
Instability, Sensitivity, and Degeneracy of Discrete Exponential
Families

Michael Schweinberger†

Abstract
In applications to dependent data, first and foremost relational data, a number of discrete
exponential family models has turned out to be near-degenerate and problematic in terms of
Markov chain Monte Carlo simulation and statistical inference. We introduce the notion of
instability with an eye to characterize, detect, and penalize discrete exponential family models that
are near-degenerate and problematic in terms of Markov chain Monte Carlo simulation and
statistical inference. We show that unstable discrete exponential family models are characterized
by excessive sensitivity and near-degeneracy. In special cases, the subset of the natural parameter
space corresponding to non-degenerate distributions and mean-value parameters far from the
boundary of the mean-value parameter space turns out to be a lower-dimensional subspace of the
natural parameter space. These characteristics of unstable discrete exponential family models tend
to obstruct Markov chain Monte Carlo simulation and statistical inference. In applications to
relational data, we show that discrete exponential family models with Markov dependence tend to
be unstable and that the parameter space of some curved exponential families contains unstable
subsets.
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1 Introduction
We consider discrete exponential families (Barndorff-Nielsen 1978) with emphasis on
applications to relational data (Wasserman and Faust 1994). Examples of relational data are
social networks, terrorist networks, the world wide web, intra- and inter-organizational
networks, trade networks, and cooperation and conflict between nations. A common form of
relational data is discrete-valued relationships Yij between pairs of nodes i, j = 1, …, n. Let
Y be the collection of relationships Yij given n nodes and  be the sample space of Y. Any
distribution with support  can be expressed in exponential family form (Besag 1974, Frank
and Strauss 1986). Discrete exponential families of distributions with support  were
introduced by Frank and Strauss (1986), Wasserman and Pattison (1996), Snijders et al.
(2006), Hunter and Handcock (2006), and others.

In terms of statistical computing, the most important obstacle is the fact that relational data
tend to be dependent and discrete exponential families for dependent data come with
intractable likelihood functions. Therefore, conventional maximum likelihood and Bayesian
algorithms (e.g., Geyer and Thompson 1992, Snijders 2002, Handcock 2002a, Hunter and
Handcock 2006, Møller et al. 2006, Koskinen et al. 2010) exploit draws from distributions
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with support  to maximize the likelihood function and explore the posterior distribution,
respectively. As Markov chain Monte Carlo (MCMC) is the foremost means to generate
draws from distributions with support , MCMC is key to both simulation and statistical
inference.

In practice, MCMC simulation from discrete exponential family distributions with support 
has brought to light some serious issues: first, Markov chains may mix extremely slowly and
hardly move for millions of iterations (Snijders 2002, Handcock 2003a); and second, the
extremely slow mixing of Markov chains may be rooted in the stationary distribution: the
stationary distribution may be near-degenerate in the sense of placing almost all probability
mass on a small subset of the sample space  (Strauss 1986, Jonasson 1999, Snijders 2002,
Handcock 2003a, Hunter et al. 2008, Rinaldo et al. 2009). The most troublesome
observation, though, is that the subset of the natural parameter space corresponding to non-
degenerate distributions may be a negligible subset of the natural parameter space. These
troublesome observations raise at least two questions. First, why is the effective natural
parameter space of some discrete exponential families (e.g., Frank and Strauss 1986)
negligible, while the effective natural parameter space of others (e.g., the Bernoulli model,
under which the Yij are i.i.d. Bernoulli random variables) is non-negligible? Second, which
sufficient statistics can induce such problematic behavior?

Handcock (2002a, 2003a,b) adapted and extended results of Barndorff-Nielsen (1978, pp.
185–186) and pointed out that, as the natural parameters tend to the boundary of the natural
parameter space, the probability mass is pushed to the boundary of the convex hull of the
space of sufficient statistics (cf. Rinaldo et al. 2009, Geyer 2009, Koskinen et al. 2010).
However, these results are applicable to both the Bernoulli model and Frank and Strauss
(1986) and neither explain the striking contrast between them nor clarify which sufficient
statistics can induce problematic behavior.

We introduce the notion of instability along the lines of statistical physics (Ruelle 1969)
with an eye to characterize, detect, and penalize problematic discrete exponential families.
Strauss (1986) was the first to observe that the problematic behavior of the discrete
exponential families of Frank and Strauss (1986) is related to lack of stability of point
processes in statistical physics (Ruelle 1969, p. 33). We adapt the notion of stability of point
processes in the sense of Ruelle (1969, p. 33) to discrete exponential families and introduce
the notions of unstable discrete exponential family distributions and unstable sufficient
statistics. We show that unstable exponential family distributions are characterized by
excessive sensitivity and near-degeneracy. In special cases, the subset of the natural
parameter space corresponding to non-degenerate distributions and mean-value parameters
far from the boundary of the mean-value parameter space turns out to be a lower-
dimensional subspace of the natural parameter space. In applications to relational data, it
turns out that the parameter space of exponential families with Markov dependence (Frank
and Strauss 1986) tends to be unstable and that the parameter space of some curved
exponential families (Snijders et al. 2006, Hunter and Handcock 2006) contains unstable
subsets.

