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Abstract

Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While
a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate
the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar12/2),
we demonstrate a remarkable protection against invasive Ca infections. We discover a mechanism whereby IFN-I signaling
controls the recruitment of inflammatory myeloid cells, including Ly6Chi monocytes and neutrophils, to infected kidneys by
driving expression of the chemokines CCL2 and KC. Within kidneys, monocytes differentiate into inflammatory DCs but fail
to functionally mature in Ifnar12/2 mice, as demonstrated by the impaired upregulation of the key activation markers
PDCA1 and iNOS. The increased activity of inflammatory monocytes and neutrophils results in hyper-inflammation and
lethal kidney pathology. Pharmacological diminution of monocytes and neutrophils by treating mice with pioglitazone, a
synthetic agonist of the nuclear receptor peroxisome proliferator-activated receptor-c (PPAR-c), strongly reduces renal
immunopathology during Ca infection and improves mouse survival. Taken together, our data connect for the first time the
sepsis-promoting functions of IFNs-I to the CCL2-mediated recruitment and the activation of inflammatory monocytes/DCs
with high host-destructing potency. Moreover, our data demonstrate a therapeutic relevance of PPAR-c agonists for
microbial infectious diseases where inflammatory myeloid cells may contribute to fatal tissue damage.
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Introduction

Fungal sepsis is a frequent cause of death in the intensive care

unit, with Candida spp. being among the most common microbial

pathogens isolated from septic patients. Worldwide, C. albicans (Ca)

represents the most prevalent isolate recovered from human

candidemic patients. The inflammatory response and disease

progression of invasive candidiasis presents a similar clinical

picture as seen for bacterial sepsis, with some patients developing

septic shock and organ dysfunction, the most common of which is

acute renal failure [1].

Type I interferons (IFNs-I) constitute a family of pleiotropic

cytokines that regulate resistance to viruses, enhance innate and

adaptive immunity, and modulate cell survival and apoptosis [2].

The most relevant members include IFN-b, with only one member

in humans and mice, and the IFN-a family encompassing more

than 10 members. While IFNs-I strongly protect against viral

infections, they can have either protective or detrimental host

effects in bacterial infections depending on the pathogen in

question [3]. In comparison, little is known about their contribu-

tions in fungal infections. We and others have recently reported

that mouse bone marrow-derived dendritic cells (BM-DCs)

produce IFN-b in response to Candida spp. in vitro [4,5]. Notably,

the IFN-I receptor subunit IFNAR1 is among the highest

upregulated genes in blood leukocytes in a mouse model of

invasive candidiasis [6]. Furthermore, similar to bacterial infec-

tions, recent reports suggest that IFNs-I are implicated in the in vivo

response to fungal pathogens, albeit with opposing effects for the

host [7,8]. The divergent functions of IFNs-I may relate to their

versatile effects on antimicrobial immunity and to their ability to

trigger either inflammatory or anti-inflammatory responses

depending on the particular pathological situation [9].

Besides modulating innate and adaptive immune responses,

IFNs-I play a critical role in promoting lethal endotoxemia and

sepsis. For instance, mice lacking the IFN-I receptor (Ifnar12/2) are

highly insensitive to LPS- or TNF-induced lethal shock [10,11].

Notably, they also show improved survival in a model of septic

peritonitis [12]. However, the concept of IFNs-I as adverse
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mediators of sepsis has been challenged by a recent study using a

low lethality model of cecal ligation and puncture-induced sepsis

[13]. In this model, Ifnar12/2 mice show an increased late mortality,

underlining the complex effects of IFNs-I. The apparent discrep-

ancies might relate to differences in the temporal regulation of the

IFN-I response, the amount or subtype of cytokines produced or the

microbial species used within a certain model [14].

This work addresses the pathophysiological role of IFN-I

signaling during Ca infections using an intravenous (iv) mouse

challenge model. As in humans, the mouse kidney is the prime

target organ, as progressive sepsis concomitant with renal failure

account for mortality in that model [15]. Since the severity of

kidney tissue damage is quantitatively related to the level of host

innate response, it has been suggested that an uncontrolled

inflammatory response rather than Ca itself may worsen disease

outcome. Indeed, massive infiltrations of neutrophils are com-

monly observed and believed to contribute significantly to host

tissue destruction [16].

Another highly inflammatory cell type frequently associated

with host immunopathologies are Ly6Chi inflammatory monocytes

[17–19]. The chemokine CCL2 recruits inflammatory monocytes

to infected body sites, where they exert direct anti-microbial

activities or further differentiate into inflammatory DCs [20]. This

DC subtype participates in the protective innate response and is

characterized by high production of TNF-a and iNOS [21].

Interestingly, IFNs-I have been shown to regulate Ly6Chi

monocyte recruitment during viral infections [22,23], as well as

during chronic inflammation in mice [19] by inducing Ccl2.

However, the role of inflammatory monocytes in the host response

to Ca infections remains unknown.

Here, we demonstrate a pivotal role of IFNs-I in triggering the

inflammatory host response and immunopathology in experimen-

tal candidiasis. We establish a mechanism through which IFNs-I

mediate the lethal effects of Ca-induced sepsis. IFN-I signaling

stimulates the recruitment of both Ly6Chi inflammatory mono-

cytes and neutrophils from the bone marrow to infected kidneys.

Furthermore, IFN-I signaling is required for the subsequent

maturation of monocytes into functional inflammatory DCs. Thus,

mice competent for IFN-I signaling (WT) suffer from unrestrained

hyper-inflammation, resulting in lethal kidney pathology. In sharp

contrast, Ifnar12/2 mice are remarkably resistant to otherwise

lethal Ca infections, and show reduced activity of inflammatory

myeloid cells. Strikingly, the pharmacological suppression of

inflammatory monocytes and neutrophils by the anti-diabetes

drug pioglitazone, a PPAR-c agonist, strongly reduces renal

immunopathology and improves survival of mice, suggesting a

novel therapeutic option to combat fungal sepsis. Our data

provide a molecular mechanism explaining the manifestation and

progression of systemic fungal infections. We suggest that

interfering with the activity of inflammatory monocytes and

neutrophils provides beneficial effects for disease outcome by

suppressing fatal kidney pathology during Ca infections. Impor-

tantly, our results are the first report of a central role of the IFN-I-

driven CCL2/CCR2 pathway in controlling inflammatory

monocyte trafficking during fungal infections.

Results

Detrimental role of IFN-I signaling in a Candida
intravenous infection mouse model

We have recently shown that Candida spp. induce an IFN-b
response in mouse BM-DCs [4]. To test for in vivo production of

IFNs-I upon systemic Candida infections, we infected WT and

IFNAR1-deficient mice with Ca by lateral tail vein injection (iv).

Both infected mouse genotypes produced similar levels of IFN-a
with increasing cytokine levels upon disease progression

(Figure 1A). We were unable to detect serum IFN-blevels under

the same experimental conditions, since IFN-b is notoriously

known for its low expression levels in vivo and thus remained below

the detection limit. Nevertheless, BM-DCs from both WT and

IFNAR1-deficient mice produced equal levels of IFN-b upon Ca

stimulation (Figure S1A). Unlike WT cells, Ifnar12/2 BM-DCs

failed to respond to IFN-b as evident from the absence of STAT1

phosphorylation. (Figure S1B).

To examine a contribution of IFN-I signaling on the infection

outcome and fungal dissemination, we compared the survival of WT

and Ifnar12/2 animals infected with various Ca loads. Interestingly,

at a dose of 105 Ca colony-forming units (cfus) the lack of IFNAR1

caused a remarkable protection to otherwise lethal infections, which

became apparent after one week of injection (Figure 1B). The same

phenotype was observed after infection with lower fungal doses of

0.56105 Ca cfus (Figure S1C), whereas increasing the fungal loads to

56105 Ca cfus obliterated the protective effect of IFNAR1-

deficiency (Figure S1D). Thus, the beneficial effect of lacking an

IFN-I response is only evident under infection conditions that do not

overburden host protective capacity.

