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Of the Capsicum peppers (Capsicum spp.), cultivated C. annuum is the most commercially important, but
has lacked an intraspecific linkage map based on sequence-specific PCR markers in accord with haploid
chromosome numbers. We constructed a linkage map of pepper using a doubled haploid (DH) population
derived from a cross between two C. annuum genotypes, a bell-type cultivar ‘California Wonder’ and a
Malaysian small-fruited cultivar ‘LS2341 (JP187992)°, which is used as a source of resistance to bacterial
wilt (Ralstonia solanacearum). A set of 253 markers (151 SSRs, 90 AFLPs, 10 CAPSs and 2 sequence-
tagged sites) was on the map which we constructed, spanning 1,336 cM. This is the first SSR-based map to
consist of 12 linkage groups, corresponding to the haploid chromosome number in an intraspecific cross of
C. annuum. As this map has a lot of PCR-based anchor markers, it is easy to compare it to other pepper ge-
netic maps. Therefore, this map and the newly developed markers will be useful for cultivated C. annuum

breeding.
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Introduction

Cultivated Capsicum fruits are used as a source of vegeta-
bles, spice, colorant and for some medical applications. The
genus is native to Central and South America (Pickersgill
1991) and includes the species C. chinense, C. baccatum,
C. frutescens, C. pubescens and C. annuum. Of these five
species, C. annuum is the most important one because it is
cultivated in both tropical and temperate area in the world
and it is the most versatile of the five species. In contrast, the
other four species are cultivated in limited regions in the
world or only in tropical areas and they are mainly used as
spices.

Linkage maps of Capsicum have been constructed using
both intraspecific annuum populations and interspecific
crosses such as C. annuum x C. chinense (Kang et al. 2001,
Lee et al. 2004, Livingstone ef al. 1999, Yi et al. 2006) and
C. annuum x C. frutescens (Ben-Chaim et al. 2006, Rao et
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al. 2003, Wu et al. 2009). Interspecific crosses benefit from
a high level of marker polymorphism but suffer from low
fertility, segregation distortion and major structural rear-
rangements (Lanteri 1991, Lanteri and Pickersgill 1993, Wu
et al. 2009), which limit the power of the linkage analysis
and restrict their relevance to marker-assisted selection
(MAS) applications (Lefebvre et al. 2002).

Several intraspecific maps of C. annuum have been re-
ported (Barchi et al. 2007, Caranta et al. 1997a, 1997b,
Lefebvre et al. 1995, Minamiyama et al. 2006, 2007,
Ogundiwin et al. 2005, Sugita et al. 2006). RFLP and RAPD
markers were used for constructing some of the maps. How-
ever, RFLP markers have been largely replaced by a new
generation of molecular markers (e.g. SSR, AFLP and
CAPS) which offer tremendous advances in cost, efficiency,
throughput and sensitivity for plant genomics. RAPD mark-
ers also have problem with reproducibility. The map posi-
tion of highly reproducible, locus-specific, co-dominant
PCR-based markers is of particular value for the integration
of genetic information from different populations and will
underpin much applied research in pepper, including gene
mapping, quantitative trait loci (QTL) analysis, and marker-
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assisted selection. Previously, Minamiyama et al. (2006,
2007) have constructed a pepper map mainly by using SSR
markers with high polymorphism information content. Nev-
ertheless, these studies have not resulted in complete genetic
maps of the pepper genome in which 12 linkage groups cor-
respond to the haploid chromosome numbers. The maps are
also not comparable in marker position to any other maps in
pepper, since they have few common markers with other
pepper maps. We constructed an SSR-based map which
involved several QTLs such as bacterial wilt (Ralstonia
solanacearum) resistance and growth traits in a previous
study (Mimura et al. 2009b, 2010). However, our earlier
map also described several chromosomes as segmented
short linkage groups.

In this study, we describe an SSR-based genetic map of
cultivated C. annuum with the 12 pepper chromosomes by
adding lots of reproducible markers in common with the
maps of Minamiyama et al. (2006), Wu et al. (2009) and Yi
et al. (2006). Moreover, we detected several QTLs related to
economically important fruit traits. Therefore, the map de-
veloped through this study is useful for MAS and QTL in
commercially important cultivated C. annuum.

