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Abstract
The emerging discipline of systems pharmacology aims to combine analysis and computational
modeling of cellular regulatory networks with quantitative pharmacology approaches to drive the
drug discovery processes, predict rare adverse events, and catalyze the practice of personalized
precision medicine. Here, we introduce the concept of enhanced pharmacodynamic (ePD) models,
which synergistically combine the desirable features of systems biology and current PD models
within the framework of ordinary or partial differential equations. ePD models that analyze
regulatory networks involved in drug action can account for a drug’s multiple targets and for the
effects of genomic, epigenomic, and posttranslational changes on the drug efficacy. This new
knowledge can drive drug discovery and shape precision medicine.

Over the last decade, it has become clear that the responses of individuals to drugs can vary.
Often, divergent responses can be attributed in part to differences in the genomic makeup of
the individual patient. Variations in genomic characteristics, such as polymorphisms in drug
metabolizing enzymes and drug targets, have led to the understanding that drug dosage
needs to be matched to the genomic makeup of the individual patient. This has been best
shown in anticoagulation therapy with warfarin, for which single-nucleotide polymorphism
(SNP) arrays (“chips”) that permit identification of the isoforms of cytochrome P450
involved in warfarin metabolism and of the drug’s target vitamin K epoxide reductase can
aid the clinician in determining the most beneficial dose for an individual patient (1). For
many other diseases and drugs the relationship is not so straight forward. The patient may
have multiple genomic and epigenomic characteristics that determine the efficacy of the
drug response. How can we incorporate this genomic information into predictive models of
drug action? Systems biology approaches could be the answer.
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Systems biology provides a broad perspective of cellular- and tissue-level events that
requires the application of quantitative tools and computational models (2) to develop and
study the functional capabilities of molecular networks (3, 4). Systems biologists use many
data-mining and statistical tools to identify trends in large genomic data sets (5). Such trends
enable network analyses to map the topology of biological systems (6) and to construct
dynamic ordinary differential equation (ODE) models that represent biochemical reaction
mechanisms from ligand-receptor binding to cell outputs (2, 7). These are plausible
consensus models that form one class within multiple classes of models (table S1).

Pharmacokinetic (PK) and pharmacodynamic (PD) researchers take a different approach to
building integrated PK/PD models of drug action in biological systems (8–10). With their
focus on drug disposition and dynamics, these models place greater reliance on obtaining
experimental data on drug concentrations and associated biological responses collected over
time and at various drug doses in specific systems of interest. In contrast to systems biology
ODE models, PK/PD models are often “hardwired” to the data (unless they are being used
as simulation tools). This enables the implementation of model-fitting algorithms (weighted
least squares, maximum likelihood, and Bayesian) that contain weighting and statistical
functions that help select the best-fit model.

BIRTH OF AN INTEGRATED DISCIPLINE
Systems pharmacology is an emerging integrated discipline (11–18) that combines many
features of systems biology and pharmacology. Such integration is feasible in many facets of
pharmacology, including pharmacodynamics. Although systems modelers and PK/PD
modelers have distinct goals and contrasting approaches to model development, there are
also convergences that are catalyzing the development of systems pharmacology. Both
groups of scientists use ODE-based models of biological systems. Cell signaling networks, a
focus of systems modelers, are highly pertinent to drug action and are the PD maps that
provide the basic architecture of networks that describe the mechanisms of action of drugs.

We propose that such maps of cellular regulatory networks could be cast as enhanced PD
(ePD) models, which would be related to traditional PK/PD models in that they are data-
driven and be similar to systems biology models in their mechanism-based representation of
cellular processes affected by drugs. ePD models would seek to specify a detailed topology
of the cellular networks in order to identify regulatory motifs, such as feed-forward and
feedback loops. A defining characteristic of ePD models is the ability to explicitly account
for how genomic, epigenomic, and posttranslational regulatory characteristics in individual
patients can alter the response to drugs. These ODE models would be developed from
measurements in cells or tissue systems of interest with the goal of using model-fitting
algorithms that result in identifiable models (that is, models with experimentally validated
parameters) (Table 1). The actual formulation of ePD models in terms of data collection and
model construction requires much further study.