We introduce the notion of instability and its implications in Section 2, discuss its impact on
MCMC simulation and statistical inference in Sections 3 and 4, respectively, and present
applications to relational data and simulation results in Sections 5 and 6, respectively.

2 Instability, sensitivity, and degeneracy
Let YN be a discrete random variable with sample space  = , where  is a discrete set of
M elements and N is the number of degrees of freedom. In applications to relational data
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(Wasserman and Faust 1994), YN may correspond to N ≤ n2 relationships among n nodes; in
applications to spatial data (Besag 1974), N random variables located at N sites of a lattice;
and in binomial sampling, N i.i.d. Bernoulli random variables.

We consider discrete exponential families of distributions {Pθ, θ ∈ Θ} with probability mass
functions of the form

(1)

where ηN: Θ ↦ ℝL is a vector of natural parameters and gN:  ↦ ℝL is a vector of
sufficient statistics,

(2)

is the cumulant generating function, and Θ = {θ ∈ ℝK: ψN(θ) < ∞} is the parameter space.
The vector of natural parameters ηN(θ) may be a linear or non-linear function of parameter

vector θ. If  is a linear function of θ, where AN is a K × L matrix, the non-
uniqueness of the canonical form of exponential families can be exploited to absorb AN into
gN(yN), so that ηN(θ) = θ can be assumed without loss of generality. If ηN(θ) is a non-linear
function of θ and K < L, the exponential family is curved (Efron 1978).

Let , and IN(θ) = minyN∈  [qθ(yN)] and SN(θ) = maxyN∈  [qθ(yN)] be
the minimum and maximum of qθ(yN), respectively. Since pθ(yN) is invariant to translations
of qθ(yN) by −IN(θ), let IN(θ) = 0 without loss of generality.

Definition: stable, unstable distributions
A discrete exponential family distribution Pθ, θ ∈ Θ, is stable if there exist constants C > 0
and NC > 0 such that

(3)

and unstable if, for any C > 0, however large, there exists NC > 0 such that

(4)

In general, instability may be induced by ηN(θ) or gN(yN). In the important special case
where ηN(θ) is a linear function of θ, in which case ηN(θ) = θ can be assumed without loss
of generality, gN(yN) is the exclusive source of instability. Let ηN,k(θ) and gN,k(yN) be the k-
th coordinate of ηN(θ) and gN(yN), respectively, LN,k = minyN∈  [gN,k(yN)] and UN,k =
maxyN∈  [gN,k(yN)] be the minimum and maximum of gN,k(yN), respectively, and LN,k = 0
without loss of generality, owing to the invariance of pθ(yN) to translations of qθ(yN) by
−ηN,k(θ) LN,k (k = 1, …, L).
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Definition: stable, unstable sufficient statistics
A sufficient statistic gN,k(yN) is stable if there exists constants C > 0 and NC > 0 such that

(5)

and unstable if, for any C > 0, however large, there exists NC > 0 such that

(6)

While the notion of unstable discrete exponential families holds intuitive appeal, the
parameter space Θ of most discrete exponential families of interest includes subsets indexing
stable distributions. With a wide range of applications in mind, it is therefore preferable to
study the characteristics of unstable sufficient statistics and unstable distributions and to
detect in applications unstable sufficient statistics and subsets of Θ indexing unstable
distributions. It is worthwhile to note that Handcock (2002a, b, 2003a) discussed an
alternative, but unrelated notion of stability, calling discrete exponential families stable if
small changes in natural parameters result in small changes of the probability mass function.

To demonstrate instability and its implications, we introduce two classic examples in
Section 2.1. In Sections 2.2 and 2.3, we show that unstable exponential family distributions
are characterized by excessive sensitivity and near-degeneracy.

2.1 Examples
A simple but common form of relational data is undirected graphs yN, where the
relationships yij ∈ {0, 1} satisfy the linear constraints yij = yji (all i < j) and yii = 0 (all i),
which reduces the number of degrees of freedom N from n2 to n(n−1)/2. Two classic models
of undirected graphs are the Bernoulli model with natural parameter θ and stable sufficient
statistic Σi<j yij and the 2-star model with natural parameter θ and unstable sufficient statistic
Σi, j<k yijyik. The Bernoulli model arises from the assumption that the random variables Yij
are i.i.d. Bernoulli (all i < j), while the 2-star model can be motivated by Markov
dependence (Frank and Strauss 1986). The Bernoulli model implies SN(θ) = |θ|N and is
therefore stable for all θ, while the 2-star model implies SN(θ) = |θ| (n − 2)N and is therefore
unstable for all θ ≠ 0.

2.2 Instability and sensitivity
Unstable discrete exponential family distributions are characterized by excessive sensitivity.

