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Abstract
Palatable foods lead to overeating, and it is almost a forgone conclusion that it is also an important
contributor to the current obesity epidemic - there is even talk about food addiction. However, the
cause-effect relationship between taste and obesity is far from clear. As discussed here, there is
substantial evidence for altered taste sensitivity, taste-guided liking and wanting, and neural
reward processing in the obese, but it is not clear whether such traits cause obesity or whether
obesity secondarily alters these functions. Studies with calorie restriction-induced weight loss and
bariatric surgery in humans and animal models suggest that at least some of the obesity-induced
alterations are reversible and consequently represent secondary effects of the obese state. Thus,
both genetic and non-genetic predisposition and acquired alterations in taste and reward functions
appear to work in concert to aggravate palatability-induced hyperphagia. In addition, palatability
is typically associated with high energy content, further challenging energy balance regulation.
The mechanisms responsible for these alterations induced by the obese state, weight loss, and
bariatric surgery, remain largely unexplored. Better understanding would be helpful in designing
strategies to promote healthier eating and prevention of obesity and the accompanying chronic
disease risks.
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1. Introduction
As the prevalence of obesity and diabetes continues to grow globally, particularly in
children and adolescents, and there are no efficient drugs available, emphasis on prevention
through nutrition and lifestyle has returned. However, to offer efficacious nutritional and
behavioral recommendations, we need a better understanding of how the intake of different
nutrients is controlled and how food choices are made. Specifically, what factors control
consumption of palatable foods that are typically rich in calories? Here we provide a brief
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review of current knowledge about the relationship between body adiposity and pleasantness
of sweet and fatty foods. We discuss the effects of calorie-restriction-induced weight loss
and bariatric surgery on the perception and pleasantness of sweet and fatty taste stimuli in
both preclinical and clinical studies.

It is thought that instinctual behaviors which are essential for survival have evolved over
millions of years and that their neural control mechanisms are particularly powerful [1,2].
Food reward has been suggested to provide the necessary motivation to engage in ingestive
behavior. Thus, food is a powerful natural reinforcer that out-competes most other
behaviors, particularly when metabolically hungry. Ingestive behavior consists of
procurement, consummatory, and post-consummatory phases [3] and each of these 3 phases
contributes to reward, which then can guide future behaviors. During eating, immediate,
direct pleasure is derived from mainly gustatory and olfactory sensations, driving
consumption throughout the meal until satiation signals dominate [4]. Berridge and Robinson
have parsed reward into separable psychological and neural components, liking, wanting,
and learning [5]. The characteristic orofacial expressions displayed by decerebrate rats [6]

and anencephalic infants [7] in response to sweet taste strongly suggests that the forebrain is
not the only brain area involved in experiencing the hedonic impact or liking of pleasant
stimuli. Berridge and Robinson [5] refer to these expressions as objective affective reactions
or implicit affect and to the psychological process as implicit ‘liking’. Besides neural
circuits in the hindbrain, the nucleus accumbens and ventral pallidum in the limbic forebrain
appear to be some of the other key components of the distributed neural network mediating
‘liking’ of palatable foods.

In humans, subjective liking can be assessed by questionnaires and visual-analog scales. In
the “Power of Food Scale” (PFS), appetite for palatable food items is estimated by asking
subjects how much they would like to eat certain foods when they were available, when they
are present in front of their eyes, and when they are actually tasted, but not ingested [8].
These three levels of proximity clearly generate different neural response patterns, involving
more or less visual, taste, and olfactory processing. To consciously experience and give
subjective ratings of pleasure from palatable foods (liking), humans very likely use areas in
the prefrontal and cingulate cortex [9].

Another component of reward is motivation or ‘wanting’. Typically, motivation comes to
fruition by “going for” something that has generated pleasure in the past through a learning
process – wanting what we like. However, wanting can also be dissociated from liking as
demonstrated by sodium-depleted rats ‘wanting’ hypertonic saline, a taste they had never
‘liked’ before and also by drug addicts that do no longer ‘like’ to inject themselves [10,11].
Dopamine signaling within the mesolimbic dopamine projection system appears to be a
crucial component of this process. Phasic activity of dopamine neuron projections from the
ventral tegmental area to the nucleus accumbens in the ventral striatum are specifically
involved in the decision-making process during the preparatory (appetitive) phase of
ingestive behavior [12,13]. In addition, when palatable foods such as sucrose are actually
consumed, a sustained and sweetness-dependent increase occurs in nucleus accumbens
dopamine levels and turnover [14–16]. Dopamine signaling in the nucleus accumbens thus
appears to play a role in both the preparatory and consummatory phases of an ingestive bout.
The nucleus accumbens shell is thereby part of a neural loop including the lateral
hypothalamus and the ventral tegmental area, with orexin neurons playing a key
role [2,17–24]. This loop is likely important for the attribution of incentive salience to goal
objects by metabolic state and other need signals available to the lateral hypothalamus, as
discussed below.
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2. Obesity is associated with alterations in taste-related food reward
behaviors and neural functions

It has long been suggested that, compared to normal weight subjects, obese subjects are
more sensitive to external (e.g. availability, clock, social context) rather than internal (e.g.
metabolites and hormones) signals related to the control of food intake [25,26], but the cause
and effect was not clear. Some of these investigators demonstrated that weight loss did not
change responses to visual and cognitive cue salience manipulation but that it did change
responsiveness to taste stimuli [27], suggesting that the former might be caused by
preexisting factors contributing to the development of obesity, while changes in taste
responsiveness might be influenced by the obese state. Since then, the hypothesis was
supported by some investigators [28–32], but not by others [33–35]. In one study, the use of
visual signal detection theory methodology showed that while there was no difference in
sensory sensitivity between obese and normal weight subjects, obese subjects had
consistently lower response bias [36].

