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Abstract

Background: Epidermal growth factor receptor (EGFR) is overexpressed in many solid tumor types, such as ovarian
carcinoma. Immunoliposome based drug targeting has shown promising results in drug delivery to the tumors. However,
the ratio of tumor-to-normal tissue concentrations should be increased to minimize the adverse effects of cytostatic drugs.

Methodology/Principal Findings: We studied the EGFR-targeted doxorubicin immunoliposomes using pre-targeting and
local intraperitoneal (i.p.) administration of the liposomes. This approach was used to increase drug delivery to tumors as
compared to direct intravenous (i.v.) administration of liposomes. EGFR antibodies were attached on the surface of PEG
coated liposomes using biotin-neutravidin binding. Receptor mediated cellular uptake and cytotoxic efficacy of EGFR-
targeted liposomes were investigated in human ovarian adenocarcinoma (SKOV-3 and SKOV3.ip1) cells. In vivo distribution
of the liposomes in mice was explored using direct and pre-targeting approaches and SPECT/CT imaging. Targeted
liposomes showed efficient and specific receptor-mediated binding to ovarian carcinoma cells in vitro, but the difference in
cytotoxicity between targeted and non-targeted liposomes remained small. The relatively low cytotoxic efficacy is probably
due to insufficient doxorubicin release from the liposomes rather than lack of target binding. Tumor uptake of targeted
liposomes in vivo was comparable to that of non-targeted liposomes after both direct and pre-targeting administration. For
both EGFR-targeted and non-targeted liposomes, the i.p. administration increased liposome accumulation to the tumors
compared to i.v. injections.

Conclusions/Significance: Intraperitoneal administration of liposomes may be a beneficial approach to treat the tumors in
the abdominal cavity. The i.p. pre-targeting method warrants further studies as a potential approach in cancer therapy.
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Introduction

In normal conditions, the epidermal growth factor receptor

(EGFR) is involved in cell growth, differentiation and repair.

Many solid tumor types, e.g., breast, colon, pancreatic, lung, and

ovarian cancers, overexpress EGFR, thereby leading to tumor

progression, invasion, and metastases [1,2]. Therefore, EGFR is

a potential target in cancer treatment.

Specific drug targeting to tumors is a challenging task. Liposomal

drug formulations have shown improved doxorubicin delivery to the

tumors [3]. Liposomes with polyethylene glycol (PEG) based steric

stabilization circulate over prolonged periods in blood stream and

slowly accumulate into tumors. Blood vessels in tumors have 100–

600 nm gaps between the endothelial cells, whereas the endothelia

in healthy blood vessels are continuous [4]. Passive accumulation of

long-circulating PEG coated liposomes (size 100–200 nm) is based

on enhanced permeation and retention (EPR) effect [5]. Active

targeting of liposomes to the cancer cells is based on liposome

functionalization with targeting moieties. Targeting can be accom-

plished with direct targeting or pre-targeting methods. In direct

targeting, the targeting antibodies are coupled to the liposomal

surface. The resulting immunoliposomes are administered as such.

Immunoliposomes show cellular targeting in vitro, but in vivo there are

still many drug delivery hurdles. These issues include liposome

stability in blood circulation, their sequestration from the blood

stream by reticulo-endothelial system (RES), immunogenicity,

penetration into the solid tumors, specific uptake to the tumor cells,

and drug release at the target site [6].
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Pre-targeting technology has been developed to minimize the

exposure of patients to radioactive compounds that are used in

cancer imaging and radioimmunotherapy [7–9]. The target-

specific antibody is injected first and, thereafter, radiolabeled small

molecule is administered. The radioligand should bind to the pre-

localized antibody in the target tissue, but the unbound

radioligand is eliminated rapidly renally [10]. Pre-targeting is

based on high affinity biotin-avidin coupling (Kd , 1015 M21)

[11,12] or bispecific antibodies [8]. Pre-targeting has been utilized

in targeting of polymeric nanoparticles [13,14] and liposomes

[15,16] to cancer cells in vitro.

Some cancers, including ovarian cancer, frequently spread to

the peritoneal cavity. Therefore, intraperitoneal (i.p.) administra-

tion might be beneficial in targeting both primary tumor and

peritoneal metastases. It was recently shown that PEGylated

liposomes accumulate in tumors and ascites after i.p. injection

[17,18]. Zavaleta et al. used avidin to aggregate biotin-liposomes in

the abdominal cavity to prolong drug retention in peritoneum and

associated lymph nodes where metastatic cancer cells may be

located [19].

In our study, we combined pre-targeting and local i.p.

application of liposomes to improve tumor targeting of doxoru-

bicin beyond the levels achievable with direct intravenous

targeting. We studied in vitro uptake and functionality of EGFR-

targeted liposomes in human ovarian adenocarcinoma (SKOV-3

and SKOV3.ip1) cells. Thereafter, in vivo distribution and tumor

accumulation of liposomes was studied in mice using both direct

and pre-targeting approaches. EGFR-binding antibody cetuximab

(ErbituxH) was linked to the liposomes via biotin-neutravidin

binding. Our results suggest that pre-targeting and i.p. adminis-

tration of liposomal drugs may be feasible drug delivery approach

in the treatment of ovarian tumors.