Consider the smallest possible changes of yN, that is, changes of one element of yN, and let

(7)

be the log odds of pθ(yN) relative to pθ(xN), where xN ~ yN means that xN and yN are nearest
neighbors in the sense that xN and yN match in all but one element. The following theorem
shows that, if an exponential family distribution is unstable, then the probability mass
function is characterized by excessive sensitivity in the sense that the nearest neighbor log
odds are unbounded and therefore even the smallest possible changes can result in extremely
large log odds.
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Theorem 1
If a discrete exponential family distribution Pθ, θ ∈ Θ, is unstable, then there exist no
constants C > 0 and NC > 0 such that

(8)

Theorem 1 implies that some, but not necessarily all, nearest neighbor log odds are
unbounded. It indicates that the probability mass function is excessively sensitive to small
changes in subsets of  and that some elements of  dominate others in terms of
probability mass. A walk through  resembles a walk through a rugged, mountainous
landscape: small steps in  can result in dramatic increases or decreases in probability
mass. An example is given by the 2-star model of Section 2.1: for all θ ≠ 0, the nearest
neighbor log odds satisfy |ΛN(xN, yN; θ)| ≤ 2 |θ| (n − 2) (all xN ~ yN) and are therefore O(n).
The excessive sensitivity of the 2-star model is well-known (Handcock 2003a), but Theorem
1 indicates that all unstable exponential family distributions suffer from excessive
sensitivity.

Section 3 shows that the unbounded nearest neighbor log odds of unstable exponential
family distributions have a direct impact on MCMC simulation.

2.3 Instability and degeneracy
Discrete exponential family distributions with support  cannot be degenerate in the strict
sense of the word. However, unstable discrete exponential family distributions turn out to be
near-degenerate. Worse, in the important special case of discrete exponential families with
unstable sufficient statistics, the subset of the natural parameter space corresponding to non-
degenerate distributions turns out to be a lower-dimensional subspace of the natural
parameter space.

Let  = {yN ∈ : qθ(yN) = SN(θ)} be the subset of modes and, for any 0 < ε < 1, let  =
{yN ∈ : qθ(yN) > (1 − ε) SN(θ)} be the subset of ε-modes of the probability mass function
pθ(yN). The following theorem shows that unstable exponential family distributions tend to
concentrate almost all probability mass on the modes of the probability mass function.

Theorem 2
If a discrete exponential family distribution Pθ, θ ∈ Θ, is unstable, then it is degenerate in
the sense that, for any 0 < ε < 1, however small,

(9)

A related result was reported by Strauss (1986) and Handcock (2003a). In general, the fact
that almost all probability mass tends to be concentrated on the modes of the probability
mass function is troublesome: first, because the effective support, the subset of the support

 with non-negligible probability mass, is reduced; and second, because in most
applications the modes do not resemble observed data.

In the important special case of exponential families with unstable sufficient statistics, it is
possible to gain more insight into near-degeneracy. Consider one-parameter exponential
families {Pθ, θ ∈ Θ} with natural parameter ηN(θ) = θ and sufficient statistic gN(yN). Let
LN = 0 (without loss of generality) and UN be the minimum and maximum of gN(yN),
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respectively, and, for any 0 < ε < 1, let  = {yN ∈ : gN(yN) < ε UN} and  = {yN ∈ :
gN(yN) > (1 − ε) UN} be the subset of the sample space  close to the minimum and
maximum of gN(yN), respectively. The following result shows that one-parameter
exponential families with unstable sufficient statistics gN(yN) tend to be degenerate with
respect to gN(yN).

Theorem 3
A one-parameter exponential family {Pθ, θ ∈ Θ} with natural parameter θ and unstable
sufficient statistic gN(yN) is degenerate with respect to gN(yN) in the sense that, for any 0 < ε
< 1, however small, and for any θ < 0,

(10)

and, for any θ > 0,

(11)

Thus, the probability mass is pushed to the minimum of gN(yN) for all θ < 0 and the
maximum of gN(yN) for all θ > 0, and the subset of the natural parameter space Θ
corresponding to non-degenerate distributions is a lower-dimensional subspace of Θ: the
point θ = 0. An example of a one-parameter exponential family with unstable sufficient
statistic is given by the 2-star model of Section 2.1.

Consider K-parameter exponential families {Pθ, θ ∈ Θ} with natural parameters ηN,1(θ) =
θ1, …, ηN,K(θ) = θK and K − 1 stable sufficient statistics gN,1(yN), …, gN,K−1(yN) as well as
one unstable sufficient statistic gN,K(yN). In accordance with the preceding paragraph, let

 and  be the subset of the sample space  close to the minimum and maximum of
the unstable sufficient statistic gN,K(yN), respectively. The following result shows that K-
parameter exponential families with K − 1 stable and one unstable sufficient statistic tend to
be degenerate with respect to the unstable sufficient statistic.