The ePD modeling approach we propose draws on advances in physiologically-based (9, 19)
and genomics-based (20) PK and PD models that provide a fuller understanding of drug
action within the broader cellular and physiological context of the whole system. ePD
models build on this approach. In ePD models, networks wherein regulatory motifs, such as
feedback and feed-forward loops, are clearly identified form the base to explicitly represent
the effects of genomic and epigenomic alterations on drug action. This type of
representation will allow us to determine how genomic and epigenomic effects are
manifested at the tissue/organ and organ-systems levels. As vital components of systems
pharmacology, ePD models emphasize the importance of examining drug effects on a
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multiscale network, from biochemical cellular events to organ pathophysiology, for
treatment of an individual patient.

Standard PD models often rely on a single end point (that is, a biomarker) as a measure of
drug activity. This practice is a disadvantage, because drugs often have multiple targets that
are parts of networks that comprise multiple components that determine drug activity. ePD
models should provide a network view of drug action and consider both on- and off-targets
that likely will affect multiple interconnected pathways. Although some off-targets may be
considered minor, their importance may be revealed under different conditions, such as
when combined with other drugs that affect targets and pathways within the same regulatory
network. A central goal of an ePD model is to provide a comprehensive picture of drug
action—both therapeutic and adverse—on cell-, tissue-, and organ-level physiological
functions.

AN ePD MODEL
We have constructed an operational ePD model to illustrate its salient features. This model
tracks the effect of an epidermal growth factor receptor (EGFR) inhibitor (such as gefitinib)
on tumor growth and accounts for multiple genomic variations within the cellular regulatory
network that controls tumor response (Fig. 1). The simplified regulatory network in this
model is a linear pathway with a single additional coherent feed-forward motif from EGFR
to RAF. In this ePD model, the link to a PK model is simplified by using the extent of
fractional inhibition of an activated receptor as the input.

A number of simplified patient scenarios demonstrate how genomic and epigenomic
variations in individual cancer patients can be modeled within the dynamics of anti-EGFR
therapy to demonstrate the potential power of an ePD model. In this model, all hypothetical
patients have driver mutations that activate the EGFR or copy number variations that
increase amounts of EGFR, either of which results in increased proliferation and tumor
formation. All patients are being treated with an EGFR tyrosine kinase inhibitor such that
there is 80% inhibition of receptor activity. Details of the model and simulations can be
found in the Supplementary Materials, and the results of the simulations at the tissue/organ
level (that is, tumor size) are shown in Fig. 2.

These simulations show how the response to a drug in each patient can vary on the basis of
the number and type of genomic or epigenomic alterations. Consider a hypothetical standard
patient (SP) who has the driver EGFR alterations but no additional changes in the genome
and epigenome related to this tumorigenetic network. This patient would show decreased
tumor growth upon drug treatment [Fig. 2, black bar (SP)]. The profiles of activated RAS,
RAF, and MEK1/2 amounts and levels of the cell cycle activator cyclin D are shown in fig.
S1.

Now consider patient B (Fig. 2), who displays the following features: (i) hypermethylation
of RASAL1, which results in lowered amounts RasGAP (table S3) and (ii) a single-
nucleotide polymorphism (SNP) (such as rs55716409) in the RKIP/PEBP gene (21). The
RKIP/PEBP gene encodes the protein RKIP, an inhibitor of RAF1 (Fig. 1). We assume that
this SNP results in an RKIP protein with greatly lowered affinity for protein kinase C (PKC)
and that RKIP is not phosphorylated by PKC. Thus the increased signal from KRAS that
results from the reduced amount of RasGAP is effectively suppressed at the level of RAF by
the increased amounts of active RKIP, resulting in levels of active MEK1/2 that are similar
to what is seen in the standard patient. Therefore, in patient B, the SNP in RKIP/PEBP
effectively cancels out the epigenetic (DNA methylation) change in the RASAL1 gene and
results in the same partial-remission response to the drug as the SP [Fig. 2, black bar (B)].
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The profiles of activated RAS, RAF, and MEK1/2 amounts and cyclin D levels for patient B
are shown in fig. S2.