To test whether the improved survival of Ifnar12/2 mice was a

result of increased fungal clearance, we determined fungal burdens

in the major organs of infected animals. To avoid premature death

of WT mice before sample collection, we infected mice with

0.56105 Ca cfus. At indicated time points, spleen, liver, brain and

kidneys were collected and analysed for the presence of fungal cells

by cfu counting. During the first week of infection, Ca cfus

remained high only in the kidneys (Figure 1C), which is in

agreement with previous findings [24,25]. In all other organs,

fungal burden was controlled by the immune system and either

stayed low (brain) or progressively decreased over time (spleen and

Author Summary

Inflammation constitutes a major host response in many
microbial infections. Innate immune cells orchestrate the
inflammatory response to kill pathogens and clear infec-
tions. However, invasive infections by pathogenic mi-
crobes including the fungus Candida albicans, can result in
an uncontrolled hyper-inflammatory response, leading to
severe host damage and sepsis. Type I interferons
constitute a hallmark of protective innate immunity in
viral and bacterial infections, but at the same time have
been notoriously known for their sepsis-promoting effects
in numerous experimental inflammation models. Here, we
show that type I interferon-signaling mediates the lethal
hyper-inflammatory response during systemic mouse
infections with C. albicans. Following fungal infections,
type I interferons promote the recruitment and activation
of inflammatory monocytes and neutrophils to infected
organs. The high abundance and activity of inflammatory
phagocytes lead to fatal tissue damage. Remarkably, we
show that the pharmacological suppression of these
inflammatory cells with the drug pioglitazone reduces
immunopathology and sepsis-related lethality, suggesting
a novel therapeutic option to combat fungal sepsis. In
conclusion, our data couple the sepsis-promoting role of
type I interferons to the host-destructive activity of
inflammatory monocytes and neutrophils. We propose
that therapeutic approaches dampening hyper-inflamma-
tion might be of general importance in microbial diseases
where deleterious immunopathology occurs.
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liver) suggesting successful clearance (Figure S1E). For any organ

investigated, we did not observe a significant difference in Ca cfus

between WT and Ifnar12/2 mice. We also investigated the in vitro

Ca killing capacity of host phagocytes with suspected or known

functions in the clearance of fungal infections. Again, we did not

observe significant differences in the in vitro Ca killing capacities of

phagocytes from WT or Ifnar12/2 mice (Figure 1D). In

conclusion, we demonstrate that Ca-induced IFN-I signaling

mediates detrimental host effects during disseminated and invasive

infections, though not by altering fungal clearance. These data

suggest that other mechanisms confer resistance to systemic Ca

infections in a host with defective IFN-I signaling.

IFN-I signaling augments the inflammatory host response
to Candida

We hypothesized that Ifnar12/2 mice may be more resistant to

Ca infections because IFN-I signaling is able to enhance

deleterious inflammatory responses. Therefore, we quantified

sepsis-relevant inflammatory mediators in serum and kidney, the

critical target organ, during the first week of Ca infection. In

support of our hypothesis, Ifnar12/2 mice showed significantly

reduced serum levels of inflammatory TNF-a and IL-6 when

compared to WT mice (Figure 2A). Furthermore, blood counts

revealed considerably lower leukocyte numbers in Ifnar12/2 mice,

indicating an attenuated infection-induced haematopoiesis. In

particular, granulocyte counts were significantly lower (Figure 2B),

suggesting an impaired or delayed granulopoesis in knock-out

animals. By contrast, total lymphocyte numbers did not differ

significantly at any time point (Figure 2B). Taken together, these

results demonstrate that IFN-I signaling triggers an early systemic

release of inflammatory cytokines and contributes to the Ca-

induced robust granulopoesis.

As observed for the systemic inflammatory response, early IL-6

levels were significantly reduced at day 1 post infection in kidneys

of Ifnar12/2 mice when compared to WT animals (Figure 2C). We

also quantified expression levels of additional inflammation

mediators with a known involvement in acute kidney injury

[26], including the major adhesion molecules ICAM-1 and P-

Selectin. In agreement with attenuated inflammation, we detected

reduced renal expression of these adhesins in Ifnar12/2 mice

(Figure 2C). The decrease of these critical cytokines and adhesion

molecules in kidneys of knock-out mice strongly suggested a

reduced immune cell infiltration in the infected organ. To test this

notion, we isolated leukocytes from Ca-infected kidneys and

evaluated the total number of immune cells (CD45+) and myeloid

cells (CD11b+). In line with the reduced granulopoesis, Ifnar12/2

kidneys displayed significantly lower numbers of infiltrating

leukocytes, which could be attributed to the selective reduction

of myeloid cells within the tissue (Figure 2D). In summary, our

results indicate that IFN-I signaling strongly promotes both

systemic and acute local inflammatory responses in Ca-infected

mice by enhancing the expression of pro-inflammatory mediators,

as well as the recruitment of innate immune cells.

IFNs-I promote kidney injury through unrestrained host
responses

To investigate the pathological consequences of the IFN-I-

mediated inflammatory response, we examined the immunohisto-

Figure 1. Ca induces a detrimental IFN-I response during infection. (A) Mice of the indicated genotype were iv injected with a lethal dose of
16105 cfus Ca. Serum was collected at indicated time points, and IFN-a concentrations were determined using a multiplex bead array system. Data
presented show the mean 6 SEM of two independent experiments (n = 6–8 mice per group). (B) Mice were injected as in (A) and survival was
monitored for 35 days. The data are presented as Kaplan-Meier survival curves and are a summary of three independent experiments (n = 16 mice per
group). (C) Mice were injected with 0.56105 cfus Ca. At indicated time points, Ca cfus in kidneys were determined and expressed as cfus/g organ.
Data presented are a summary of three independent experiments (n = 3–15 mice per group). Each symbol represents one mouse; horizontal bars
indicate the calculated median. (D) Resting and activated peritoneal macrophages (PMs), exudate neutrophils (N), and bone marrow neutrophils (BM-
N) were stimulated with Ca at the indicated multiplicities of infection and for indicated time periods. Percentage of Ca killing was determined by
counting cfus. Data presented are from single experiments with at least 4 replica wells per condition.
doi:10.1371/journal.ppat.1002811.g001
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pathology of infected kidneys from WT and Ifnar12/2 mice.

Histopathological inspection at day 1 after infection revealed

typical Ca-containing abscesses in the renal cortex including

massive phagocyte infiltrates. There were no obvious differences in

the quality and quantity of fungal lesions in WT vs. Ifnar12/2 mice

at this early stage of infection (Figure 3A). However, at day 3, Ca-

containing abscesses were still abundantly present in WT mice but

were mainly cleared in IFNAR1-deficient animals (Figure 3A). At

day 7, the inflammatory process in WT animals spread to the renal

tubules and pelvis with extensive tubular cast formation and

distortion of the renal architecture. By contrast, there were almost

no fresh cellular casts detectable in Ifnar12/2 mice (Figure 3A).

Notably, at that time point, no more Ca cells were detectable

within the renal cortex of WT or Ifnar12/2 mice. Thus, the

continuous immune cell recruitment to the renal cortex can be

considered an over-reactive host response that may promote

kidney pathology.

To test whether the observed damage of renal architecture also

impaired kidney function, we measured the expression level of

kidney injury molecule-1 (Kim-1) in kidneys, as well as urea levels

in serum of infected animals. Kim-1 expression strongly increases

in de-differentiated renal proximal tubular epithelial cells upon

tissue damage, and is thus a suitable biomarker for early kidney

injury [27]. Strikingly, Kim-1 expression levels peaked at day 3 of

Figure 2. IFN-I signaling promotes hyper-inflammatory immune responses. Mice of the indicated genotype were injected with a lethal dose
of 16105 cfus Ca. At indicated time points, serum/whole blood and kidneys were collected. (A) Sera concentrations of IL-6 and TNF-a were measured
using a multiplex bead array system. Data presented show the mean 6 SEM of four independent experiments (n = 7–12 mice per group). (B) Blood
cell populations were analysed by an automated blood counter. Data presented show the mean 6 SEM of two independent experiments (n = 6–8
mice per group). Plotted are the absolute numbers of leukocytes, granulocytes, and lymphocytes expressed as cell number 6109/l. (C) IL-6
concentrations in kidney supernatants were measured using a multiplex bead array system. Gene expression levels of Icam-1 and P-Selectin were
quantified by qPCR in kidney total RNA. Data presented show the mean 6 SEM of three independent experiments (n = 7–12 mice per group). (D)
Kidney leukocytes were enriched and characterized by multi-label flow cytometry. Graphs show absolute numbers of leukocytes (CD45+) and myeloid
cells (CD11b+) per total mouse kidneys. Data presented is one representative of two independent experimental repeats (n = 3–5 mice per group).
doi:10.1371/journal.ppat.1002811.g002
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infection and were much higher in WT mice when compared to

mice lacking IFNAR1 (Figure 3B). The peak of Kim-1 expression

coincided with the presence of Ca lesions in the WT kidney,

preceding the subsequent kidney damage, which was evident from

the increased urea levels at day 7 (Figure 3C). Taken together, the

data let us conclude that IFN-I signaling drives unrestrained

inflammatory responses in Ca-infected kidneys, as indicated by the

prolonged presence of immune cell infiltrates/fungal abscesses and

the abundant formation of cellular casts at later stages of infection.