Theorem 4
A K-parameter exponential family {Pθ, θ ∈ Θ} with natural parameters θ1, …, θK and K −
1 stable sufficient statistics gN,1(yN), …, gN,K−1(yN) as well as one unstable sufficient
statistic gN,K(yN) is degenerate with respect to gN,K(yN) in the sense that, for any 0 < ε < 1,
however small, and for any θK < 0,

(12)

and, for any θK > 0,

(13)

In general, it is not straightforward to see where the probability mass of K-parameter
exponential families with multiple unstable sufficient statistics ends up. In special cases,
though, insight can be gained. Consider a K-parameter exponential family {Pθ, θ ∈ Θ} with
natural parameters θ1, …, θK and sufficient statistics gN,1(yN), …, gN,K(yN), where gN,1(yN),
…, gN,K−1(yN) may be unstable while gN,K(yN) is unstable and dominates gN,1(yN), …,
gN,K−1(yN) in the sense that, for any D > 0, however large, there exists ND > 0 such that
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(14)

A K-parameter exponential family with multiple unstable sufficient statistics, including an
unstable, dominating sufficient statistic gN,K(yN), tends to be degenerate with respect to
gN,K(yN).

Theorem 5
A K-parameter exponential family {Pθ, θ ∈ Θ} with natural parameters θ1, …, θK and
sufficient statistics gN,1(yN), …, gN,K(yN), where gN,1(yN), …, gN,K−1(yN) may be unstable
while gN,K(yN) is unstable and dominates gN,1(yN), …, gN,K−1(yN), is degenerate with
respect to gN,K(yN) in the sense that, for any 0 < ε < 1, however small, and for any θK < 0,

(15)

and, for any θK > 0,

(16)

It is worthwhile to point out that whether most probability mass tends to be concentrated on
one element of the sample space  and the entropy of the distribution tends to 0 depends on
the sufficient statistics. An exponential family that is degenerate with respect to sufficient
statistics is as degenerate as it can be.

As we will see in Section 4, the degeneracy of exponential families with unstable sufficient
statistics tends to push the mean-value parameters to the boundary of the mean-value
parameter space, which tends to obstruct statistical inference.

3 Impact of instability on MCMC simulation
If a Markov chain with unstable stationary distribution is constructed by MCMC methods,
the excessive sensitivity and near-degeneracy of the stationary distribution tend to have a
direct impact on MCMC simulation.

The excessive sensitivity of unstable stationary distributions, excessive in the sense that the
nearest neighbor log odds are unbounded, affects the probabilities of transition between
nearest neighbors: e.g., in applications to undirected graphs (cf. Section 2.1), Gibbs samplers
sample elements yij from full conditional distributions of the form

(17)

where y−ij denotes the collection of elements yN excluding yij, and the log odds of πij(y−ij; θ)
is given by

(18)

A Metropolis-Hastings algorithm moves from xN to yN, generated from a probability mass
function f with support {yN: yN ~ xN}, with probability
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(19)

Since the nearest neighbor log odds satisfy ΛN (xN, yN; θ) = −ΛN(yN, xN; θ) (all xN ~ yN)
and are unbounded by Theorem 1, Markov chains with unstable stationary distributions can
move extremely fast from some subsets of the sample space  to other subsets and
extremely slowly back. In addition, if the mode of the probability mass function is not
unique, multiple Markov chains may be required, because Theorems 1 and 2 indicate that
one Markov chain may be trapped at one of the modes. Worse, Theorems 3 and 4 suggest
that MCMC simulation from exponential families with unstable sufficient statistics may be a
waste of time and resources in the first place.

The most important conclusion, though, is that mixing problems of MCMC algorithms tend
to be rooted in the unstable stationary distribution rather than the design of the MCMC
algorithms, as is evident from the unbounded nearest neighbor log odds and the near-
degeneracy of unstable stationary distributions. A related result and conclusion was reported
by Handcock (2003a).

4 Impact of instability on statistical inference
The degeneracy of exponential families with unstable sufficient statistics tends to push the
mean-value parameters to the boundary of the mean-value parameter space and therefore
tends to obstruct maximum likelihood estimation.

Let μN: Θ ↦ int( ) be the map from parameter space Θ to the mean-value parameter space
int( ) (Barndorff-Nielsen 1978, p. 121) given by

(20)

where int( ) denotes the interior of the convex hull  of {gN(yN): yN ∈ }.

We start with one-parameter exponential families {Pθ, θ ∈ Θ} with natural parameter θ and
unstable sufficient statistic gN(yN). Let LN = 0 (without loss of generality) and UN be the
minimum and maximum of gN(yN), respectively, and

(21)

be the mean-value parameter, where re-scaling by 1/UN ensures that the range of μN(θ)/UN
is (0, 1). The following result shows that one-parameter exponential families with unstable
sufficient statistics gN(yN) push the mean-value parameter μN (θ) to its infinum for all θ < 0
and its supremum for all θ > 0.