In contrast, patient A has (i) a hypermethylated RASAL1 gene, but (ii) no other changes in
RKIP/PEBP or alterations in the amount of microRNA-221 (miR-221), which is known to
modulate the cell cycle regulatory protein p27kip (22). In this patient, the decrease in
RasGAP protein levels leads to an uncompensated increase in RAS activity, which
eventually results in over-expression of the cell cycle activator cyclin D in response to
EGFR stimulation, even in the presence of the EGFR inhibitor. As a result, patient A has a
tumor variant that is resistant to drug therapy and proliferates even when treated with a drug
dose that blocks 80% of EGFR activity [Fig. 2, purple bar (A)]. The profiles of activated
RAS, RAF, and MEK1/2 amounts and cyclin D levels of patient A are shown in fig. S3. If
patient A accumulates additional deleterious changes, such as increased amounts of
miR-221, which lead to decreased amounts of p27kip, then such a patient (A′) would show
even greater increases in cyclin-dependent kinase 4/6 (CDK 4/6) activity (Fig. 1); this
change leads to increased tumor growth even when the patient is treated with the drug [Fig.
2, left-most bar, purple (A′)].

Now consider patient C, who is represented in Fig. 2 as a green bar. This patient has (i) a
normal RASAL1 gene, (ii) a SNP in the RKIP/PEBP gene that produces a hyperactive RKIP
because of its lack of responsiveness to PKC regulation, and (iii) decreased amounts of
miR-221. The increased amounts of active RKIP inhibit RAF activity, and the decreased
miR-221 amounts lead to an increase in p27kip; together, these changes yield greatly
decreased amounts of functional cyclin D and CDK4/6, which result in cancer cell
proliferation and tumor growth (Fig. 1). The profiles of activated RAS, RAF, and MEK1/2
amounts and cyclin D levels for patient C are shown in fig. S4. Patient C′, who has (i)
hypomethylated RAS-AL1 (which leads to increased amounts of RasGAP), (ii) a normal
RKIP/PEBP1 gene, and (iii) increased amounts of miR-221 (which leads to decreased
amounts of p27 kip), is also highly responsive to drug therapy [Fig. 2, green bar (C′)]. For
patient C′, the epigenetic changes in the RASAL1 gene compensate for increased miR-221
amounts and the subsequent decrease in the cell cycle inhibitor p27 kip.

These hypothetical cases clearly indicate how multiple genomic and epigenomic changes
can produce a wide range of responses to drug therapy. Even when patients have the same
initial oncogenic driver mutation, distinct genomic and epigenomic changes can profoundly
affect drug response. As shown in Fig. 2, operational ePD models, such as the one described
here, provide a mechanistic understanding of why such variability occurs and can handle a
range of genomic and epigenomic variations and predict drug response.

It is likely that the complexity of patient responses will be far more diverse than the simple
example depicted in Fig. 2, because many drugs have multiple targets and are used in
combination therapies. ePD models can make the problem of deciphering and predicting
patient responses in these complex cases explicitly tractable when such computational
models are developed in a data-driven manner and computational analyses become an
integral part of clinical decision-making. Although we are not there yet, current progess is
slow but steady.

At a conceptual level, the myriad genomic, epigenomic, translational, and posttranslational
changes that are possible appear to be very complicated. However, all alterations at the
various levels of biological regulation fall into only two types of changes in an ePD model.
Mutations, SNPs, and posttranslational modifications such as protein phosphorylation can
change biochemical reaction rates. Missense mutations and changes in DNA methylation,
histone modifications, microRNA expression, ubiquitination, and protein turnover all alter
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the concentrations of the reactants. With the appropriate data, a range of genomic,
epigenomic, and posttranslational changes can be readily represented with precision in ePD
models. Hence, the complexity of ePD models is operational rather than conceptual.