Results

Targeting of Liposomes in SKOV-3 and CV-1 Cells
Cetuximab-biotin-liposomes were taken up efficiently by

SKOV-3 cells. In the competition study, free cetuximab decreased

the uptake of the cetuximab-biotin-liposomes to the level of non-

targeted biotin-liposomes (Fig. 1A). In the presence of free

cetuximab the fluorescence levels decreased to 22–38 times lower

levels as compared to the situation without free cetuximab

competition (p,0.001). The same trend was seen in monkey

kidney fibroblast (CV-1) cells, even though the specific uptake in

these cells was lower, being 13–17 times higher than in the

presence of the antibody competition (p,0.005) (Fig. 1B). Based

on our results, the antibody density of 7.5 mg mAb/mmol

phospholipid (5 mAb molecules/liposome) was adequate to target

the liposomes to SKOV-3 cells (Fig. 1A). Further increase of mAb

concentration did not enhance the cellular uptake.

Cytotoxicity of Doxorubicin Liposomes in SKOV-3 and
CV-1 Cells
Cytotoxic activity of doxorubicin-cetuximab-biotin-liposomes

was compared to doxorubicin-biotin-liposomes and free doxoru-

bicin in SKOV-3 and CV-1 cells. After 2 h liposome exposure and

further incubation for 5 days, increased toxicity of doxorubicin-

cetuximab-biotin-liposomes (IC50 = 5.561.5 mM) was seen in

SKOV-3 cells compared to the doxorubicin-biotin-liposomes

(IC50 = 11.864.4 mM) (Fig. 2A). At doxorubicin concentration of

10 mM, the cytotoxic efficacy of doxorubicin-cetuximab-biotin-

liposomes was higher than the efficacy of non-targeted biotin-

liposomes (p,0.005). Both doxorubicin liposome types were less

toxic than free doxorubicin (IC50 = 0.960.2 mM). Further in-

cubation of the cells (for 7 days) did not affect toxicity of the

liposomal or free doxorubicin (data not shown). In CV-1 cells both

liposome formulations demonstrated only marginal toxicity after 5

days, whereas free doxorubicin showed higher cellular toxicity

(Fig. 2B). However, IC50 was .80 mM in all cases.

Distribution of Doxorubicin Liposomes in SKOV-3
Xenograft Bearing Mice
Distribution and tumor accumulation of doxorubicin-cetux-

imab-biotin-liposomes and doxorubicin-biotin-liposomes was in-

vestigated after the injection of the liposomes i.v. to the mice

bearing i.p. SKOV-3 tumors. The main organs and the tumors

were dissected 24 h post-injection and the concentration of

doxorubicin in the tissue samples was analyzed by liquid

chromatography-mass spectrometry (LC-MS). Drug levels in

spleen, liver, and kidneys were approximately two times higher

Figure 1. Cellular uptake of non-targeted and EGFR-targeted
fluorescein-labeled liposomes. The SKOV-3 (A) or CV-1 (B) cells
were either treated with or without competition with free cetuximab for
1 h at 4uC, washed and incubated with biotin-liposomes (0 mg
cetuximab/mmol PL) or cetuximab-biotin-liposomes (3.75; 7.5 or 15 mg
cetuximab/mmol PL) for 2 h at 37uC. After incubation, the cells were
washed, detached and analyzed by flow cytometry for liposome uptake.
The data indicates mean fluorescence 6 SD. p,0.005 (*), p,0.001 (**).
doi:10.1371/journal.pone.0041410.g001
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in doxorubicin-cetuximab-biotin-liposomes treated mice than in

the doxorubicin-biotin-liposome group (Fig. 3). On the contrary,

drug concentrations in the serum of doxorubicin-cetuximab-

biotin-liposome treated mice were about a half of the concentra-

tions in doxorubicin-biotin-liposome treated animals. Accumula-

tion of doxorubicin to the other organs, such as heart, lungs, and

brain, was minimal. Uptake in the tumor tissue was ,5% of the

injected dose (ID)/g tissue for both formulations.

Pre-targeting Approach: in vitro Targeting Efficacy
The pre-targeting method was tested in vitro in SKOV-3 and

SKOV3.ip1 cells. The cells were first incubated with neutravi-

din-cetuximab for 4 h, washed, and then incubated with biotin-

liposomes for 2 h. Results in Fig. 4A–B show biphasic cell

uptake profiles of liposomes in both cell lines after pre-targeting.

The higher peak of the profile is under the uptake curve of

non-targeted liposomes and the lower peak is under the uptake

curve of directly targeted liposomes. However, the mean

fluorescence of the liposomes bound to the cells is at the same

level after pre-targeting and direct targeting (Fig. S1). The

broad distribution of the fluorescence values after pre-targeting

is not taken into account in the mean values and, therefore,

such values may be misleading. Shorter incubation time with

neutravidin-cetuximab (30 min, 1 or 2 h), lowered the level of

association of the pre-targeted liposomes with the cells (data not

shown). Whereas longer incubation time of 4 h of pre-targeted

biotin-liposomes resulted in higher levels of active targeting to

the cells (Fig. 4C).