Corollary 1
The mean-value parameter μN(θ) of a one-parameter exponential family {Pθ, θ ∈ Θ} with
natural parameter θ and unstable sufficient statistic gN(yN) tends to the boundary of the
mean-value parameter space in the sense that, for any θ < 0, however small,
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(22)

and, for any θ > 0, however small,

(23)

By Corollary 1, the subset of the natural parameter space Θ corresponding to mean-value
parameters far from the boundary of the mean-value parameter space tends to be a lower-
dimensional subpace of Θ: the point θ = 0. In addition, the mean-value parameter μN(θ) can
be expected to be extremely sensitive to changes of the natural parameter θ around 0.

The relationship between the natural parameter θ and the mean-value parameter μN(θ) is
problematic in terms of maximum likelihood estimation. If gN(yN) ∈ int( ) denotes an
observation in the interior of , the maximum likelihood estimate of θ exists and is unique
(Barndorff-Nielsen 1978, p. 150) and is given by the root of the estimating function

(24)

The estimating function δN(θ) depends on θ through μN(θ), and since μN(θ) tends to be
extremely sensitive to changes of θ around 0, so does δN(θ). If the observation gN(yN) is not
close to the boundary of , the maximum likelihood estimate of θ tends to be close to 0,
since only values of θ close to 0 map to values of μN(θ) which are not close to the boundary
of . As a result, maximum likelihood algorithms tend to search for the maximum
likelihood estimate of θ in a small neighborhood of 0, but are hampered by the extreme
sensitivity of the estimating function δN(θ) around θ = 0 and tend to make small steps in the
natural parameter space Θ around θ = 0 and large steps in the mean-value parameter space
int( ) and struggle to converge. A related result and conclusion was reported by Handcock
(2003a).

The behavior of K-parameter exponential families {Pθ, θ ∈ Θ} with natural parameters θ1,
…, θK and K − 1 stable sufficient statistics gN,1(yN),…, gN,K−1(yN) as well as one unstable
sufficient statistic gN,K(yN) resembles the behavior of one-parameter exponential families
with unstable sufficient statistic gN,K(yN). Let LN,K = 0 (without loss of generality) and
UN,K be the minimum and maximum of the unstable sufficient statistic gN,K(yN),
respectively, and

(25)

be the coordinate of the vector of mean-value parameters μN(θ) corresponding to gN,K(yN).

Corollary 2
The vector of mean-value parameters μN(θ) of a K-parameter exponential family {Pθ, θ ∈
Θ} with natural parameters θ1, …, θK and K − 1 stable sufficient statistics gN,1(yN), …,
gN,K−1(yN) as well as one unstable sufficient statistic gN,K(yN) tends to the boundary of the
mean-value parameter space in the sense that, for any θK < 0, however small,
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(26)

and, for any θK > 0, however small,

(27)

To conclude, while some maximum likelihood algorithms may outperform others,
Corollaries 1 and 2 indicate that all maximum likelihood algorithms can be expected to
suffer from degeneracy with respect to sufficient statistics (cf. Handcock 2003a, Rinaldo et
al. 2009).

5 Applications to relational data
The intention of the present section is to detect unstable subsets of the parameter space of
discrete exponential families, because unstable discrete exponential family distributions are
characterized by excessive sensitivity and near-degeneracy (cf. Section 2), which tends to
obstruct MCMC simulation (cf. Section 3) as well as statistical inference (cf. Section 4).

We focus on applications to relational data, but note that in applications to lattice systems
(Besag 1974) and binomial sampling, exponential family models (with suitable
neighborhood assumptions) tend to be stable (Ruelle 1969). We consider undirected graphs
and the most widely used exponential family models of undirected graphs, so-called
exponential family random graph models (ERGMs) with Markov dependence and curved
exponential family random graph models (curved ERGMs). It is worthwhile to note that the
number of degrees of freedom N is O(n2) and is therefore large even when the number of
nodes n is small, suggesting that the large-N results of Sections 2–4 shed light on the
behavior of ERGMs even when n is not large.

A simple and appealing class of ERGMs with Markov dependence (Frank and Strauss 1986)
is given by

(28)

where sN,k(yN) = Σi, j1<…<jk yij1 · · ·yijk is the number of k-stars (k = 1, …, n − 1) and Σi<j<k
yijyjkyik is the number of triangles. Since the number of natural parameters of (28) is n, it is
common to impose linear or non-linear constraints on the natural parameters of (28) with an
eye to reduce the number of parameters to be estimated. The following ERGMs are special
cases of (28) obtained by imposing suitable linear constraints on the natural parameters of
(28).

Result 1
ERGMs with 2-star terms of the form

(29)
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are unstable for all θ2 ≠ 0.

Result 2
ERGMs with triangle terms of the form

(30)

are unstable for all θ2 ≠ 0.