FROM ePD MODELS TO CLINICAL DECISIONS
Our examples depicted in Fig. 1 and Fig. 2 highlight the network-centric nature of ePD
models and the need to obtain target cell–dependent and drug-dependent measurements of
drug responses. How data from in vitro animal and human cell systems or target tissues in
animal models may be merged into reliable ePD models remains to be determined; however,
such a merging will require genomic, epigenomic, and functional protein measurements
collected under a range of drug exposures. The use of animal models provides a means by
which to obtain drug concentration measurements and thus the ability to build PK models
that are the logical input of ePD models. With appropriate genomic and epigenomic
constraints, model organisms could be a practical approach for building PK-ePD models
that, can not only can be used to probe drug efficacy in preclinical disease models, but
further provide a basis for predicting drug action in patients. The construction of ePD
models is not likely to be a linear path from data collection to final model but may use an
iterative process (Fig. 3) of hypothesis-generating ePD models and associated data
collection to fine-tune the model. There are multiple challenges in implementing the process
we propose in Fig. 3.

Unless patient cell and tissue samples are available in sufficient amounts and from diverse
times in the pathophysiological process, ePD and PK/ePD models will rely on preclinical
systems. Species-to-species extrapolations have been considered in the PK domain (23, 24)
but much less so in the PD domain (25). ePD models rooted in the genome of the species
being studied should be able to account for species differences by taking into account
isoform diversity and the resultant changes in macromolecular interactions and functions.
Physiologically-based PK-PD models are useful for pre-clinical-to-clinical scale-up (26).
However, explicit experimental interspecies scaling of PD models has only begun to be
addressed by researchers. For example, experimental challenges associated with obtaining
data for ePD models will include identification and characterization of the relationships
between genomic and epigenomic changes and alterations in corresponding cellular proteins
and their functional interactions in different species.

Integration of drug-target networks with target cells and tissue-specific regulatory networks
may streamline model development and lead to libraries of dynamic ePD models. However,
building such libraries of ePD models will depend on broad and easy access to the systems
biology and pharmacology datasets. As such, three types of databases will be needed: (i)
Databases that provide detailed descriptions of genomic and epigenomic changes associated
with clinical and pathophysiological characteristics for individual patients within a
sufficiently large cohort of patients. The glioblastoma data set within The Cancer Genome
Atlas (TCGA) provides us with a view of how such databases may be developed (27). (ii)
Databases that relate genomic and epigenomic changes to changes in protein concentrations.
For example, such a database would provide numbers that correlate changes in levels of
DNA methylation to changes in levels of messenger RNA transcripts and proteins. (iii)
Databases of kinetic constants and concentrations of cellular components—the Quantitative
Human Interactome. The latter two types of databases currently do not exist but need to be
developed.

The accuracy and benefits of clinical decision-making with the use of ePD models will need
to be demonstrated. We predict that multiple cycles of iteration will lead to progressively
more accurate clinical decisions regarding drug selections and designing of dosage regimens
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for optimal efficacy. A key issue that must be addressed is how ePD model implementation
and possible refinement for individual patients can be synchronized with the clinical
treatment timeline.

Further investigations are needed to extend ePD models across patient populations. Lemaire
and colleagues developed a bone molecular and cellular biological homeostasis model (28),
which has been modified to describe the central tendencies of metabolic and clinical
biomarkers in several patient populations (29). A natural progression would include patient-
specific genomic, epigenomic, and proteomic characteristics to understand intersubject
variability in drug response. This approach would contrast with traditional methods of
population-based PK-PD systems analyses that have complex structural models, which often
start with applying standard model-reduction strategies to arrive at a minimal number of
identifiable drug- and system-specific terms, followed by nonlinear mixed-effects modeling
to estimate mean parameters and the magnitude of inter- and intrasubject and residual
variability. Schmidt et al. (30) derived such a reduced model of bone remodeling that might
be extended to fitting population-level responses to therapy. This methodology assumes that
inter- and intrasubject variability and residual error are random effects attributed to model
parameter values and error variance functions. With our increasing knowledge, we can now
hypothesize that such variations may originate in the mixing and matching of genomic and
epigenomic changes that lead to different drug responses (Fig. 2). Identifying clinical
covariates continues to be a data-driven endeavor, requiring relatively large patient
populations with appropriately distributed demographics and an unbiased covariate model-
building technique. Such clinical covariates will now have to be matched with genomic and
epigenomic changes to develop population-level models with variances in parameters.
Although not all parameters will be uniquely identifiable, PK-ePD models should provide a
platform for integrating sources of variability in exposure-response relationships, which in
turn should enable the prospective prediction of the probability of clinical outcomes for
specific genotypes and phenotypes and thus eliminate the practice of unguided clinical
decisions for pharmacotherapy.