SPECT/CT Imaging and in vivo Distribution of Pre-
targeted Liposomes
Pre-targeting approach in liposomal drug delivery was studied

using mice bearing i.p. SKOV3.ip1 tumors. The mice received

first i.p. injections of neutravidin-cetuximab or phosphate buffered

saline (PBS, control). Then, 24 h later, 99mTc-labeled biotin-

liposomes were given i.v. or i.p. Single photon emission computed

tomography/computer tomography (SPECT/CT) images re-

vealed that 4 h post-injection most i.v. administered liposomes

were in blood circulation, spleen and liver (Fig. 5A). At 4 h after

i.p. injection, the liposomes had been cleared from the abdominal

cavity to blood circulation and part of the liposomes distributed to

the spleen and tumor (Fig. 5B). At 24 h post-injection (i.v. and i.p.)

the liposomes localized in spleen, liver and tumor (Fig. 5C–D).

Post-mortem evaluation of distribution in the dissected organs

after 24 h from liposome injections shows that the highest activity

was in spleen after both administration ways (Fig. 6A–B). Activity

was found also in the liver, tumor, blood, kidneys, and intestine,

but less in the lungs and heart. The two routes of administration

(i.v. and i.p.), resulted mostly in similar distribution, even though

the i.p. injection resulted in higher average liposome concentration

in blood and tumors than i.v. injection. The differences in tumor

were 2.6 fold for pre-targeted systems (p=0.083) and 1.6 fold for

non-targeted liposomes (p=0.053). Pre-targeted, i.p. injected

liposomes resulted also in higher tumor-to-blood ratio (2.261.7)

compared to pre-targeted, i.v. injected liposomes (1.360.5).

Discussion

In this study, we evaluated the targeting efficiency of anti-

EGFR-liposomes to ovarian carcinoma. Biotin-neutravidin tech-

nology in antibody coupling was used because it is suitable for

Figure 2. Cytotoxicity of EGFR-targeted and non-targeted
doxorubicin-liposomes and free doxorubicin. SKOV-3 (A) and
CV-1 (B) cells were exposed to liposomal and free doxorubicin (DXR)
(0.3–80 mM) for 2 h. After exposure to the drug, the cells were washed
and incubated in growth medium for 5 days. Cell growth was assayed
using Alamar BlueH. The data are presented as mean 6 SD.
doi:10.1371/journal.pone.0041410.g002

Figure 3. Biodistribution of EGFR-targeted and non-targeted
doxorubicin-liposomes in mice bearing i.p. SKOV-3 xenografts.
Either targeted liposomal DXR or non-targeted liposomal DXR was
injected i.v. at a dose of 2 mg/kg. DXR content was assayed in the
indicated tissues at 24 h post-treatment (n= 3). Data are expressed as
mean of % of injected dose (ID)/g tissue, 6 SD.
doi:10.1371/journal.pone.0041410.g003
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both direct and pre-targeting approaches. Since ovarian tumors

often spread to the peritoneal cavity, i.p. route of liposome

administration was compared i.v. delivery.

First, we studied direct targeting of immunoliposomes with

cetuximab coupled to the PEGylated liposomes via biotin-

neutravidin link. According to the literature [20,21], SKOV-3

cells have high EGFR-expression level that makes it a suitable cell

model for studies of EGFR-targeted liposomes. We demonstrated

high and specific binding of the cetuximab-biotin-liposomes to

SKOV-3 cells in a cellular competition study. Some EGF-receptor

specific binding could be seen also in non-malignant control cells

(CV-1). To minimize the immunological effects, the lowest

required number of antibodies per liposome was evaluated. This

approach should minimize antibody mediated clearance of

liposomes from the blood circulation [22]. Based on our results,

five antibody molecules/liposome was sufficient to achieve efficient

targeting to SKOV-3 cells. This antibody density was used in

further experiments.

Cetuximab-biotin-liposomes were more toxic to SKOV-3 cells

than non-targeted biotin-liposomes at DXR concentration of

10 mM. Even though the difference was statistically significant, it

was modest. However, Figure 1A shows 22–38 times higher

binding of the targeted liposomes over the non-targeted ones on

the SKOV-3 cells. Based on these results the relatively small

difference in cytotoxicities of targeted and non-targeted liposomes

may be due to insufficient doxorubicin release from the liposomes

rather differences in the cellular access. Poor release of doxoru-

bicin from the liposomes may also explain higher cell killing

activity of free drug compared to targeted liposomes. Drug release

from liposomes may be triggered using pH sensitive [23,24] or

thermosensitive liposomal formulations [25,26]. For example,

Kirchmeier et al. showed 12 to 35 times higher nuclear

Figure 4. Flow cytometric analysis of cellular affinity. Directly targeted (black), pre-targeted (red) and non-targeted (blue) fluorescein-labeled
liposomes were incubated with SKOV-3 (A) and SKOV3.ip1 (B–C) cells. In the pre-targeting group, the cells were incubated with neutravidin-
cetuximab for 4 h, washed and incubated with biotin-liposomes for 2 h (A–B) or 4 h (C). In the other groups, the cells were incubated with the
liposomes for 2 h (A–B) or 4 h (C). The green line is representing the background fluorescence of untreated cells.
doi:10.1371/journal.pone.0041410.g004
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accumulation of doxorubicin after exposing the Namalwa cells to

targeted pH-sensitive liposomes (dioleylphosphatidylethanolamine

(DOPE)/cholesteryl hemisuccinate (CHEMS)/DSPE-PEG2000 or

DOPE/DSPE-PEG2000) instead of targeted HSPC/Chol/DSPE-

PEG2000 liposomes [27]. It should be noted, that our results do not

reflect cetuximab effects as such, since the IC50 of cetuximab alone

is 1700 mM in the SKOV-3 cells [28], a concentration of four

orders of magnitude higher than the highest cetuximab concen-

tration used in our in vitro toxicity study.