Materials and Methods

Plant materials

Malaysian accession ‘LS2341 (JP187992)’ bearing small
elongated, oval fruit and resistant to bacterial wilt (Mimura
et al. 2009a) was used as the pollen donor. This accession
was obtained from the National Institute of Agrobiological
Sciences (NIAS) Genebank in Tsukuba, Japan. A sweet pep-
per cultivar, ‘California Wonder (CW)’ was employed as a
seed parent. A segregating doubled haploid (DH) population
(n=94) was bred by anther culture of an F; individual
(Mimura et al. 2009b).

Marker analysis and map construction

AFLP and SSR polymorphisms were scored according to
a method described by Minamiyama et al. (2006). The SSR
primer pairs used in this study were developed from geno-
mic libraries and/or registered sequences at the databases
(Huang et al. 2001, Lee et al. 2004, Mimura et al. 2010,
Minamiyama et al. 2006, 2007, Nagy et al. 2007, Yi et al.
2000).

In order to converge the expected 12 linkage groups and
to assign a few, yet unknown linkage groups, we also tried to
use Conserved Ortholog Set II (COSII) markers (Wu et al.
2009). COSII markers are PCR-based markers developed
from a set of single-copy conserved orthologous genes. In
pepper, map positions of COSII markers have already been
shown (Wu et al. 2009). Since most of the markers had no
polymorphism between the parental lines, the PCR products
were sequenced and we detected SNPs for designing as orig-
inal CAPS or dCAPS markers. Mapping was performed us-
ing JoinMap 3.0 software with a population type code, DH1
(Van Ooijen and Voorrips 2001). Markers were grouped at

an LOD score of 4.0, where map distances were calculated
using the Kosambi function (Kosambi 1944).

Fruit trait QTLs

The parents and the 94 F;DH lines were grown in a heat-
ed green house in Kyoto Prefectural Agriculture, Forestry
and Fisheries Technology Research Centre, Seika, Kyoto,
Japan, and the fruit traits were studied during two growth
seasons (May—Sep. 2007 and Jan.—May 2009).

The following traits were evaluated for each fruit:

(1) fruit length (FL)—the distance (in millimetres) from
the pedicel attachment to its apex; (2) fruit diameter (FD)—
measured at the maximum width (in millimetres); (3) fruit
shape (FS)—the ratio of fruit length to fruit diameter.

Average scores of 5 to 10 fruits for each line were treated
as trait data.

QTL mapping was performed using Map QTL 6.0 soft-
ware (Van Ooijen 2009) under the multiple QTL model,
which is equivalent to composite interval mapping.

Results and Discussion

Genetic map construction

The map in this study contains 151 SSR, 90 AFLP, 10
CAPS/dCAPS and 2 STS markers in 12 linkage groups, and
covers 1,336 cM (Fig. 1). As for COSII markers, we tried 84
markers, and obtained PCR products from two parents of
this study in 61 markers. Then, 12 of 61 markers were able
to be modified as CAPS/dCAPS or indel STS markers with
polymorphism (Table 1). Moreover, new 24 SSR markers
have been mapped in this study. Their unique primer se-
quences and other information are shown in Table 2. Fur-
thermore, previously reported 13 SSR markers were firstly
mapped in this study (Fig. 1).

