [9] or airports [11]. This paradigm is
also applicable to the spread of many infections in
human populations (for instance, measles or severe
acute respiratory syndrome that have recovery periods
of the order of few days). By contrast, the dynamics
of contacts between humans plays an important role
for other infectious diseases such as syphilis with a
recovery period of 100 days [34]. A possible strategy
to make predictions in this kind of networks would
involve inferring the mixing parameter for contacts
(as defined, for instance, in Volz & Meyers [34]) based
on observations (step (i)) in a similar way as we esti-
mated the parameters of the SIR model in step (iii).

Another interesting task would be to extend
the ideas presented here to deal with epidemics with
persistence where immunity after recovery is not per-
manent (i.e. recovered hosts can be re-infected). In
this case, the simplest model for description of obser-
vations is the susceptible—infected—susceptible model
[35] and a possible quantity to be predicted would be
the stationary prevalence of infection (i.e. the density
of infected hosts in the stationary state reached after a
transient [35]).

Owing to stochasticity in transmission of infection, it
is not possible to determine the parameters of a model
describing an epidemic with absolute certainty even if
the epidemic is observed during a long time ¢, before
attempting inference. Furthermore, if it were possible
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to determine the exact value of the parameters, it would
still be impossible to make arbitrarily precise predic-
tions of the evolution of the epidemic in the future or
predict with absolute certainty if the epidemic is
going to be invasive or not (instead, one has to deal
with the probability of invasion). The uncertainty in
the prediction of the evolution of epidemics grows
monotonically with the look-ahead time (see the fore-
cast of the incidence in the electronic supplementary
material, §IV of appendix SI). There exists a prediction
horizon beyond which the uncertainty of predictions of
the evolution of the epidemic is too large for predictions
to be useful. The location of the horizon is epidemic-
dependent and also depends on how precise we want
our predictions to be. By contrast, for a pure SIR epi-
demic, there is no prediction horizon for quantities
such as P, or Ny that only depend on the transmissi-
bility. In other words, different replicates of epidemics
with given T will follow different evolutions that have
a prediction horizon but will lead to the same P;,, or
Nr [26,30,31]. More complex nonlinear dynamics for
transmission associated with, for instance, a seasonal
component in the transmission rate may lead to chaotic
behaviour [36]. Predictability of catastrophic events in
systems exhibiting chaotic behaviour is a non-trivial
question that has been widely studied in the past [37]
and still receives considerable attention presently [38].
Even in the absence of stochasticity, the prediction hor-
izon in these systems is intrinsically limited owing to the
high sensitivity of chaotic processes to the initial con-
ditions and the values of the parameters. In addition,
the accuracy of predictions does not necessarily increase
monotonically with the observation time, t,,,, before
prediction [39]. In such situations, it would be necessary
to estimate the value of %, leading to the most reliable
prediction. Owing to all these factors, the methods pro-
posed in this paper may not work when applied for
prediction of catastrophic events in nonlinear dynamical
systems. However, the ideas presented here together with
approaches proposed for prediction in nonlinear dynami-
cal systems may help in devising strategies for prediction
in stochastic nonlinear systems.
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