Distribution study in vivo indicated more rapid clearance of

directly targeted doxorubicin-cetuximab-biotin-liposomes com-

pared to non-targeted liposomes even if the amount of antibodies

was decreased to five molecules/liposome. Apparently, minimizing

the antibody density on the liposomal surface does not avoid the

immunological defense surveillance. Even though the targeted

liposomes were more efficiently removed by the RES, their tumor

accumulation was comparable to the non-targeted liposomes. By

using smaller fractions of antibodies, Fab-fragments or single chain

Fv-antibody fragments (scFv), the blood clearance may be

decreased to the levels of PEGylated liposomes [5]. In addition

to the form of the conjugated antibody, also the linking system

(biotin-neutravidin-biotin) probably contributes to the clearance of

the targeted liposomes.

Instead of using smaller antibody fragments to prepare

immunoliposomes we chose another approach. We utilized pre-

targeting technology based on the hypothesis that compared to

direct injection of immunoliposomes the separate injections of

antibodies and liposomes would result in prolonged half-life and

diminished RES mediated removal. Potentiated immunogenicity

has been shown when cetuximab was coupled to the PEGylated

liposomes, whereas separate injections of PEGylated liposomes

and cetuximab or even co-injection of uncoupled liposomes and

cetuximab did not cause immunological reactions [22]. In pre-

targeting, the tumor-homing antibody is administered and allowed

to accumulate into the tumor. Thereafter, drug-loaded liposomes

are administered. In our case, the antibody was linked to

neutravidin, which is chemically deglycosylated avidin with

reduced non-specific binding to cells and increased circulation

time compared to avidin. Yet, neutravidin and avidin have equal

biotin binding affinities. Optimally, tumor attached neutravidin-

Figure 5. SPECT-CT imaging. SPECT-CT images of pre-targeted and non-targeted 99mTc-liposomes 4 h (A–B) and 24 h (C–D) after injection of
liposomes, administrated either i.v. (A, C ) or i.p. (B, D). Neutravidin-cetuximab was injected to pre-targeted groups and PBS to non-targeted groups
i.p. 24 h before liposome injections. Tumors are marked with white circles on the figures. Minimum and maximum values of intensity were adjusted
to the same scale for 4 h images and for 24 h images, respectively.
doi:10.1371/journal.pone.0041410.g005
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cetuximab binds to biotinylated liposomes and the complex then

enters to the target cell. In addition to possibly reduced

immunological reactions, this method may enable simultaneous

targeting to different antigens with the same biotinylated

liposomes.

Both ovarian carcinoma cell lines, SKOV-3 and SKOV3.ip1,

showed biphasic binding of the pre-targeted liposomes indicating

that pre-targeting results in liposome binding both in EGFR-

specific and non-specific manner. Thus, it is possible that some

neutravidin-cetuximab was already internalized to the cells before

its binding with biotin-liposomes. Using slowly internalizing anti-

HER2 mAbs, pre-targeting of poly-(lactic acid) PLA nanoparticles

was shown to be as efficient as direct targeting in SKOV-3 cells

[13]. In our study, shorter incubation time with neutravidin-

cetuximab (30 min, 1 or 2 h), unlike expected, did not increase the

level of association of the liposomes to the cells. Hence, it seems

that biotin-liposomes would benefit from the longer incubation

time (2 h vs. 4 h) thus giving more time for binding of liposomal

biotin with neutravidin on cetuximab. Biotin is a small molecule

(244 g/mol), which could be partly covered by PEG shield of the

liposome surface. Interference of the PEG coating was also noticed

with folic acid (FA) target binding, especially when FA was linked

to the PEG arm having the same length as the PEG coating on the

liposome surface [29]. That could be due to the low molecular

weight of FA (441 g/mol) but also to its potential to form

hydrogen bonds with PEG. Recently, peptide ligand was shown to

interfere with PEG chains on the liposomal surface, thereby

reducing the targeting functionality [30].

For the in vivo pre-targeting experiments, we chose the

SKOV3.ip1 cell line that grows more aggressively and homo-

genously tumors compared to SKOV-3 cells [31]. As a first step,

NA-cetuximab or phosphate buffered saline (PBS, control) was

injected into the peritoneal cavity of the mice. Previously, no

difference of cetuximab distribution was seen after i.p. and i.v.

injections [32]. As a second step, 99mTc-labeled biotin-liposomes

were given either i.v. or i.p. 24 h later, sufficient time for

cetuximab accumulation to SKOV-3 tumors [33].

SPECT-CT analyses showed presence of i.v. delivered lipo-

somes in blood circulation, spleen, and liver at 4 h post-injection

(Fig. 5A). At 4 h the i.p. liposomes had been eliminated from the

abdominal cavity to blood circulation and started to accumulate in

the spleen and the tumor (Fig. 5B). This is consistent with the study

of Zavaleta et al. who used i.p. injected biotin-liposomes and saw

liposomal accumulation in the tumor at 4 h after i.p. delivery [19].