Comparison with other maps

The total map length of the present map is somewhat
shorter than those of previous studies (Ben-Chaim et al.
2001, Livingstone et al. 1999, Wu et al. 2009, Yi et al.
2006). However, the map distance calculated by JoinMap is
always shorter than that by Mapmaker (Bradeen et al. 2001).
In addition, all the SSR markers, which had polymorphism
in the DH population derived from F, between CW and
LS2341, were mapped in this study. Then, there was no
unlinked the SSR markers. This result suggests that the
present map covers the majority of the pepper genome. The
map of this study had 26, 12 and 36 common SSR and/or
STS markers with the maps of Minamiyama et al. (2006),
Wu et al. (2009) and Yi et al. (2006), respectively. The order
of the SSR and STS markers was in good agreement with the
maps of previous studies (Barchi ef al. 2007, Lee et al. 2004,
Minamiyama et al. 2006, Wu et al. 2009, Yi et al. 2006).
Only a discrepancy of the position in the linkage group
between our map (P1) and the Minamiyama et al. (2006)
map (LG7) was identified; the order of the SSR markers
CAMS460 and CAMS606 was the converse in the two
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Fig.1. A genetic linkage map of cultivated C. annuum genome. Nomenclature of linkage groups is referred to the consensus chromosome num-
bers (Wu ef al. 2009). Marker names and the map distances (cM) are indicated on the right and left of linkage groups, respectively. Markers
named AF__,CAeMS ,CAMS ,CM_,EPMS ,GPMS ,Hpms are SSR markers. COSII markers are represented by the name C2_At
(Table 1). Others are AFLP markers. Newly used 24 SSR markers (Table 2) are indicated with asterisks (*). Previously reported but firstly
mapped 13 SSR markers are indicated with daggers (7).
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Tablel. CAPS/dCAPS and STS markers modified and used in this study

Marker name?

Forward primer (5'-3")

Reverse primer (5'-3")

Restriction Chromo- Expected product size (bp)’

enzyme some CW LS
C2 Atd4gl7380 caaggatgggaacaatggacag gcaagttgaagaggtcaaactgcat TspS09 1 1 140 150
C2_At4gl8060 tcaagcagtttagtgcaactggttatg tgccttaacaatctctttctgaaaatc Mse 1 2 550, 300, 250, 100 550, 420, 250, 100
C2_Atlgl0580 agtaatgatggaagcaagtttttgac agaagacaaacctccatcaggtgagaa BsaB I 2 250 300, 200
C2_At4g37130 ttacagcaaactgtagcaagatttgag tgctgttttcattgattcaatgtactg Alul 2 1000 600, 210, 190
C2_At2g20860 aaatgaggagctggtggtcacat taggtatcgcttaactgatggtg Rsal 7 180 100, 80
C2 At2g42750 gggaaaatggtgagatggcaaagttag — caagtataatcctccacgtgteattg Afal 7 110, 50 160
C2_At3gl5380 ttgtttggeggctattggge agcattacgattcacagatttgatgg Msp I 7 380, 200 500
C2_At3gl5290 tctgctattttggcttctaatacaag acaatatgtgtcttctgatgtatctge Bsp12861 7 1500 680
C2 Atlgl4810 gcattagtggtgttggaccaca gacaggcaaggctatgtgacag Indel 8 150 140
C2 _Atlg70160 acatgtggaacgaagctctgaataa tggaggtaaagaaggacaattctcattc  Alu I 11 900, 200 600, 200
C2_At2g27450 gaatttctgtatctcatttggattc acccctaataaaaaagagtcac Taq 1 11 160 180
C2_At3g44600 tcctttataccgacttgaagctattg agattctatgtttcttgaaagcacage Indel 11 500 530

@ Restriction Sites were detected in PCR-amplified fragments from the population of this study and several primer pairs were newly designed.
However, the marker names are the same as the original COSII markers to facilitate comparison with other maps.
b CW =allele from California Wonder, LS = allele from LS2341.

Table2. Twenty four SSR markers newly used in this study

Chromo- Expected product size (bp)”