This hyper-inflammatory response increases organ damage

as demonstrated by higher expression of Kim-1 and serum urea

levels.

IFNs-I mediate the recruitment of inflammatory
phagocytes to the infected kidney

To identify the cell types contributing to the kidney damage, we

thought to determine kidney recruitment kinetics for major

immune cell types frequently implicated in inflammatory condi-

tions, including neutrophils [28], inflammatory monocytes [29,30]

and T cells [31,32]. Therefore, we enriched infiltrating leukocytes

from kidneys of Ca-infected WT or Ifnar12/2 mice to characterize

and quantify the different leukocyte populations by flow cytom-

etry, using common immune cell markers (Table S1 in Text S1).

As previously observed by others, kidney infections by Ca followed

a two-phase innate response [25]. At day 1, neutrophils and

inflammatory monocytes accumulated to equal amounts in

kidneys of WT mice (Figure 4A). The influx of inflammatory

monocytes was transient, peaking at day 1 and declining

thereafter. In contrast, neutrophils showed a second wave of

massive infiltration starting between day 3 and 5 post infection

(Figure 4A). T cells numbers also increased throughout disease,

but remained only a minor fraction of the total cell population

within the infected kidney (Figure S2A and B). Whereas the

recruitment pattern of CD8+ and CD4+ T cells was comparable

between WT and Ifnar12/2 mice (Figure S2A and B), inflamma-

tory phagocyte infiltrates were significantly less in kidneys of

knock-out mice (Figure 4A). Interestingly, Ifnar12/2 mice

displayed significantly lower numbers of inflammatory monocytes

and neutrophils during early infection stages and lacked the late

massive neutrophil influx (Figure 4A). We further confirmed the

lack of neutrophil influx by measuring MPO levels in kidney

homogenates. MPO is an oxidative granular enzyme found

primarily in neutrophils and is therefore used to quantify tissue

neutrophil content [33]. In agreement with reduced neutrophil

numbers, MPO levels remained low in Ifnar12/2 kidneys at day 7

post infection (Figure S2C). We further confirmed the apparent

recruitment defect of monocytes and neutrophils using an

intraperitoneal (ip) Ca infection model, which is commonly used

Figure 3. Reduced immunopathology protects Ifnar12/2 mice from kidney injury. Mice of the indicated genotype were injected with a
lethal dose of 16105 cfus Ca. At indicated time points, serum and kidneys were collected. (A) Histopathology of the cortical part of kidneys at day 1, 3
and 7 post infection. Longitudinal sections of paraffin-embedded organs were stained with periodic acid-Schiff (PAS) to visualize fungal cells.
Counterstaining was performed with hematoxylin. (n = 3–4 mice per group) (B) Kidney total RNA was analysed for gene expression of kidney injury
marker-1 (Kim-1). Data presented show the mean 6 SEM of three independent experiments (n = 8–10 mice per group). (C) Urea concentration in
serum. Data presented show the mean 6 SEM of two independent experiments (n = 7–9 mice per group).
doi:10.1371/journal.ppat.1002811.g003
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to assess leukocyte infiltrations to sites of infection [34,35]. As

expected, we observed significantly reduced peritoneal cell

infiltrations in IFNAR1-deficient mice (Figure 4B). Since the cell

frequencies of peritoneal Ly6Chi monocytes and neutrophils were

similar between WT and Ifnar12/2 mice (Figure 4B), we

concluded that the recruitment of both cell types is equally

affected by the absence of IFN-I signaling.

Altered expression levels of the respective cell-specific chemo-

kines also reflected the impaired innate cell recruitment to infected

kidneys. Coinciding with the peak of inflammatory monocytes,

Ccl2 expression levels were strongly reduced in kidneys of

Ifnar12/2 mice (Figure 4C). Likewise, the early expression of the

neutrophil chemokine KC was diminished in knock-out animals

(Figure 4D). In contrast, the late neutrophil influx seemed to be

independent of KC signaling, since both WT and Ifnar12/2 mice

displayed comparable levels of the chemokine at day 7. Locally

produced IL-1b represents another chemo-attractant signal for

neutrophils during inflammatory conditions [36]. As expected

from the increased neutrophil accumulations, we also detected

elevated expression levels of IL-1b in kidneys of WT mice

(Figure 4E). Increased IL-1b levels coincided with the peak of

KIM-1 expression and occurred just prior to the second wave of

neutrophil influx. Together, these data indicate that IFN-I

signaling promotes the early recruitment of neutrophils and

inflammatory monocytes into Ca-infected kidneys. Elevated

numbers of inflammatory cells during the first days of infection

seem to drive a late massive influx of neutrophils, which is absent

in Ifnar12/2 animals.

Figure 4. IFN-I signaling promotes inflammatory phagocyte influx to infected sites. (A, C–E) Mice of the indicated genotype were injected
with a lethal dose of 16105 cfus Ca. At indicated time points, kidneys were collected. (A) Kidney leukocytes were enriched and characterized by multi-
label flow cytometry. Graphs show absolute numbers of inflammatory monocytes and neutrophils per total mouse kidneys (left) and percent of
CD45+ cells (right). Data presented is one representative of two independent experimental repeats (n = 3–5 mice per group). (B) Mice of the indicated
genotype were ip injected with a sublethal dose of 16107 cfus Ca. After 4–6 h, peritoneum was flushed and cell number was determined by CASY-
counting. Analysis of Ly6G+ and Ly6C+ peritoneal cells from WT versus Ifnar12/2 mice (dot plot). (C) Kidney total RNA was analysed for gene
expression of Ccl2. (D) KC concentrations in kidney supernatants were measured using a multiplex bead array system. Both (C) and (D) show the mean
6 SEM of three independent experiments (n = 7–12 mice per group). (E) Kidney total RNA was analysed for gene expression of Il-1b. Data presented
show the mean 6 SEM of three independent experiments (n = 7–12 mice per group).
doi:10.1371/journal.ppat.1002811.g004
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IFN-I signaling controls recruitment and activation of
inflammatory monocytes

The regulation of inflammatory monocyte trafficking and anti-

microbial defense during fungal infections remains unexplored.

Emigration of Ly6Chi monocytes from the bone marrow (BM) is

known to require signaling via the CCR2 receptor. Notably, the

induction of the cognate chemokine ligands such as CCL2, CCL7,

and CCL8 are regulated by IFNs-I in certain infectious diseases

[22,23].

Since we had observed a strongly reduced expression of CCL2

in Ca-infected kidneys of Ifnar12/2 mice, we thought to investigate

the IFNAR1-dependent expression of the chemokine in more

detail. Monocytes are known as high producers of chemokines,

including CCL2 [22]. Therefore, we stimulated GM-CSF-

differentiated BM-DC cultures, which contain about one third

Ly6C+ monocytes (Figure 5A), with heat-inactivated Ca and

determined the release of the two major monocyte-attracting

chemokines CCL2 and CCL7 [37]. Whereas BM-derived WT

Ly6C+ monocytes released CCL2 and CCL7 upon Ca challenge,

IFNAR1-deficient cells were strongly impaired in their chemokine

response (Figure 5A). The release of IFN-b was similar under all

conditions, ensuring equal responsiveness of cells (data not shown).

We confirmed the IFNAR1-dependent induction of CCL2/CCL7

in WT cells pre-treated with an anti-IFNAR1 blocking antibody

prior to Ca stimulation (Figure S3A). As a control, pre-treatment

of WT cells with an unspecific isotype IgG did not alter CCL2

production (data not shown).