In fact, liposomal delivery to the tumors may be faster after i.p.

than i.v. administration, because the tumor is in the peritoneal

cavity. Compared to i.v. liposomes, Lin et al. found more rapid

tumor accumulation of i.p. administered and 111In labeled

liposomes [18]. Like in our study, the tumor levels of i.p. injected

liposomes remained high at 24 h post-injection. Prolonged blood

circulation of liposomes after i.p. administration may result from

the slow liposome absorption from the peritoneal cavity [34]. At

24 h post-injection, most pre-targeted liposomes were found in

spleen. High splenic uptake is often related to large liposome size

(e.g. due to aggregation), but in this study no aggregation was seen

and both non-targeted and targeted liposome showed splenic

deposition.

Accumulation of liposomes in the tumor was higher after i.p.

injection than after i.v. injection at 24 h time point for both pre-

targeted (2.6-fold higher) and non-targeted (1.6-fold higher)

liposomes. Pre-targeted, i.p. injected liposomes resulted also in

higher tumor-to-blood ratio (2.261.7) than i.v. injected liposomes

(1.360.5). These results suggest that pre-targeting and i.p.

administration of liposomal drugs could be applicable in drug

delivery to ovarian tumors. Unfortunately, the small animal groups

in each study (n=3–4), does not enable statistical evaluation of the

results.

Pre-targeting approach did not increase the tracer levels in the

tumor tissue significantly in vivo over non-targeted liposomes even

though cell specific targeting was observed in vitro. Based on earlier

studies [35,36], accumulation of liposomes in the tumor does not

necessarily reflect its therapeutic potential. Mamot et al. showed

that even if the anti-EGFR immunoliposomes did not increase

tumor accumulation over non-targeted liposomes, the immunoli-

posomes showed improved internalization into the target cells and

enhanced the therapeutic efficacy [35]. Similar conclusion was

also presented by Kirpotin et al., who found that anti-HER2

immunoliposomes did not increase uptake in the tumor tissue

compared to non-targeted liposomes, but the intracellular uptake

in cancer cells was enhanced up to 6-fold due to targeting [36]. In

the light of these previous studies enhanced therapeutic efficacy

might be achieved also with our pre-targeted liposomes even if the

tumoral accumulation was not improved compared to the non-

Figure 6. Biodistribution of pre-targeted and non-targeted
liposomes in mice bearing i.p. SKOV3.ip1 xenografts. Either
neutravidin-cetuximab, at a dose of 20 mg of antibody, or PBS was
injected i.p. to the mice. 99mTc-labeled biotin-liposomes were injected
24 h later i.v. (A) or i.p. (B). Radioactivity of the indicated tissues was
determined 24 h from liposome injections. The results are expressed as
%ID/g tissue 6 SD for pre-targeted liposomes and for non-targeted
liposomes (n=3–4).
doi:10.1371/journal.pone.0041410.g006
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targeted liposomes. The rate-limiting step for tumor localization of

liposomes, targeted or not, is extravasation from tumor vasculature

that is required for specific cell internalization of liposomes.

For further development of our pre-targeting method, there are

some issues that need to be considered. Cellular internalization of

pre-targeted cetuximab can compromise specific tumor targeting

of the liposomes. The antibodies should remain accessible at the

target site to allow specific liposome binding. Too rapid cellular

internalization of the antibodies would hamper targeted liposomal

delivery. On the other hand, internalization of the therapeutic

liposomes is requirement of improved therapeutic efficacy [35,37].

Slowly internalizing antibodies are potentially useful technology in

this context. Pre-targeting approach requires optimized timing

between the injections of neutravidin-cetuximab and biotin-

liposomes. Half-life of cetuximab is 2.9 days in bloodstream in

mice [38], but the influence of neutravidin on the circulation time,

immunogenicity and tumor accumulation should be evaluated.

In summary, direct targeting of EGFR-targeted liposomes was

specific and efficient in ovarian cancer cells in vitro, but tumor

accumulation in vivo was comparable to that of non-targeted

liposomes. However, tumor accumulation of i.p. liposomes was

faster and reached higher levels than i.v. liposomes. It may be

beneficial to use i.p. delivery for treatment of abdominal tumors.

Both local and systemic drug delivery to the peritoneal tumors

might be achieved with i.p. pretargeting method. In this case,

rapid drug delivery to the tumors would be accomplished, followed

by systemic delivery from the bloodstream.

Materials and Methods

Biotinylation of Cetuximab
The glycine buffer of cetuximab (ErbituxH, Merck) was changed

to PBS (pH 7.4) with a centrifugal concentrator tube (Vivaspin 20,

10 K MWCO). Three ml of a 5 mg/ml solution of cetuximab in

PBS was mixed with 250 ml of a 10 mM solution of N-

hydroxysuccinimidobiotin (NHS-biotin, Pierce, Rockford, USA)

in dimethylsulfoxide. The reaction was left for 30 min at room

temperature. The biotinylated cetuximab was purified by centrif-

ugal concentrator (Vivaspin 20, 10 K MWCO) to remove the free

biotin molecules and prepared in PBS at 5.0 mg/ml.