Marker name Forward primer (5'-3") Reverse primer (5'-3") Motif

some CW LS
CAMS0%4 tgtagctcacatcgtctceact gcattgcatttcacttgeat (ta)5(tg)13 4 190 188
CAMS228 gagggctaagcaaagcagaa tgcatgtttcccttagtttee (ta)5(tg)13 4 241 239
CAMS406 taaaaatcgcggaaagttge gtegttctatgeggceatttt (ga)8 4 184 182
CAeMS068  atcaaatctcaacacatggtggct gtttactgtatctccggecctgtca (cct)5ctt(cct)3 5 169 166
CAMSO071 aatgggatctgcatgagaca ttccctaaaagatggtgattce (ac)11 5 172 166
CAMSS823 tecteetecttetegtgtte aaagaagcagcaggtgaaga (ctt)5 5 226 228
CAeMS035  aggtctatcggaaacagectttct gtttgatcacatcccagtcgaatecta (tgt)5 6 183 181
CAeMS060  atcaagacaacaacatcatgggga gtttcgectatcaacaatggcaaataca  (ta)10 6 286 292
CAeMS138  acacacacaatttccctcactcac gtttctctcaaatecctecegttgtte (ag)5...(ag)5...(ga)3...(ag)3 6 250 244
CAMS396 gtcggeegtcattcactatt agcttgatgcacctggtctt (ag)12 6 240 244
CAeMS144  ataactttgattcctagttcggeg gtttgaaccccecaatcatcatatcetca  (gaa)s 7 222 219
CAMSO032 tgccacataggttggctttc caaagccaatgcacataatca (gt)13 7 233 245
CAMSO066 aaaaacatgcaccagtcctt caaccgcectgaattttetct (ac)11 7 157 153
CAMS493 tcgatgacgaaaaagtgtgaa agggcaaaagacccattctt (ag)6 8 225 223
CAeMSO015  atgccttggtggtggttaaatctg gtttagcggtatggactgegtacatctt  (caa)7 9 273 270
CAeMS(073  atgcttctaagaaaccccacaaca gtttctcataaaggggttggoattga (tat)7 9 234 230
CAMS212 ttccctttcccaacatggta acacccgaagatgggttaga (tg)10 9 154 150
CAMS368 gagtggataagcaaggacgttt tttgcttecctttttgctte (ag)23 9 206 180
CAeMS009  acgcaccaacgaatatctatctca gtttccgtccagatetacttttectge (ag)4...(ag)8 10 246 232
CAMS091 tgctaaacttggttcectatee cgaagatggattagcgggta (ta)6(tg)10 10 180 172
CAMSI179 catgtcatgaagttgataagacaatg  tgttccagtgaaaggcttctt (ac)13(at)9 10 228 224
CAMSS871 acaaagcatcggctgaaaat gcgaccaagtaccaacaggt (gaa)l4 10 - 150
CAMS452 gaagtctgggacctettttgg ttcattttgatcttcacgaacg (ga)ll 11 161 163
CAMS476 ttttccctttccagttgttca atgggtoaagtgtgaaaagaa (tc)5 11 156 164

@ CW = Allele from California Wonder, LS = Allele from LS2341.

maps, although the distance of the two markers was estimat-
ed to be less than 10 cM.

Conflict of linkage groups P1 and P8 in cultivated Capsicum

annuum

In the map of Yi ef al. (2006), linkage group 8 was miss-

ing and fused with linkage group 1. As a result, the linkage
group 1 represented two pepper chromosomes, P1 and P8.
Such a pseudolinkage may occur resulting from reciprocal
translocation of the two chromosomes between the parents
of the mapping population (C. annuum and C. chinense), as
proposed by Wu et al. (2009). These two chromosomes have
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Table3. QTLs detected for the fruit traits in this study

Trait Test Marker? Chromosome Position® LOD R2¢ Additived Threshold¢
2007 C2_Atlgl0580 P2 63.7 3.0 6.7 6.6 3.0
2007 C2_At4g37130 P2 84.1 3.6 7.9 7.5 3.0

) 2007 CAAACTIS1 P3 58.0 14.5 51.2 -16.8 3.0

Fruit length
2009 C2_At4g37130 P2 82.1 3.6 8.1 6.6 2.9
2009 HpmsE045 P2 105.7 3.7 8.2 5.8 2.9
2009 CAAACTIS1 P3 58.0 14.4 52.2 -14.3 2.9
2007 GPMS178 P1 384 42 11.7 3.2 3.0
2007 CAAACTIS51 P3 58.0 9.6 379 5.0 3.0

Fruit diameter 2009 CAeMS010 P1 33.4 5.0 14.2 2.8 3.1
2009 CAAACTI151 P3 58.0 9.1 37.1 4.0 3.1
2009 CAMS451 P8 28.9 4.4 12.7 2.4 3.1
2009 CTCACC227 P10 29.3 3.6 10.4 2.3 3.1
2007 CAAACTI151 P3 58.0 23.1 68.2 -7.9 2.9

Fruit shape 2009 CAAACTIS1 P3 58.0 18.5 61.3 —-0.76 3.0
2009 CAMS493 P8 11.6 3.9 6.9 -0.27 3.0

@ The marker on or in the vicinity of the LOD score peak.

b Position of the LOD score peak in the linkage group in cM.
¢ Percentage of phenotypic variation explained.