In line with the kidney chemokine data, we also observed a

reduced expression of two neutrophil-attracting chemokines, KC

and MIP-2, in Ca-stimulated Ifnar12/2 BM-DC cultures

(Figure 5A), although neither chemokine is a classical IFN-

stimulated gene. Interestingly, simply blocking IFNs-I signaling

with the anti-IFNAR1 antibody was not sufficient to reduce the

release of KC and MIP-2 (Figure S3A), suggesting that the

physical presence of a functional IFN-I receptor, rather than its

signaling function, cooperates with other pathways for full

activation of neutrophil-specific chemokines.

During infections with microbial pathogens, the initial CCL2

production is triggered in the BM, where it mediates inflammatory

monocyte egression into the blood stream [4]. Therefore, we

examined whether Ca could induce the local production of CCL2

in the BM. To determine whether Ca resides within the BM during

infection, we measured cfu counts of infected WT and Ifnar12/2

mice. In accordance with previous reports [38], we confirmed that

fungal cells are present in the BM. As for other organs, the BM

fungal burden did not differ between WT and knock-out animals

(Figure 5B). To test whether Ca-infected BM releases CCL2, we

isolated BM cells from infected WT and Ifnar12/2 mice at day 1

and cultured them for a total of 3 days. At the time of BM isolation

cellular composition and viability of cells were the same between

both mouse genotypes (data not shown). Thereafter, we quantified

the daily release of CCL2 into the media. Again, we observed a

requirement of IFNs-I for full CCL2 production in Ca-infected BM,

which became even more evident after longer periods of culture

(Figure 5C). Similar results were obtained for the gene expression

levels of Ccl2 and Ccl7 in infected BM. At day 3 post infection, the

induction of monocyte-attracting chemokines was strongly reduced

in absence of IFNAR1 signaling (Figure S3B).

We hypothesized that the diminished CCL2/CCL7 production

in the BM of Ifnar12/2 mice may result in a mobilization defect of

inflammatory monocytes. Therefore, we determined the number

of circulating inflammatory monocytes in the blood of infected

WT and Ifnar12/2 mice. Indeed, we found significantly reduced

inflammatory monocyte counts in the blood of IFNAR1-deficient

mice (Figure 5D and 5E). In summary, these data establish CCL2/

CCL7 as IFN-I-dependent chemokine signals driving the host

response during systemic candidiasis. Through regulating the

expression of these chemokines in the BM and the kidneys, IFNs-I

contribute to the mobilization of inflammatory monocytes into the

blood stream and their subsequent migration to the target organ.

In the context of inflammation, Ly6Chi monocytes differentiate

into inflammatory DCs within the tissue [39]. Thus, we were

interested to test if monocyte-derived inflammatory DCs are also

generated during invasive Ca infections. Therefore, we further

characterized Ly6Chi kidney monocytes for common inflamma-

tory DC surface and activation markers using flow cytometry.

Cells from both WT and Ifnar12/2 mice expressed high levels of

CCR2, the hallmark receptor of inflammatory monocytes, as well

as the two major DC markers CD11c and MHCII (Figure 5F). In

infected WT kidneys, inflammatory DCs showed upregulated

expression of the activation marker PDCA1 (Figure 5F), as well as

extensive intracellular iNOS staining (Figure 5G). Strikingly, in the

absence of IFN-I signaling, PDCA1 expression and iNOS+ cell

numbers were significantly reduced. The defect in inducing iNOS

gene expression was also confirmed by qPCR in infected kidneys

of Ifnar12/2 mice (Figure 5H). We confirmed these results in vitro

by stimulating GM-CSF-differentiated BM-DCs with heat-inacti-

vated Ca. As for inflammatory DCs in the kidney, we observed a

lack of PDCA1 and iNOS expression in the IFNAR1-deficient

Ly6C+ monocyte population (Figure S3C). Similar results were

obtained in WT cultures that had been pre-treated with an anti-

IFNAR1 blocking antibody prior to Ca-challenge (Figure S3D).

Again, the levels of CD11c or MHC class II were not affected by

the absence of IFN-I signaling (Figure S3C and D). All together,

we demonstrate that Ly6Chi monocyte differentiate into inflam-

matory DCs during invasive Ca infections. Whereas the initial

differentiation into DCs seems to be independent of IFN-I

signaling, our results suggest a novel role for IFNs-I in the

functional maturation of inflammatory DCs based on the

appearance of specific activation markers.

Reducing inflammatory myeloid cell numbers protects
mice from lethal Ca challenge

IFNs-I promote the inflammation-associated lethal kidney

pathology during systemic Ca infections by stimulating the

recruitment and activation of Ly6Chi monocytes and neutrophils.

However, both cell types are essential for fungal clearance and

total elimination renders mice hyper-susceptible to infection [40].

Based on our findings, we hypothesized, that interfering with the

activity of these cell types rather than the total elimination would

ameliorate host tissue damage and thereby improve the overall

outcome of infection. Published evidence suggests that the drug

pioglitazone, a synthetic agonist of the nuclear receptor PPAR-c,

impairs inflammatory DC trafficking and associated lung pathol-

ogy in an influenza mouse model [17]. To test our hypothesis, we

treated mice daily with 5 mg/kg pioglitazone or vehicle starting on

the day of Ca infection. Strikingly, pioglitazone-treated mice were

strongly protected against lethal Ca challenge and experienced a

reduced weight loss when compared to non-treated animals

(Figure 6A). No significant differences in kidney fungal loads where

found between the two mouse groups (data not shown).

To determine whether the protective effect of pioglitazone

correlated with an inhibition of inflammatory myeloid cell

recruitment, we determined Ly6Chi monocyte and neutrophil

numbers in blood and kidneys. In the bloodstream, pioglitazone

treatment specifically reduced inflammatory monocyte numbers,

while total granulocyte numbers were not affected (Figure S4A).

However, in the kidneys, early accumulation of both inflammatory
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monocytes and neutrophils was equally reduced in drug-treated

animals (Figure 6B). In addition to cell recruitment, we

investigated the effect of pioglitazone treatment on the activation

of inflammatory DCs in infected kidneys. In line with previous

reports identifying iNOS as one of the main target genes of PPAR-

c mediated repression [41], we detected significantly reduced

iNOS+ inflammatory DCs in kidneys of drug-treated mice

(Figure 6C), suggesting that pioglitazone also interferes with the

Figure 5. IFN-I signaling regulates Ly6Chi monocytes recruitment and activation. (A) Expression of Ly6C and CD11c on GM-CSF-
differentiated BM-DCs at day 8 of culture (dot plot). BM-DCs of the indicated genotypes were stimulated with heat-inactivated Ca. After 24 h, CCL2,
CCL7, KC, and MIP-2 release was determined by ELISA or a multiplex bead array system. Data presented show the mean 6 SEM of three independent
experiments. (B–H) Mice of the indicated genotype were injected with a lethal dose of 16105 cfus Ca. At indicated time points, blood, BM and
kidneys were collected. (B) Ca cfus in BM were determined and expressed as cfus/mouse bones (n = 3–5 mice per group). Each symbol represents one
mouse; horizontal bars indicate the calculated median. (C) BM from day 1-infected mice was isolated and placed in culture. At indicated time points,
CCL2 release into the media was measured (n = 3 mice per group). (D) Expression of Ly6C and CD11b on blood leukocytes at day 5 of Ca infection in
WT versus Ifnar12/2 mice. Inflammatory monocytes were gated in R1. (E) Quantification of cells in the R1 gate at different time points post infection.
Depicted are percent inflammatory monocytes of total WBCs (left) and absolute cell numbers in 6107/l blood (right). (n = 3–5 mice per group) (F–G)
Kidney leukocytes were enriched and characterized by multi-label flow cytometry. (F) Expression of Ly6C and CD11b on kidney leukocytes at day 1 of
Ca infection. Inflammatory monocytes are gated in R2 (dot plot). Expression of the inflammatory DC surface markers CCR2, CD11c, MHC II, and PDCA1
by cells in the R2 gate. Solid lines, staining of R2 cells of day 1-infected mice; shaded histograms, for CCR2: staining with isotype control antibody, for
CD11c and MHCII: staining of CD11c2MHCII2 neutrophils, for PDCA1: staining of R2 cells of uninfected mice. Data presented are representatives of
three independent experimental repeats (total n = 11–14 mice per group). (G) Kidney leukocytes at day one of infection were stained intracellularly
for iNOS. Graphs show iNOS+ cells (green) overlayed on total CD45+ leukocytes (black). Bar diagram shows the quantification of iNOS+ cells in percent
of total CD11b+ cells. Data presented show the mean 6 SEM of two independent experiments (n = 8–9 mice per group). (H) Kidney total RNA was
analysed for gene expression of iNOS. Data presented show the mean 6 SEM of three independent experiments (n = 7–12 mice per group).
doi:10.1371/journal.ppat.1002811.g005
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functional maturation of inflammatory DCs. The inhibition of