One clear outcome from the development of the library of ePD models summarized in Fig. 2
is the conceptual transition from personalized to precision medicine. It can readily be seen in
Fig. 2 that, even though each of the 18 patients has a unique set of genomic and epigenomic
characteristics, their tumor-growth response to drug therapy can be binned into three
categories to facilitate implementation of drug therapy. Knowing which tranche a patient
falls in provides a precise basis for selecting the most appropriate drugs and treatment
regimen. Thus, ePD models can be viewed as a useful tool for precision medicine and used
for personalized chemotherapy.

BENEFITS OF INTEGRATION
The fields of systems biology and PK-PD thus far have evolved on different tracks yet have
significant interrelationships that can enhance drug discovery and enable optimized therapy
for each patient. Progress in comprehensive PK assessments of drug candidates in the early
phases of drug discovery has substantially reduced the number of PK failures later in the
drug-development process (31). Similarly, establishment of ePD models early in drug
development could aid in the selection of the most efficacious agents for the appropriate
subpopulations of varying genomic and epigenomic signatures. This should reduce failures
during phase II and phase III clinical trials and so aid in reducing the cost of drug
development. The quantitative nature of ePD models will allow systems biology and PK-PD
researchers to collaborate in the design of experimental protocols that advance large-scale
data collection (biochemical parameters and physiological outputs) and of mathematical
tools. Together, these endeavors should yield a predictive understanding of drug
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pharmacology and form the basis for integrating genomics and drug action for personalized
precision medicine.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Operational ePD model for EGFR inhibitor therapeutics
A simplified EGFR signaling network that contains a single coherent feed-forward loop. The
model is multiscale in that it includes cell- and tissue-level phenomena. Cell-level signaling
reactions feed into tissue-level reactions (in green box), resulting in tissue phenotype. The
ODE model incorporated biochemical reactions and linked them to cell proliferation and
tumor size. Simulations were run for different combinations of genomic and epigenomic
changes, highlighted in red and as specified in Fig. 2. See Supplementary Materials for
details.
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Fig. 2. Enhancing prediction of drug efficacy
ePD model prediction of drug efficacy based on genomic and epigenomic status of the
individual patient. Each bar represents tumor size calculated from simulations. Tumor size is
calculated after drug treatment for a patient with the indicated genomic or epigenomic
statuses. All patients are assumed to have the same oncogenic mutation in EGFR or increase
in EGFR gene copy number. Drug treatment is assumed to block receptor activity by 80%
for all patients. The other genomic and epigenomic changes for each patient are specified
under the bars. SP represents a standard patient with no changes other than an oncogenic
EGFR mutation. The relationship between drug responsiveness and genomic and
epigenomic statuses of patients A, A′, B, C, C′, and SP are described in the text. For details
on simulations see Supplementary Materials.
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Fig. 3.
Process diagram for building ePD models.
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Table 1

Features of ePD models

• Incorporate the mechanistic details of systems biology models and the identifiable characteristics of current PD models

• Link to PK models

• Contain representations of all pertinent regulatory networks and motifs, such as feedback loops and drug targets in the specific biological
system of interest

• Incorporate the effects of genomic, epigenomic, and posttranslational characteristics on model parameters

• Data-driven to minimize degrees of freedom of model parameters and obtain a locally identifiable model through model-fitting optimization
methods

• Serve as a platform for scale-up to explain response to drug therapy in individual patients with differing genomic and epigenomic
characteristics (personalized medicine)

• Enable binning of individual patient’s drug response into tranches to develop a limited set of appropriate treatment regimens (precision
medicine)
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