Results 1 and 2 are in line with existing results: both ERGMs are known to be near-
degenerate and problematic in terms of MCMC simulation and statistical inference (Strauss
1986, Jonasson 1999, Snijders 2002, Handcock 2003a, Rinaldo et al. 2009). The most
striking conclusion is that in both cases the subset of the natural parameter space ℝ2

corresponding to non-degenerate distributions is a lower-dimensional subspace of ℝ2: the
line (θ1, 0). In terms of MCMC, the nearest neighborhood log odds |ΛN(xN, yN; θ)| are O(n),
which suggests that MCMC algorithms tend to suffer from extremely slow mixing, as is
well-known (Snijders 2002, Handcock 2002a, 2003a).

To reduce the problematic behavior of ERGMs of the form (29) and (30), it has sometimes
been suggested to counterbalance positive instability-inducing terms by negative instability-
inducing terms.

Result 3
ERGMs with 2-star and triangle terms of the form

(31)

are unstable for all θ2 and θ3 excluding θ2 = θ3 = 0 and θ2 = − θ3/3.

Result 3 demonstrates that counterbalancing instability-inducing terms does not, in general,
work: the subset of ℝ3 corresponding to non-degenerate distributions is severely constrained
by the linear constraints θ2 = θ3 = 0 and θ2 = − θ3/3.

We turn to the curved ERGMs of Snijders et al. (2006) and Hunter and Handcock (2006),
which were motivated by the problematic behavior of ERGMs with Markov dependence.
Three of the best-known curved ERGM terms are geometrically weighted degree (GWD),
geometrically weighted dyadwise shared partner (GWDSP), and geometrically weighted
edgewise shared partner (GWESP) terms (cf. Hunter et al. 2008).

Result 4
Curved ERGMs with GWD terms of the form

(32)

where DN,k(yN) is the number of nodes i with degree Σj≠i yij = k, are unstable for all θ2 ≠ 0
and θ3 < −log 2.
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Result 5
Curved ERGMs with GWDSP terms of the form

(33)

where DSPN,k(yN) is the number of pairs of nodes {i, j} with Σh≠i,j yihyjh = k dyadwise
shared partners, are unstable for all θ2 ≠ 0 and θ3 < −log 2.

Result 6
Curved ERGMs with GWESP terms of the form

(34)

where ESPN,k(yN) is the number of pairs of nodes {i, j} with yijΣh≠i,j yihyjh = k edgewise
shared partners, are unstable for all θ2 ≠ 0 and θ3 < −log 2.

Thus, the parameter space of curved ERGMs with GWD, GWDSP, and GWESP terms
contains unstable subsets. In terms of MCMC, in unstable subsets of the parameter space the
curved ERGMs tend to be worse than the ERGMs with Markov dependence: if θ2 ≠ 0 and
θ3 < −log 2, the nearest neighborhood log odds |ΛN(xN, yN; θ)| are O(exp[n]). On the other
hand, the curved ERGMs with GWD, GWDSP, and GWESP terms are stable provided θ2 ≠
0 and θ3 ≥ −log 2, which is encouraging and indicates that the effective parameter space is
non-negligible, in contrast to ERGMs with Markov dependence. The unstable subsets of the
parameter space of curved ERGMs should be penalized by specifying suitable penalties in a
maximum likelihood framework and suitable priors in a Bayesian framework.

6 Simulation results
To demonstrate that unstable discrete exponential family distributions are characterized by
excessive sensitivity and near-degeneracy (cf. Section 2) and tend to obstruct MCMC
simulation (cf. Section 3) and statistical inference (cf. Section 4), we resort to MCMC
simulation of undirected graphs with n = 32 nodes and N = 496 degrees of freedom from the
ERGMs of Results 1–6 (cf. Section 5). Since the computational cost of MCMC simulation is
prohibitive, we exploit the fact that Results 1–6 hold regardless of the value of θ1, the
natural parameter corresponding to the sufficient statistic Σi<j yij, and fix the value of θ1 at
−1 and the value of θ2 of the ERGMs of Results 3–6 at 1. For every ERGM and every non-
fixed parameter, we consider 200 values in the interval [−5, 5]. At every such value, we
generate an MCMC sample of size 2,000,000, discarding 1,000,000 draws as burn-in and
recording every 1,000th post-burn-in draw. The MCMC samples were generated by a
Metropolis-Hastings algorithm of the form (19) (Hunter et al. 2008).

We start with two classic examples: the Bernoulli model with stable sufficient statistic
gN(yN) = Σi<j yij and the 2-star model with unstable sufficient statistic gN(yN) = Σi, j<k yijyik
(cf. Section 2.1). Figure 1 plots the MCMC sample estimates of the mean-value parameters
μN(θ) = Eθ [gN(YN)] of these models against the corresponding natural parameters θ. The
MCMC sample estimate of the mean-value parameter μN(θ) of the Bernoulli model is close
to the exact value μN(θ) = N/(1+exp[−θ]) (within two standard deviations of the sample
average based on random samples of size 1,000), demonstrating that MCMC simulation

Schweinberger Page 12

J Am Stat Assoc. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from the Bernoulli model is hardly problematic. The MCMC sample estimate of the mean-
value parameter μN(θ) of the 2-star model is, in line with Corollary 1, close to its infinum
for all θ < 0 and close to its supremum for all θ > 0, and extremely sensitive to small
changes of θ around 0.