Avidin conjugated horseradish peroxidase (HRP) enzyme

immunoassay (EIA) was used to detect biotin on cetuximab

surface. Goat anti-human IgG HRP EIA was used to verify

usability and to determine an appropriate concentration of

cetuximab-biotin. Cetuximab and 10 mM NaHCO3 were used

as controls. Cetuximab-biotin and cetuximab were serially diluted

(20 mg/ml to 0.3125 mg/ml) in 10 mM NaHCO3 (pH 9.5), placed

in duplicates 100 ml/well into 96-well plate (Enhanced Binding

(EB) Combiplate, Thermo Labsystems Oy, Finland) and incubated

at room temperature overnight. The antibody-coated wells were

washed three times with PBST (0.05% Tween-20 in PBS) to

remove excess antibodies and were then blocked 100 ml/well with
1% bovine serum albumin (BSA; Rockland, Gilbertsville, USA) in

PBST. After 1 h incubation at room temperature the wells were

washed three times with PBST. Goat anti-human IgG HRP

conjugate or avidin-HRP conjugate (both diluted 1:10 000 in 1%

BSA in PBST) (Rockland, Gilbertsville, USA) 100 ml/well was
added and incubated for 30 min at room temperature. After three

washes with PBST, 100 ml/well of 5959, 3939tetramethylbenzidine

substrate solution was added and kept in the dark for 10 min. The

reaction was stopped by adding 50 ml of 2 M H2SO4. The optical

density was determined at 450 nm (OD450) using an ELISA reader

(Labsystems Multiscan RC, Thermo Labsystems Oy, Finland).

Liposome Preparation
Liposomes were composed of fully hydrogenated soy phospha-

tidyl choline (HSPC), cholesterol (Chol), distearoylphosphatidy-

lethanolamine-polyethylene glycol-2000 (DSPE-PEG2000) and

DSPE-PEG2000-biotin, 2:1:0.08:0.02 (mol:mol) with 0.2% of

fluorescein-phosphatidylethanolamine (Fluor-PE). All lipids were

from Avanti Polar Lipids (Alabaster, Alabama, USA). Chloroform

solutions of the lipids were mixed and chloroform was evaporated

with rotary evaporation. Formed thin lipid film was hydrated with

PBS (pH 7.4) in a 65uC water bath for 30 min following five cycles

of freezing and thawing. The liposomes were sized by repeated

extrusion (LIPEX Extruder, Northern Lipids Inc, Canada) at

65uC through a polycarbonate membrane with a pore size of

100 nm.

For encapsulation of doxorubicin, the remote-loading method

[39] was used. First, the lipid film was hydrated in 250 mM

ammonium sulfate (pH 5.5). After extrusion, the outer buffer of

the liposomes was changed to 100 mM acetate/70 mM NaCl,

pH 5.5 in a Sephadex G-50 column (Sigma-Aldrich). Doxorubicin

(DXR, Sigma-Aldrich) was encapsulated into the liposomes at

DXR:HSPC, 0.2:1 (w:w) during incubation at 65uC for 30 min.

Free DXR was removed in Sephadex G-50 column equilibrated

with 20 mM HEPES/150 mM NaCl (pH 7.4).

Neutravidin (Invitrogen) and biotinylated cetuximab were

coupled in 1:1 molar ratio at 40uC for 1 h. Formed complex

was integrated onto the biotinylated liposomes (biotin-liposomes)

of varying cetuximab:phospholipid (PL) ratios (7.5, 15 and 30 mg
of cetuximab/mmol PL) at 40uC for 1 h. The mixture was passed

through a Sepharose CL-4B column (Sigma-Aldrich) to remove

unbound cetuximab. As a result, cetuximab-biotin-liposomes were

formed.

Characterization of Liposomes
The particle size was measured by Zeta-Sizer (3000 HS,

Malvern Instruments Ltd, UK). Size of the liposomes varied from

100 nm to 130 nm. Phospholipid (PL) concentration was de-

termined by fluorimetry using fluor-PE as a probe (lex = 497 and

lem = 521 nm). The amount of DXR encapsulated inside the

liposomes was determined from its absorbance at 492 nm.

Encapsulation efficacy was always more than 90%. Cetuximab

coupling efficiency was evaluated using fluorimetry at wavelengths

of lex = 285 and lem= 335, being ,50%.

Cell Lines
SKOV-3, EGFR positive human ovarian adenocarcinoma

cell line was received from Ark Therapeutics, Kuopio, Finland

(originally from American Type Culture Collection (ATCC)).

Cells were cultured in McCoy’s 5A medium with Glutamax

(Gibco) supplemented with 10% fetal bovine serum (FBS,

Gibco) and with 1% penicillin/streptomycin (P/S, Gibco).

SKOV3.ip1, established by Yu et al. [31] was a kind gift from

Prof. A. Hemminki (Cancer Gene Therapy Group, Biomedi-

cum, Helsinki, Finland). SKOV3.ip1 cell line is a derivative of

SKOV-3 cell line showing more aggressive and homogenous

tumor growth pattern compared to parental cell line. The cells

were cultured in Dulbecco’s modified Eagle Medium (DMEM,

31885, Gibco), supplemented with 10% FBS and 1% P/S.