iNOS expression could be reproduced in vitro, since stimulating

pioglitazone pre-treated BM-DCs with heat-inactivated Ca (Figure

S4B) led to similar reductions in iNOS expression. Strikingly, the

reduced early cell infiltration in kidneys resulted in the absence of

the late detrimental neutrophil influx (Figure 6D). Hence,

pioglitazone treatment improves kidney damage by diminishing

local inflammation, which was evident by reduced serum urea

levels at day 5 (Figure 6E). Although there was a general decrease

in the magnitude of inflammation in drug-treated animals, the

measurements for IL-6 and Ccl2 in blood and kidney (Figure S4C)

did not reach statistical significance due to high variability between

mice. Nevertheless, pioglitazone pre-treatment significantly re-

duced CCL2 and CCL7 release from Ca-stimulated BM-DCs in a

dose-dependent manner (Figure 6F), whereas production of KC

and MIP-2 was not influenced by the treatment (Figure S4D). A

cytotoxic effect of pioglitazone was excluded by live-dead staining

of cells after drug treatment (Figure S4E). Interestingly, in addition

to monocyte-attracting chemokines, pioglitazone also decreased

the initial release of IFN-b by BM-DCs (Figure 6F). This

observation prompted us to investigate whether the reduced

release of CCL2/CCL7 results from the impaired IFN-b
production. Therefore, we pre-treated Ifnar12/2 BM-DCs with

pioglitazone and examined if the remaining release of chemokines

from these cells was further decreased by the drug. Pioglitazone

treatment was able to even further suppress the production of

CCL2 in IFNAR1-deficient cells (Figure S4F). Therefore, the

suppressive function on chemokine expression must be a direct

effect of the PPAR-c-mediated transcription inhibition of those

genes [42], without involving secondary IFN-b signaling.

Taken together, our results suggest that the usage of PPAR-c
agonists might represent a novel therapeutic option to improve

survival of a host in the setting of an emerging fungal sepsis. On

the basis of our collective data, we therefore propose the following

model for the IFN-I-regulated detrimental activity of inflammatory

myeloid cells during experimental candidiasis (Figure 7). Recog-

nition of Ca by innate immune cells in the bone marrow initiates

the IFN-I–CCL2 cytokine-chemokine cascade and stimulates

mobilization of inflammatory monocytes from the bone marrow

to the infected organs. Simultaneously, infection-triggered gran-

ulopoiesis induces the proliferation and mobilization of neutro-

phils. Monocytes and neutrophils migrate towards the infected

kidneys where CCL2 and KC are produced in an IFNAR1-

dependent manner. Inside the renal tissue, inflammatory mono-

cytes acquire a DC-like phenotype through a process not requiring

IFN-I signaling. However, the subsequent activation of inflamma-

tory DCs to become high producers of iNOS strictly depends on a

functional IFN-I response. High abundance and activity of

inflammatory cells causes early tissue damage, leading to the

subsequent massive accumulation of neutrophils, whose destruc-

tive power ultimately leads to kidney failure. The genetic

deficiency of IFNAR1 or the pioglitazone-mediated pharmaco-

logical suppression of inflammatory cell recruitment and activation

strongly improves Ca-mediated immunopathology and survival of

the host.

Discussion

The present study demonstrates a detrimental effect of IFNs-I

during invasive experimental candidiasis. We show that IFN-I

Figure 6. Pioglitazone suppresses lethal inflammatory phagocyte activity. WT mice were injected with a lethal dose of 16105 cfus Ca and
treated daily with 5 mg/kg pioglitazone. (A) Survival and mean percentage of original body weight of drug-treated versus vehicle-treated mice are
presented. Data presented show the sum of two independent experimental repeats (n = 13–16 mice per group). (B) Kidney leukocytes were enriched
and absolute numbers of inflammatory monocytes and neutrophils determined. Each symbol represents one mouse; horizontal bars indicate the
calculated median (n = 6 mice per group). (C) Kidney leukocytes at day 1 of infection were intracellularly stained for iNOS. Bar diagram shows the
quantification of iNOS+ cells in percent of total CD11b+ cells, mean 6 SEM (n = 6 mice per group). (D) Absolute numbers of neutrophils in kidneys of
treated vs non-treated mice. Each symbol represents one mouse; horizontal bars indicate the calculated median (n = 4–5 mice per group). (E) Urea
concentration in serum, mean 6 SEM (n = 4–5 mice per group). (F) BM-DCs were pre-treated overnight with indicated concentrations of pioglitazone
and stimulated with heat-inactivated Ca the next day. After 24 h of Ca co-incubation, CCL2, CCL7, and IFN-b release were measured by ELISA. Data
presented show the mean 6 SEM of 3 independent experiments.
doi:10.1371/journal.ppat.1002811.g006
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signaling stimulates the recruitment of inflammatory innate

immune cells, including Ly6Chi monocytes and neutrophils, into

the infected kidney, which promote lethal hyper-inflammatory and

tissue-damaging immune responses in mice. Importantly, we

establish a pharmacological approach by interfering with the

activity of those inflammatory cells, which ameliorates disease

progression and improves survival of otherwise lethal fungal

infections.

In many microbial infections, a disregulated or overshooting

immune response rather than the pathogen itself can cause fatal

host damage. Likewise, studies comparing host responses to

attenuated and virulent Ca strains suggest that fungus-induced

inflammation contributes considerably to tissue damage and

mortality [16]. The lack of IFN-I signaling in Ifnar12/2 mice

constrains hyper-inflammatory immune reactions and improves

survival of mice infected with Ca. Hence, our data support the

notion that uncontrolled host responses rather than the fungal

growth are a primary cause of death in the murine Candida

infection model. Since Ifnar12/2 mice exhibit similar fungal

burdens in critical organs when compared to WT animals, the

sepsis resistance phenotype may result from increased host

tolerance to the pathogen burden. Therefore, the Ifnar12/2

mouse model would represent an excellent tool to study virulence

factors of Ca, allowing for the mechanistic distinction between

tissue damage caused by fungal dissemination versus the hyper-

inflammatory host response.

Similar to bacterial infections, IFNs-I can exert both beneficial

and detrimental effects during fungal diseases [7,8]. We have

previously reported a role for IFNs-I in supporting persistence of

Candida glabrata (Cg) within the host. Contrasting with their effects

in our Ca infection model, fungal persistence of Candida glabrata

may arise from an IFN-I-mediated attenuated host response,

Figure 7. IFNs-I regulate detrimental Ly6Chi monocyte and neutrophil activity. Model of IFN-I-mediated monocyte/neutrophil recruitment
and activation of inflammatory DC during invasive Ca infections. Ca recognition triggers an IFN response, which controls the production of various
chemokines, including CCL2 and KC, at different anatomical body sites (BM and kidneys). In response to local CCL2 in the BM, Ly6Chi monocytes exit
into the blood stream and migrate towards the target organ where they differentiate into inflammatory DCs. To fully functionally mature and become
iNOS-producing cells, DCs require signaling through IFNAR1. The high presence and activity of inflammatory DCs and neutrophils in the kidney
during the early infection phase promotes a secondary strong influx of neutrophils culminating in lethal immunopathology. The suppressive action of
pioglitazone on Ly6Chi monocyte/neutrophil recruitment and function ameliorates hyper-inflammation and kidney pathology.
doi:10.1371/journal.ppat.1002811.g007
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which facilitates immune evasion by the fungus [4]. This of course

implies that specific ‘‘patterns of pathogenesis’’ are exploited by

different pathogens, including the use of distinct virulence

strategies to generate pathogen-specific contextual cues during

infection, which decide about the balance of pro- versus anti-

inflammatory functions of IFNs-I. Although a recent study

identified Ifnar12/2 mice as hyper-susceptible to disseminated

Ca infections, different fungal strains and infection doses, as well as

mouse genetic backgrounds, may explain the discrepancy [5].