The ERGMs with Markov dependence (Results 1–3) are expected to be degenerate with
respect to the unstable sufficient statistics, the number of 2-stars (Result 1), the number of
triangles (Result 2), and the number of triangles (Result 3 with 2-star parameter equal to 1),
and the corresponding mean-value parameters are expected to be close to the boundary of
the mean-value parameter space. Figure 2 plots the proportion of 2-stars (Result 1) and
triangles (Results 2 and 3) against the corresponding natural parameter and confirms these
considerations.

Concerning the curved ERGMs with GWD, GWDSP, and GWESP terms (Results 4–6),
since the number of sufficient statistics is linear in n, we focus on the sufficient statistic Σi<j
yij, one of the most fundamental functions of undirected graphs yN. We take the coefficient
of variation CVN, defined as the standard deviation of Σi<j yij divided by the mean of Σi<j yij,
as an indicator of mixing and near-degeneracy: low coefficients of variation indicate slow
mixing and near-degeneracy. We divide the coefficients of variation CVN by the coefficient
of variation CVN(Bernoulli) under the corresponding ERGM with θ1 = −1 and θ2 = 0, which
corresponds to the Bernoulli model of Section 2.1 with θ = −1. Figure 3 plots the MCMC
sample coefficients of variation CVN/CVN(Bernoulli) against the critical parameter θ3 of the
ERGMs of Results 4–6. The simulation results indicate that in the unstable subset of the
parameter space, corresponding to θ3 < −log 2, the coefficients of variation are close to 0, as
expected, and around θ3 = −log 2, the coefficients of variation rise to a value comparable to
the coefficient of variation CVN(Bernoulli) under the corresponding Bernoulli model.

7 Discussion
Building on the work of Strauss (1986) and Handcock (2002a, 2003a,b), we have introduced
the notion of instability and shown that unstable discrete exponential family distributions are
characterized by excessive sensitivity and near-degeneracy. In the important special case of
exponential families with unstable sufficient statistics, the subset of the natural parameter
space corresponding to non-degenerate distributions and mean-value parameters far from the
boundary of the mean-value parameter space turns out to be a lower-dimensional subspace
of the natural parameter space. These characteristics of instability tend to obstruct MCMC
simulation and statistical inference. In applications to relational data, we find that
exponential families with Markov dependence tend to be unstable and that the parameter
space of some curved exponential families contains unstable subsets. We conclude that
unstable subsets of the parameter space of curved exponential families should be penalized
by specifying suitable penalties in a maximum likelihood framework and suitable priors in a
Bayesian framework.

It is worthwhile to point out that, while instability implies undesirable behavior such as near-
degeneracy, stability is not—and cannot be—an insurance against near-degeneracy. Indeed,
every discrete exponential family, with or without unstable sufficient statistics, includes
near-degenerate distributions provided the natural parameters are sufficiently large (cf.
Barndorff-Nielsen 1978, pp. 185–186, Handcock 2002a, 2003a,b). In addition, while
unstable sufficient statistics can be stabilized, there are good reasons to be sceptical of
simple stabilization strategies. Consider one-parameter exponential families with natural
parameter θ and unstable sufficient statistic gN(yN). The unstable sufficient statistic gN(yN)
can be transformed into the stable sufficient statistic gN(yN)/UN by dividing gN(yN) by its
maximum UN. Since the canonical form of exponential families is not unique (Brown 1986,
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pp. 7–8), mapping gN(yN) to gN(yN)/UN is equivalent to mapping θ to θ/UN and can
therefore be regarded as a reparameterization of the exponential family with unstable
sufficient statistic gN(yN). Let ηN(θ) = θ/UN. By the parameterization invariance of

maximum likelihood estimators, the maximum likelihood estimators θ̂ and  of θ
respectively ηN(θ) satisfy θ̂ = η̂N UN. The probability of data under the maximum
likelihood estimator is the same under both parameterizations. The simple stabilization
strategy therefore fails to address the problem of lack of fit: even under the maximum
likelihood estimator, the probability of data may be extremely low relative to other elements
of the sample space and the fit of the model thus unacceptable (cf. Hunter et al. 2008). The
argument extends to K-parameter exponential families and linear transformations of
sufficient statistics (Brown 1986, pp. 7–8).