Monkey kidney fibroblast cell line, CV-1, was purchased from

ATCC and used as a control. CV-1 was cultured in DMEM

(31885) supplemented with 10% FBS and 1% P/S. All cell lines

were grown at 37uC, in 5% CO2 and sub-cultured twice a week.
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Cellular Uptake/Affinity Studies after Direct and Pre-
targeting
Receptor mediated cellular uptake was determined using flow

cytometry. One day before experiment, SKOV-3 and CV-1 cells

were seeded on 6-well plates, 26105 and 16105 cells/well,

respectively. In a competition study, the cells were incubated with

free cetuximab (8 mg/well) or with growth medium for 1 h at 4uC.
After incubation, the cells were washed with PBS and cetuximab-

biotin-liposomes and biotin-liposomes were added at a concentra-

tion of 0.1 mM of PL for 2 h, at 37uC. Cells were washed twice

with PBS, then with 1 M sodium chloride, again with PBS, and

detached from the wells with 0.25% trypsin/0.2 M EDTA. Then

the cells were fixed in 1% paraformaldehyde (PFA) solution for

10 min, centrifuged (6 000 rpm, 10 min) and washed once more

with PFA, centrifuged and suspended in 0.5 ml of PFA. Analysis

was carried out with fluorescence activated cell sorting (FACS)

(BD LSRII, BD Biosciences, USA) using specific wavelengths for

fluorescein (lex = 497 and lem= 521 nm).

Cellular affinity after pre-targeting was studied in SKOV-3 and

SKOV3.ip1 cells, seeded onto 6-well plates, both at the density of

26105cells/well. On the next day, the cells were pre-targeted with

cetuximab:neutravidin, 1:1 (mol/mol), at a dose of 8 mg of

cetuximab/well in biotin-free growth medium (DMEM 31885) for

30 min, 1, 2 or 4 h at +37uC. Growth medium was given as

a control. Next, the cells were washed with PBS and biotin-

liposomes were added and incubation was continued for 2 or 4 h

at +37uC under gentle shaking. After incubation the cells were

washed twice with PBS and prepared for FACS as described

previously.

Cytotoxicity Studies
The cytotoxic efficacy of DXR-loaded cetuximab-biotin-lipo-

somes, biotin-liposomes and free DXR was compared. SKOV-3

and CV-1 cells were seeded on 96-well plates at a density of 6 500

and 5 000 cells/well, respectively. On the next day, cetuximab-

biotin-liposomes, biotin-liposomes and free DXR were added to

the cells using DXR concentration series of 0, 0.3, 0.6, 1.25, 2.5, 5,

10, 20, 40 and 80 mM for 2 h at +37uC. Then, the cells were

washed twice with PBS and incubated in fresh growth medium.

Alamar BlueTM assay was done 5 and 7 days after the treatment.

The cells were stained with 10% Alamar BlueTM and fluorescence

was measured at wavelengths of lex = 530 and lem= 590 nm. The

percentage of viability was calculated by comparing treated cells

with untreated cells that represent 100% viability.

Biodistribution of DXR-loaded Immunoliposomes
This animal study was approved by Provincial Government of

Southern Finland (ESLH-2008-03724/Ym-23) and performed in

accordance with Good Laboratory Practices for Animal Research.

Eight BALB/ca female nude mice (Harlan, Netherlands) were

injected i.p. with 16106 SKOV-3 cells to establish an ovarian

cancer model. On day 17 after tumor cell injection, DXR-

containing cetuximab-biotin-liposomes and biotin-liposomes were

injected i.v. with a DXR dose of 2 mg/kg. The mice were

sacrificed 24 h after liposome administration by CO2 and cervical

dislocation. Blood samples were taken by cardiac puncture and

serum was separated. Tissue samples were collected and frozen in

liquid nitrogen. All samples were kept frozen (270uC) until DXR

extraction.

Extraction of DXR from Tissues for LC-MS Analysis
The procedure for extraction of DXR was modified from the

ones described by Jong et al. and Hsieh et al. [40,41]. The tissue

samples (,100 mg of each) were cut into small pieces, and 50 ml of
0.6 mM daunorubicin (DNR, Sigma-Aldrich), the internal stan-

dard (ISTD), was added to all samples. To extract DXR from the

tissues, 200 ml of 5% silver nitrate, 200 ml of 100 mM ammonium

formate and 400 ml of acetonitrile (ACN) (all from Sigma-Aldrich)

were added and mixture was vortexed. The samples were

homogenized with a probe sonicator (Branson Sonifier 450,

USA), centrifuged for 10 min at 32206g, at +4uC and the

supernatant was taken. The remaining pellet was treated once

again in aforementioned way. The supernatants of both treatments

were mixed and the solvent was evaporated in a concentration

evaporator (TurboVapH LV, Caliper LifeSciences, USA) with

a nitrogen stream. The dried sample was reconstituted with 80 ml
of 2.5% zinc sulfate (Riedel-de Häen) to precipitate the traces of

remaining blood. One ml of ethyl acetate (Fluka) was added into

the samples, vortexed, shaken vigorously for 10 min and

centrifuged for 10 min at 17 0006g. The organic phase was

separated and ethyl acetate treatment was repeated for the

inorganic phase. After centrifugation, the organic phase was

recovered and mixed with the previous one. The solvent was

evaporated in the concentration evaporator with a nitrogen stream

and the dried residue was reconstituted with 100 ml of 0.1% formic

acid/ACN, 9:1. The samples were kept frozen (220uC) until

analyzed by LC-MS.