Indeed, different microbial loads and injection routes may

influence the outcome of infection regardless of the genetic

phenotype in the host, which normally determines the capacity of

immune surveillance [43,44].

IFNs-I may dictate a pro- or anti-inflammatory response in host

cells depending on the initial IFN-I concentrations targeting

responder cells [45,46]. We report severely reduced levels of

inflammatory mediators and innate immune cells in blood and

kidneys of Ifnar12/2 mice upon Ca infection, suggesting a pro-

inflammatory role of IFNs-I in this infection model. Notably,

IFNs-I have been reported to exert an inhibitory effect on

inflammasome activation and the subsequent release of pro-

inflammatory IL-1bin mice. The resulting impairment of inflam-

mation-mediated protective immunity renders mice hyper-suscep-

tible to invasive Ca infections [47]. In this mouse model, however,

massive IFN-I production was pre-induced with repeated injec-

tions of poly-IC prior to fungal infection. We believe that the

mechanistic difference to our model is explained by the level of

IFNs-I induced between the different challenges, thereby changing

the ratio of inflammatory versus anti-inflammatory effector

functions. Indeed, in our infection model, where IFNs-I are not

produced prior to fungal challenge, we are unable to detect an

IFN-I-mediated inhibition of IL-1bproduction. Consistent with

our model, we observe unchanged or even lower concentrations of

IL-1b in kidney homogenates of Ifnar12/2 mice.

Invasive Ca infections progress mainly in the kidneys and the

consequent organ damage likely contributes to the overall

pathology of disease [48]. Thus, we focused on the immune

response and pathology of the kidney to further investigate the

organ-specific inflammatory response to Ca. Interestingly, we

show a significantly reduced early accumulation of myeloid cells,

including inflammatory monocytes and neutrophils, and a lack of

the second massive neutrophil infiltration in kidneys of IFNAR1-

deficient animals. While IFN-I signaling seems to play a general

role in promoting monocyte recruitment, as evident from other

studies [19,22,49], their effects on neutrophil trafficking and

function are quite divergent between different infection models

[12,13,50]. Similar to our Ca infection model, IFNs-I mediate the

recruitment of both inflammatory monocytes and neutrophils into

kidneys during experimental glomerulonephritis [51]. Also in this

model, the consequent higher abundance of myeloid cells worsens

disease pathology, indicating the detrimental role of monocytes

and neutrophils in kidney function. In future studies it will be

interesting to delineate the individual contributions of monocytes

and neutrophils to Ca-induced kidney immunopathology by

adopting antibody-mediated depletion strategies. One may spec-

ulate that early tissue damage caused by the activity of

inflammatory innate cells triggers the second wave of neutrophil

influx in our infection model. There is evidence that danger signals

generated through cellular damage at the site of inflammation

attract neutrophils. Many of these danger signaling pathways

converge on IL-1b as a key orchestrator of inflammation and cell

recruitment [36]. Indeed, we detect higher IL-1b expression levels

in kidneys of WT animals when compared to Ifnar12/2 mice.

Likewise neutrophils, inflammatory monocytes/DCs have been

implicated in the immunopathology of various diseases, including

infectious or autoimmune diseases [52]. In other fungal infection

models, including respiratory aspergillosis and cryptococcosis,

monocytes contribute to the instruction of protective T cell

immunity and Th cell differentiation [53,54]. Inflammatory

monocytes emigrate from the BM through CCR2 receptor-

mediated signaling and accumulate at the sites of infection [37,55].

We show here that IFNs-I control the recruitment of Ly6Chi

monocytes by inducing CCL2/CCL7 expression both in the BM

and the target organ, strongly increasing inflammatory monocyte

counts in blood and kidneys of Ca-infected WT mice. Bone

marrow mesenchymal stem and progenitor cells are the initial

producers of CCL2 and inducers of monocyte emigration during

infections [56]. Notably, during infections with Listeria monocyto-

genes, IFNAR1 does not contribute to the early monocyte

emigration from the BM within the first 24 hours [57]. Our data

confirm the early IFNAR1-independent induction of monocyte-

attracting chemokines in the BM during the early response.

However, at later stages of infection, IFNs-I become central

mediators of CCL2/CCL7 production and monocyte egression.

Hence, the IFN-I-driven CCL2/CCR2 pathway is of general

importance for controlling inflammatory monocyte recruitment

during microbial infectious diseases.

Due to a defect of monocyte egression from the BM, mice

lacking CCL2 or the cognate receptor CCR2 retain most

monocytes in the BM [37,55]. In contrast to Ccr22/2 or

Ccl22/2 mice, Ifnar12/2 mice do not show this retention

phenotype, most likely because IFN-I signaling might also affect

the primary differentiation or proliferation of monocytes within

the BM [58]. Upon arrival in the infected tissue, Ly6Chi

monocytes further differentiate into inflammatory DCs to execute

their anti-microbial defense [21,55]. In addition to the impaired

recruitment of inflammatory monocytes, Ifnar12/2 mice show

defects in the activation of inflammatory DCs, as evident by their

reduced PDCA1 and iNOS expression. Whereas iNOS is a well-

established functional marker of inflammatory DCs, a PDCA1+

inflammatory-like DC subset has been only recently associated

with higher expression of pro-inflammatory cytokines and

increased T cell-stimulatory potential [59]. IFNs-I have been

known for their capacity to differentiate human blood monocytes

in vitro into a special DC subset, termed IFN-DCs [60].

Interestingly, the ability of IFNs-I to tip the balance in monocyte

terminal differentiation has been also noted during chronic

inflammation [19], where IFNs-I sustain the inflammatory

conditions by inhibiting the terminal differentiation of monocytes

into anti-inflammatory tissue macrophages, perhaps by promoting

their differentiation into inflammatory DCs. Since inflammatory

monocytes seem to carry out several central functions in anti-

fungal immunity, including propagation of inflammation and T

cell instruction, it will be of particular interest to establish a

possible role of these cells during fungal diseases in the patient

setting, including the search for genetic polymorphisms in CCR2

or CCL2 that might modulate the outcome of fungal infections.

Notably, SNPs in STAT1, a key mediator of both IFN-I and IFN-

II (IFN-c) signaling, are implicated in the outcome of invasive

fungal infections in humans [61].

Here, we show that pharmacological suppression of monocytes

and neutrophils as achieved by treating mice with pioglitazone, a

synthetic agonist of the nuclear receptor PPAR-c, can rescue

animals from Ca-mediated immunopathology. Stimulating PPAR-

c antagonizes inflammatory responses by repressing the transcrip-

tional activation of NFkB target genes, including CCL2, TNF-a
and iNOS [62,63]. Interestingly, a prophylactic pioglitazone
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treatment has been recently adopted to reduce detrimental

inflammatory DC infiltration into the lungs during influenza virus

infections [17]. Strikingly, we demonstrate here that pioglitazone

treatment of Ca-infected mice reduces the early accumulation of

inflammatory monocytes, as well as neutrophils in kidneys.

Furthermore, treatment also strongly impairs the neutrophil influx

at later stages of infection. The drug also suppresses the activation

of inflammatory DCs, thereby diminishing organ inflammation.

Thus, pioglitazone treatment precisely phenocopies the observa-

tions in Ifnar12/2 mice, including the reduced inflammatory cell

recruitment and functional maturation of inflammatory DCs.

Activation of individual nuclear receptors is believed to repress

specific subsets of inflammatory target genes with different

functions, resulting in distinct biological consequences for the host

response [64]. Notably, our data indicate that pioglitazone

represses a specific gene subset in vivo, which seems to overlap

with the IFN-I target genes driving the lethal inflammation during

invasive candidiasis. Previous studies have revealed that pioglita-

zone treatment rescues mice from lethal influenza virus infections

and reduces disease activity of septic peritonitis or murine lupus

[17,62,65]. In support of the beneficial effects of pioglitazone, we

show that treatment of Ca-infected mice ameliorates renal

immunopathology and improves animal survival.