4 Additive effect of QTLs of the ‘California Wonder” allele.

¢ The significance threshold for detecting QTL by 1,000 permutations at P < 0.05.

been split into the expected linkage groups in the present
map (Fig. 1, P1 and P8), though the linkage assignment was
exchanged between P1 and P8 previously (Mimura et al.
2009b). This was because our previous assignment was done
based on the integrated map by Paran ef al. (2004) through
the map by Yi ef al. (2006), where Paran ef al. (2004) made
the assignments of P1 and P8 in a direction opposite to those
of the more recent maps (Barchi et al. 2009, Wu ef al. 2009).
Here we concluded that the linkage group which was for-
merly expressed as P1 by Mimura et al. (2009b) was shifted
to P8 in this map and vice versa.

Phenotypic variations and QTLs of fruit traits

The ranges of FL, FD and FS values were 32—137 mm,
19-61 mm and 0.89-4.91, respectively. The narrow sense
heritabilities were higher than 94% in all traits.

A QTL for FL located on P3 had the largest effect in both
years, explaining 51% and 52% of the total phenotypic vari-
ation in 2007 and 2009, respectively (Table 3). The ‘CW’ al-
lele on P3 decreased the FL. Two additional QTLs were iden-
tified on P2. The QTL on P3 also brought about the largest
effect for FD and FS, explaining 37-38% and 61-68% of
total phenotypic variation, respectively (Table 3). Three ad-
ditional QTLs for FD and one for FS were also detected. The
major QTLs for the three traits were located on the same po-
sition of marker ‘CAAACT151” on P3. The position may
overlap with that of a QTL cluster of ‘f13.1°, ‘fd3.1° and
‘fs3.1° (Ben-Chaim et al. 2001), because the cluster locus
located at the 65 cM interval involves the ‘CAAACTI151”
locus between the markers ‘AF244121° and ‘HpmsE005’ on
our map, when we compare the two maps using the map by

Yi et al. (2006). Moreover, Ben-Chaim et al. (2001) and this
study used similar C. annuum parent pairs, Bell type pepper
and small elongated pepper from South-East Asia. Then, the
FS QTLs of P3 in both studies also explained similar propor-
tions of phenotypic variation, 63—67% and 61-68%, respec-
tively. While the other study reported the high ratio of
contribution in other chromosome (Ben-Chaim et al. 2003).
However, the correspondence is unclear because of no PCR-
based anchor marker in the vicinity of the QTL cluster.

Utility of the map in this study

Linkage groups P1 and P8 in cultivated C. annuum have
important QTLs such as fruit related traits (Ben-Chaim et al.
2001), growth traits (Barchi ef al. 2009, Ben-Chaim et al.
2001, Mimura et al. 2010) and several disease resistances
(Mimura ef al. 2009b, Ogundiwin et al. 2005, Sugita et al.
2006). The map in this study firstly revealed 12 linkage
groups representing the 12 chromosomes in cultivated
C. annuum with a lot of PCR-based anchor markers. Espe-
cially in P1 and P8, map length was comparable to those of
previous studies (Wu ef al. 2009, Yi et al. 2006). In addition,
this map enables us to estimate a lot of CAMS (SSR) markers
(Minamiyama ef al. 2006) in other major maps. Moreover,
the map has newly developed SSR and CAPS markers, and
contains culturally important QTLs which affect fruits,
growth and bacterial wilt resistance traits (Mimura et al.
2009b, 2010). In practice, breeding programmes involve lots
of crossing between two cultivated C. annuum. Therefore,
the map developed through this study is useful for MAS in
breeding.
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