LC-MS
Samples were analyzed by Waters Acquity UPLCH instrument

(Waters Corp., Millford, MA, USA) connected to Agilent 6410

triple-quadrupole mass spectrometer (Agilent Technologies, Santa

Clara, CA, USA) using electrospray ionization (ESI). Aqueous

0.01% formic acid and ACN were used as eluents at a flow rate of

0.4 ml/min. A linear gradient elution was carried out as follows:

10–60% ACN for 0–5 min, 60–95% ACN for 5–5.1 min, 95%

ACN for 5.1–7.1 min, 95–10% ACN for 7.1–7.2 min and 10%

ACN for 7.2–10 min. The Waters XBridge C18 column

(10062.1 mm, 3.5 mm) and a pre-column of the similar stationary

phase (1062.1 mm, 3.5 mm) were used. The injection volume was

10 ml. Nitrogen (Parker BalstonH N2-22 nitrogen generator,

Parker Hannifin Corporation, Haverhill, USA) was used as

a nebulizer (45 psi), curtain (10 l/min, 350uC), and collision gas.

The ESI needle (4000 V) and fragmentor (90 V) voltages as well as

the collision energy (CE) were optimized for DXR and ISTD. MS

detection with ESI in the positive ion mode was carried out using

selected reaction monitoring (SRM) with the following reactions:

DXR (m/z 544.3R397.1 (CE 7V), 321.1 (CE 40V)) and ISTD (m/

z 528.3R363.1 (CE 10V), 321.1 (CE 25V). Agilent Mass Hunter

software version B.01.03 was used for data acquisition and

processing.

Labeling of Liposomes with 99mTechnetium
Biotinylated liposomes for 99mTc-labeling were prepared as

described earlier, except 200 mM glutathione (GSH, Sigma-

Aldrich) in PBS (pH 7.4) was used for hydration of the

liposomes. After extrusion, the liposomes were passed through

PD-10 column (Sigma-Aldrich) equilibrated with PBS. 99mTc-

HMPAO method for radiolabeling of GSH-liposomes was

modified from the procedure described by Goins et al. [42].

Briefly, 1 ml of 99mTc-pertechnetate (1.5 GBq) was added to

a HMPAO-kit (CeretecH, GE Healthcare, USA) and mixed

thoroughly. After 5 min, 1 ml of 99mTc-HMPAO and 1 ml of

GSH-containing liposomes (15 mmol PL) were mixed and

incubated for 20 min at room temperature. Radiochemical

purity of 99mTc-HMPAO was determined with Sep-Pak-column

(Waters, USA) according to the instructions of the manufactur-
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er. The purity was always more than 90%. 99mTc-liposomes

were purified by passage over a PD-10 column eluted with PBS.

Liposome fractions (0.5 ml) were collected and the fractions

containing radioactivity of more than 100 MBq were pooled

together and used for injections. Radioactivity was measured

with dose calibrator (CRC-25R, Capintec INC, USA).

Biodistribution of 99mTechnetium-labeled Liposomes
This animal study was approved by the Finnish National

Animal Experiment Board (ESAVI-2010-05807/Ym-23) and

performed in accordance with Good Laboratory Practices for

Animal Research. Five-week old female C.B-17 SCID mice were

purchased from Harlan (Netherlands) and quarantined for two

weeks. Intraperitoneal model of ovarian cancer was established by

injecting 56105 SKOV3.ip1 cells i.p. Two days before the

experiment the mice were started to feed with biotin-deficient diet

(Harlan) to minimize the effect of endogenous biotin on pre-

targeting with biotin-avidin [43]. After 23 days from cell injections,

the mice were divided into four groups, A, B, C and D (n= 4). The

mice in groups A and C were injected i.p. with 200 ml of

cetuximab-neutravidin (1:1) in PBS at a dose of 20 mg cetuximab

per mouse. The mice in groups B and D received i.p. injections of

PBS. After 24 h, all mice received 40–80 MBq/200 ml of

biot-99mTc-liposomes containing 1 mmol of phospholipid. Groups

A and B were injected i.v. and groups C and D i.p., respectively.

SPECT-CT imaging was performed with a four-headed small

animal scanner, NanoSPECT/CT (Bioscan Inc., USA), outfitted

with 1.0 mm multipinhole apertures. Mice were anesthetized with

isoflurane and SPECT images were acquired 4 h and 24 h post-

injection in 20 projections using time per projection of 120 s and

180 s, respectively. CT imaging was carried out with 45 kVp tube

voltage in 180 projections. SPECT images were reconstructed

with HiSPECT NG software (Scivis GmbH, Germany) and fused

with CT datasets by using InVivoScope software (Bioscan Inc.,

USA).

After the 24 h time-point of liposome injections, the mice were

sacrificed by cervical dislocation, blood was collected by heart

puncture and tissue samples were collected in tarred tubes. Major

organs and tissues were weighted and their radioactivities

measured with a gamma counter (RiaCalc. WIZ, Wallac 1480

WIZARDH 30, Finland).

Statistical Analysis
The independent samples t-test was used for comparisons (SPSS

15.0, SPSS Inc., USA). Values of p,0.05 were considered as

statistically significant.

Supporting Information

Figure S1 Flow cytometric analysis of cellular affinity
shown as mean fluorescence values. The liposomes were

incubated with SKOV-3 (A) and SKOV3.ip1 (B–C) cells. In the

pre-targeting group, the cells were incubated with neutravidin-

cetuximab for 4 h, washed and incubated with biotin-liposomes

for 2 h (A–B) or 4 h (C). In the other groups, the cells were

incubated with the liposomes for 2 h (A–B) or 4 h (C).

(TIF)
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