Last, while the conditions under which maximum likelihood estimators of discrete
exponential families for dependent data exist and are unique are well-understood (cf.
Barndorff-Nielsen 1978, p. 151, Handcock 2002a, 2003a,b, Rinaldo et al. 2009), it is an
open question which conditions ensure consistency and asymptotic normality of maximum
likelihood estimators (cf. Hunter and Handcock 2006, Rinaldo et al. 2009). An anonymous
referee suggested semi-group structure (cf. Lauritzen 1988, pp. 140–146). Semi-group
structure implies stability and holds promise.
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A Appendix: proofs

Proof of Theorem 1
We prove Theorem 1 by contradiction. Given an unstable discrete exponential family
distribution, suppose that there exist C > 0 and NC > 0 such that

(35)

Consider a given N ≥ 1. Let aN ∈ {yN ∈ : qθ(yN) = IN(θ)} and bN ∈ {yN ∈ : qθ(yN) =
SN(θ)}, and let KN ≤ N be the number of non-matching elements of aN and bN. By changing
the non-matching elements of aN and bN one by one, it is possible to go from aN to bN
within KN ≤ N steps. Let yN,0, yN,1, …, yN,KN−1, yN,KN be a path from aN to bN such that
yN,0 = aN and yN,KN = bN and yN,k−1 ~ yN,k (k = 1, …, KN). By Jensen’s inequality and (35),
there exist C > 0 and NC > 0 such that, for any N > NC,

(36)

The left-hand side of (36) is, by definition of aN and bN, given by
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(37)

Thus, (35) implies that there exist C > 0 and NC > 0 such that

(38)

which contradicts the assumption of instability.

Proof of Theorem 2
For any 0 < δ < ε < 1, however small, and any N ≥ 1,

(39)

using the fact that  contains at least one element, and

(40)

using the fact that \  contains at most exp[N logM] −1 < exp[N logM] elements. Thus,
the log odds of Pθ(YN ∈ ) is given by

(41)

By instability, for any C > 0, however large, there exists NC > 0 such that

(42)

Since ε − δ > 0 and C > 0 can be as large as desired, ωε, N → ∞ as N → ∞ and (9) holds.

Proof of Theorems 3 and 4
We prove Theorem 4, since Theorem 3 can be considered to be a special case of Theorem 4.

Case 1: θK < 0. For any 0 < δ < ε < 1, however small, and any N ≥ 1,

(43)

and

(44)
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Thus, the log odds of Pθ(YN ∈ ) is given by

(45)

Since −θK > 0, ε − δ > 0, and the sufficient statistic gN,K(yN) is unstable, the term −θK (ε −
δ) UN,K on the right-hand side of (45) is positive and not bounded by N, while the stability
of the sufficient statistics gN,1(yN), …, gN,K−1(yN) implies that the other terms on the right-
hand side of (45) are bounded by N. Thus, for any θK < 0, ωε,N,K → ∞ as N → ∞ and (12)
holds.

Case 2: θK > 0. The case θK > 0 proceeds along the same lines as the case θK < 0, mutatis
mutandis, to show that (13) holds.

Proof of Theorem 5
A proof of Theorem 5 proceeds along the same lines as the proof of Theorem 4, with the
exception that the sufficient statistics gN,1(yN), …, gN,K−1(yN) may be unstable but are
dominated by the unstable sufficient statistic gN,K(yN).

Proof of Corollaries 1 and 2
We prove Corollary 2, since Corollary 1 can be considered to be a special case of Corollary
1.

Case 1: θK < 0. For any 0 < γ < 1, however small, and any N ≥ 1, one can partition the
sample space  into the subsets  and \ . Therefore,

(46)

By Theorem 4, for any 0 < δ < 1, however small, and any θK < 0, there exists Nδ > 0 such
that

(47)

Since γ and δ can be as small as desired, (26) holds.

Case 2: θK > 0. The case θK > 0 proceeds along the same lines as the case θK < 0, mutatis
mutandi, to show that (27) holds.

Proof of Results 1–6
Let 0N be the empty graph (0ij = 0, all i < j) and 1N be the complete graph (1ij = 1, all i < j)
given n nodes and N = n(n − 1)/2 degrees of freedom. For every ERGM of Results 1–6,
every θ ∈ Θ, and every n > 1, qθ(0N) = 0 and
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(48)

Therefore, all θ ∈ Θ such that |qθ(1N)| is not bounded by N give rise to unstable distributions
Pθ, proving Results 1–6.
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Figure 1.
MCMC sample estimate of mean-value parameter μN(θ) plotted against natural parameter θ
of Bernoulli model and 2-star model, where CN ensures that the range of μN(θ)/CN is (0, 1);
shaded regions indicate unstable regions
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Figure 2.
MCMC sample proportion of 2-stars (Result 1) and triangles (Results 2 and 3) plotted
against corresponding natural parameter; shaded regions indicate unstable regions
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Figure 3.
MCMC sample coefficient of variation CVN of curved ERGM with GWD term (Result 4),
GWDSP term (Result 5), and GWESP term (Result 6), re-scaled by 1/CVN(Bernoulli);
shaded regions indicate unstable regions

Schweinberger Page 21

J Am Stat Assoc. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