Our data suggest that the modulation of Ly6Chi monocyte and

neutrophil numbers, as observed for Ifnar12/2 and pioglitazone-

treated mice, has beneficial effects for the host by dampening the

hyper-inflammation. The detrimental immunopathology most

likely results from the biphasic recruitment and activation of

inflammatory monocytes and neutrophils, both of which contrib-

ute to the fatal kidney pathology. In support of our hypothesis,

depletion of Gr1+ cells at day 7 of Ca infection, which removes

both monocytes and neutrophils, increases survival of mice [40].

Taken together, our work identifies IFN-I signaling as a central

mediator of inflammatory innate immune cell migration into

infected organs, demonstrating a pivotal yet detrimental role for

IFNs-I in fungal pathogenesis in vivo. The inflammatory cascade

driven by the sustained expression of IFN-I-regulated inflamma-

tory genes substantially contributes to tissue damage observed in

infected mice. The pharmacological suppression of inflammatory

monocytes and neutrophils shows that interfering with those cell

types during invasive Ca infections improve immunopathology

and disease outcome. Thus, this work expands the spectrum of

detrimental inflammatory immune cells during Ca infections

beyond neutrophils. Our study provides a novel mechanism for

the role of IFNs-I in sepsis progression, coupling IFN-I target

genes such as CCL2 and iNOS to the recruitment and activation

of inflammatory monocytes/DCs with considerable host-destruc-

tive potential. The direct connection between IFNs-I and

inflammatory monocytes might be of general importance in

microbial diseases where an IFN-I response is detrimental for the

host. We propose that the beneficial effects of PPAR-c agonists

may also apply to other infectious diseases where inflammatory

myeloid cells promote tissue damage, including parasitic infections

or tuberculosis [18,66].

Materials and Methods

Ethics statement
All animal experiments were discussed and approved through

the University of Veterinary Medicine Vienna institutional ethics

committee and carried out in accordance with animal experimen-

tation protocols approved by the Austrian law (GZ 680 205/67-

BrGt/2003, GZ-BMWF-68.205/0233-II/10b/2009 and GZ-

BMWF-68.205/0231-II/3b/2011).

Fungal strains and growth conditions
The Candida albicans (Ca) strain used in this study was the

standard clinical isolate SC5314 [67]. Fungal cells were grown to

the logarithmic growth phase in single-use, pyrogen- and

endotoxin-free sterile flasks. For detailed information see supple-

mental text and materials.

Mouse models and pioglitazone treatment
Ifnar12/2 mice on C57BL/6 background [68] were bred at

Biomodels Austria, University of Veterinary Medicine. C57BL/6

wild type controls were purchased from Charles River. Mice were

housed under specific pathogen-free conditions according to

FELASA guidelines. Male mice were challenged on day 0 via

the lateral tail vein with 16105 Ca colony-forming units (cfus) per

21 g body weight, if not otherwise stated. Fungal load was adjusted

to individual mouse weights. For survival experiments, mice were

monitored for 14–35 days. Groups of mice were sacrificed on

different days post infection (p.i.) for analysis of macroscopic and

histological changes, fungal organ burden, and changes in the

levels of cytokines and other inflammatory mediators in blood as

well as organ homogenates. Mice were treated daily with 5 mg/kg

pioglitazone in 0.5% methylcellulose/PBS via ip injections starting

on day 0 with the Ca infections. The control mice received vehicle

only. Weight loss was monitored every other day as a measure of

morbidity.

Determination of fungal burden
Mice were sacrificed and spleen, liver, kidneys, and brain were

removed aseptically at necropsy, rinsed with sterile PBS, weighted,

and placed in 1.5 ml sterile tissue lysis buffer (200 mM NaCl,

5 mM EDTA, 10 mM Tris, 10% glycerol, 16 protease inhibitor

cocktail (Roche)) on ice. The organs were aseptically homogenized

using an Ika T10 basic Ultra-Turrax homogenizer (Ika, Staufen).

Serial dilutions of homogenates were plated in triplicate on YPD

(1% yeast extract, 1% peptone, 2% dextrose) plates containing

ampicillin, tetracycline, and chloramphenicol. Colonies were

counted after 48 h of incubation at 30uC. The fungal burden

was calculated as cfus per gram of tissue.

Clinical parameters, haematology and histopathology
To assess kidney tissue damage, levels of blood urea (blood urea

nitrogen - BUN) were determined in serum samples by a routine

veterinarian diagnostics laboratory (InVitro GmbH). For haema-

tology, blood samples were collected in K-EDTA-coated tubes

(Sarstedt) and analysed with an automated blood counter (V-Sight,

A. Menarini). For histology, parts of organs were fixed with

buffered 4% paraformaldehyde, and paraffin-embedded sections

were stained with hematoxylin-eosin (HE) or periodic acid-Schiff

(PAS) stain according to standard protocols.

Cytokine measurements by ELISA
The amount of IFN-b released in cell culture supernatants was

assayed using the Verikine mouse IFN-b ELISA kit (R&D

systems). Serum IFN-a was measured using the Luminex system

with Procarta Cytokine Profiling Kits; TNF-a and IL-6 in serum

were determined using the Mouse CBA flex sets (BD Biosciences);

CCL7, KC, and MIP-2 using Procarta Immunoassays (Panomics-

Affymetrix); CCL2 using a commercial ELISA Set (Biolegend); all

according to the manufacturer’s instructions.

For cytokine quantification in tissues, organ homogenates of Ca-

infected mice prepared as described for fungal burden determi-

nation were centrifuged twice (1,5006g, 15 min, 4uC) and diluted

prior to measurement. Myeloperoxidase (MPO) was determined
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by the Mouse MPO ELISA kit (Hycult Biotechnology); IL-6 and

KC chemokine were measured using the Mouse CBA flex sets (BD

Biosciences); all conditions were according to the manufacturer’s

instructions.

Flow-cytometry analysis of immune cells
Blood preparation and leukocyte enrichment from kidneys were

performed as described in the supplemental material. Blood and

kidney leukocytes were stained with the appropriate combination

of FITC-labeled anti-Ly6G (1A8, Biolegend) or anti-CD3 (145-

2C11, BD Biosciences), PE-labeled anti-PDCA1 (eBio129c,

eBioscience), anti-CD4 (RM4-5, BD Biosciences), APC-Cy7-

labeled anti-CD45 (30-F11, BD Biosciences), PerCP-Cy5.5-

labeled anti-CD11c (N418, Biolegend), Pacific Blue-labeled anti-

Ly6C (HK1.4, Biolegend), BD Horizon-labeled CD11b (M1/70;

BD Biosciences) or anti-CD8 (53-6.7, BD Biosciences), after

blocking of Fc receptors with anti-CD32/CD16 (93, eBioscience).

Intracellular staining of iNOS was performed with anti-NOS2

(M-19, Santa Cruz) and DyLight 649-conjugated anti-rabbit IgG

(Jackson Immuno Research) according to the application guide-

lines of BD Bioscience. Anti-CCR2 (MC-21) was kindly provided

by Matthias Mack. Data were acquired using a FACSAria (BD

Biosciences) and analysed using the FlowJo software (Tree Star).

Leukocyte characterization was performed on gated CD45+ cells.

Leukocytes were further identified according to cell-specific

markers as listed in Table S1 in Text S1.

Innate immune cell isolation and Candida killing assay
For the preparation of exudate neutrophils and peritoneal

macrophages (Mphs), C57BL/6 mice were ip-injected with

0,5 ml 10% proteose peptone (Sigma, St. Louis, MO, USA)/

PBS. After 4 h (for neutrophils) or 3 days (for peritoneal

macrophages), the peritoneum was flushed with 7 ml PBS

containing 50 U/ml heparin to collect cells. For isolation of

resting Mphs, peritoneum of untreated mice was flushed. For

isolation of bone marrow resident neutrophils, bone marrow was

collected from mice. After lysis of red blood cells, samples were

separated on a discontinuous Percoll gradient: from bottom to

top 78%, 69%, and 52% Percoll (GE Healthcare). Gradient was

centrifuged at 15006g and 4uC for 30 min. Cells accumulating in

the interphase between the 78% and 69% Percoll layer were

collected as neutrophils. All different types of immune cells were

plated in RPMI supplemented with 10% heat-inactivated FCS

and used for co-culture with fungi.

For the in vitro Ca killing assay, innate immune cells were plated

in replicates at a density of 16105 cells/well of 96-well plates. Cells

were incubated with Ca at indicated MOIs and for indicated time.

After incubation, mammalian cells were lysed by addition of

Triton X 100 to a final concentration of 1%. After lysis, wells were

extensively scrapped, 26washed with PBS and surviving Ca was

determined by plating serial dilutions of the collected media and

washes in duplicates on YPD plates containing ampicillin (Sigma).

The percentage of killing was calculated according to the following

formulas (df = dilution factor):

% survival~df|cfu with immune cellð Þ

=df|cfu without immune cellð Þ|100

% killing~100%{percent survival

Intraperitoneal leukocyte recruitment
Male mice were injected intraperitoneally with 16107 Ca

colony-forming units (cfus). After 4–6 hours, peritoneal cells were

collected with sterile PBS, and the total cell number was assessed

in a CASY counter. Cells were stained for flow-cytometry analysis

with FITC-labeled anti-Ly6G (1A8, Biolegend), Pacific Blue-

labeled anti-Ly6C (HK1.4, Biolegend), and BD Horizon-labeled

CD11b (M1/70; BD Biosciences).

Reverse transcription and real-time PCR analysis
RNA sample preparation, reverse transcription and real-time

PCR were performed as described in the supplemental material.

Relative quantification was performed with the DDCt-method.

Expression level of the genes of interest were normalised to the

expression level of the housekeeping gene HPRT. Real-time PCR

data are expressed as fold increase of mRNA expression over

baseline levels (uninfected mice). All primers used in this study are

listed in Table S2 in Text S1.

Statistical analysis
Statistical analysis of data was performed using the Prism

graphing and analysis software (Graphpad). Survival data were

compared using the logrank test. Candida cfu data were analysed

using the non-parametric Mann-Whitney-test. Time-kinetic com-

parisons of WT and Ifnar12/2 mice data at every time point were

performed using Two-way ANOVA followed by a Bonferroni

post-test. Two-group comparisons were done with the Student’s t

test. In all cases, P,0.05 was considered significant. *p,0.05;

**p,0.01; ***p,0.001; ns, not significantly different.

Gene IDs
Bst2 (PDCA1): ENSMUSG00000046718, Ccl2: ENSMUSG-

00000035385, Ccl7: ENSMUSG00000035373, Ccr2: ENSMU-

SG00000049103, Cd4: ENSMUSG00000023274, Cd8a: ENSM-

USG00000053977, Cxcl1 (KC): ENSMUSG00000029380, H2-

D1 (MHC II): ENSMUSG00000073411, Havcr1 (KIM-1): ENS-

MUSG00000040405, Icam1: ENSMUSG00000037405, Ifna2:

ENSMUSG00000078354, Ifnar1: ENSMUSG00000022967, Ifn-

b1: ENSMUSG00000048806, Il1b: ENSMUSG00000027398,

Il6: ENSMUSG00000025746, Itgam (CD11b): ENSMUSG-

00000030786, Itgax (CD11c): ENSMUSG00000030789, Ly6c1:

ENSMUSG00000079018, Mapk14 (p38): ENSMUSG000000-

53436, Mpo: ENSMUSG00000009350, Nos2 (iNOS): ENSMU-

SG00000020826, Ptprc (CD45): ENSMUSG00000026395, Selp

(P-Selectin): ENSMUSG00000026580, Stat1: ENSMUSG0000-

0026104, Tnf: ENSMUSG00000024401

Supporting Information

Figure S1 The role of IFNs-I during experimental
candidiasis. (A) IFN-b release of WT or Ifnar12/2 BM-DCs

stimulated with Ca for 24 h. Data presented show the mean 6

SEM of 4 independent experiments. (B) Phosphorylated STAT1 of

lysates from WT or Ifnar12/2 BM-DCs stimulated with Ca for

2 h. Data presented is one representative of three independent

experimental repeats. Mice of the indicated genotype were iv

injected with a low dose of 0.56105 cfus Ca (C) or a high dose of

56105 cfus (D) and survival was monitored for a period of 21 days.

The data here are presented as Kaplan-Meier survival curves and

are from one experiment with a total number of 6 or 12 mice per

group, respectively. (E) Mice were injected with 0.56105 cfus Ca.

At indicated time points, Ca cfus in brain, spleen, and liver were

determined and expressed as cfus/g organ (n = 3 mice per group).
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Each symbol represents one mouse; horizontal bars indicate the

calculated median.

(TIF)

Figure S2 Immune cell recruitment to kidneys. Mice of

the indicated genotype were injected with a lethal dose of

16105 cfus Ca. At indicated time points, both kidneys were

collected. Kidney leukocytes were enriched and immune cell

populations characterized by multi-label flow cytometry. Graphs

show CD8+ T cells (A) and CD4+ T cells (B) as absolute numbers

per mouse kidneys (left panels) or as percentage of CD45+ cells

(right panels). Data presented show the mean 6 SEM of one

experiment with 5 mice per time point. (C) MPO concentrations

in kidney supernatants were measured by ELISA. Data presented

show the mean 6 SEM of four independent experiments (n = 8–12

mice per group).

(TIF)

Figure S3 Recruitment and activation of inflammatory
monocytes requires IFN-I signalling. (A) WT BM-DCs were

pre-treated with either an a-IFNAR1 blocking antibody or an

unspecific isotype control prior to stimulation with heat-inactivat-

ed Ca. After 24 h, CCL2 CCL7, KC, and MIP-2 release was

determined by ELISA or a multiplex bead array system. Data

presented show the mean 6 SEM of three independent

experiments. (B) Mice of the indicated genotype were injected

with a lethal dose of 16105 cfus Ca. At indicated time points, BM

was collected and total RNA analysed for gene expression of Ccl2

and Ccl7. Data presented show the mean 6 SEM (n = 4–5 mice

per group). (C) BM-DCs of the indicated genotypes or (D) WT

BM-DCs pre-treated with either an a-IFNAR1 blocking antibody

or an unspecific isotype control were stimulated for 24 h with

heat-inactivated Ca. Cells were stained for the inflammatory DC

markers iNOS, PDCA1, CD11c, and MHCII. For analysis and

histogram presentation only Ly6C+ cells have been gated. Solid

lines; staining of Ly6C+ cells after Ca stimulation; shaded

histograms; staining of unstimulated culture. Data presented show

representatives of two independent experimental repeats.

(TIF)

Figure S4 Pioglitazone attenuates inflammatory host
responses. (A,C) WT mice were injected with a lethal dose of

16105 cfus Ca and treated daily with 5 mg/kg pioglitazone. At

indicated time points, blood and kidneys were collected. (A) Blood

samples were analyzed for the percentage of inflammatory

monocytes (left) or granulocytes (right) in total WBCs. Data

presented show the mean 6 SD of one representative experiment

out of two independent repeats (n = 3–5 mice per group). (B) BM-

DCs were pre-treated with 100 mM pioglitazone overnight and

stimulated the next day with heat-inactivated Ca for 24 h.

Expression of iNOS was determined by intracellular staining.

For analysis and histogram presentation only Ly6C+ cells have

been gated. Solid lines; staining of Ly6C+ cells after Ca

stimulation; shaded histograms; staining of unstimulated culture.

Bar diagram shows the quantification of iNOS+ cells of total

Ly6C+ cells, mean 6 SD (n = 4). (C) Sera concentrations of IL-6

(left) were measured using ELISA. Kidney total RNA was analysed

for gene expression of Ccl2. Data presented show the mean 6

SEM (n = 5–6 mice per group). (D) BM-DCs were pre-treated

overnight with indicated concentrations of pioglitazone and

stimulated with heat-inactivated Ca the next day. After 24 h of

Ca co-incubation, KC and MIP-2 release were measured by a

multiplex bead array system. Data presented show the mean 6

SEM of 3 independent experiments. (E) Cytotoxic effect of

pioglitazone. BM-DCs were pre-treated with varying concentra-

tions of pioglitazone for 24 h and cell viability was determined by

live-dead staining of cells. Data presented shows one representative

of two independent experimental repeats. (F) WT or Ifnar12/2

BM-DCs were pre-treated with 100 mM pioglitazone overnight

and stimulated the next day with heat-inactivated Ca. After 24 h,

CCL2 release was measured by ELISA. Data presented show the

mean 6 SD of 3 independent experiments.

(TIF)

Text S1 Supplemental information, including 4 Figures
as well as 2 Tables and additional experimental
procedures.
(DOC)
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