The notion that responsiveness to taste stimuli is influenced by the obese state [27] coincided
with the first descriptions of cafeteria diet-induced hyperphagia and obesity in rodents [37]

and the idea that the palatability of a diet controls the body weight “set point’ [38]. Although
there are inconsistencies in the recent literature concerning the relationship between body
weight, taste responsiveness, and sugar consumption [39–41], it is possible that obesity-
induced or preexisting alterations in taste responsiveness and its associated changes in brain
reward processing could contribute to increased food intake and obesity. Consistent with this
idea are a number of observations in humans and rodents. For example, there were weak but
significant positive correlations between the maximal hedonic response to taste stimuli at
baseline and weight gain over the next 5 years in obesity-prone Pima Indians [42]. In animal
studies, we have shown that high-fat diet-induced obese Sprague-Dawley rats shift sucrose
and corn oil preference towards higher concentrations compared to chow-fed lean
controls [43]. Similarly, obese OLETF rats show greater preference for high sucrose
concentrations and less preference for low concentrations compared to lean control rats [44],
and taste neurons in the parabrachial nucleus of obese rats also showed a rightward-shift of
the sucrose concentration-response curve [45]. There is also a rapidly increasing number of
neuroimaging studies in obese humans showing altered neural processing in brain areas
associated with taste processing and reward functions ( e.g. [46–52] (and see [53] for recent
review).

In summary, existing evidence suggests that obesity is associated with alterations in taste
responsiveness and reward functions. Specifically taste responsiveness and reward
generation appear to be blunted in the obese compared with normal weight
subjects [43–45,49,52]. But the cause and effect is not clear.

3. Effects of calorie-restriction-induced weight loss on taste
responsiveness and food preferences

A simple initial approach to the question about cause or consequence is to test whether
obesity-associated alterations (compared with normal weight) can be reversed by weight
loss. Alterations that are reversed are more likely caused by secondary effects of the obese
state, while alterations not reversed are more likely preexisting traits that may partly be
causing obesity. It is clear that if non-reversible alterations are found, they need to be further
examined to distinguish true causative traits from irreversible secondary effects of the obese
state. Such additional preclinical and clinical approaches may include longitudinal studies,
particularly studies starting at an early age before there are any signs of obesity, and
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reassessment after development of obesity, as well as interventional studies testing specific
candidate mechanisms. To identify the role of early-life nutritional programing via
epigenetic and non-genetic mechanisms, studies in rodents have demonstrated that a
maternal high-fat diet can dysregulate neural systems involved in food reward in the
offspring [54–56]. Because of logistical problems with testing children at an early age and the
high costs of longitudinal studies, only few reports can be found in the literature. For
example, intensity ratings for sweetness in children of obese parents increased, with a
similar trend for rating of fatness [57]. After 6 months of family-based behavioral weight loss
treatment, obese but not normal weight children lost weight, reduced liking of foods high in
fat and/or sugar, and showed increased rating for foods lower in fat and sugar [57]. The
findings suggest that weight loss reversed the obesity-induced shift in preference towards
highly sweet and fatty foods, and emphasize the importance of testing a range of
concentrations. Similarly, after a 10 month weight reduction regimen, liking of fruits and
vegetables, breakfast foods, and calorie-reduced foods increased significantly, whereas
liking of animal products (presumably higher in fat and calories) decreased. Thus, liking and
presumably intake of low fat foods was positively and liking of high-fat foods was
negatively correlated with the decrease in body mass index [58]. Also, dieters, that could be
considered in a weight reduced state, rated high concentrations of sucrose solutions less
pleasant than non-dieters, both before and after an oral glucose load [59]. Finally, after 12
weeks of calorie-restriction-induced weight loss in Japanese women, sucrose sweet taste
threshold decreased from 0.59% to 0.22% and was correlated to the decrease in serum leptin
levels [60]. When using a relative scale for measuring sweet taste sensation, which takes into
consideration individual differences in the strongest sensation of any kind, it was concluded
that obese individuals report higher liking ratings for a given sweetness than normal weight
subjects, in spite of decreased perceived sweetness [61]. Thus, liking as a function of
sweetness increases more in obese subjects and more the higher the body mass index is.
While in underweight individuals (BMI < 18.5) there was no increase in liking with
increasing sweetness, but liking was particularly strong for high sweetness in the obese [61].
That obese subjects have reduced sweet taste perception has recently been confirmed [62],
but instead of significantly increased liking of sweet taste stimuli, these authors found
increased implicit attitude or ‘wanting’ towards sweet stimuli.

Studies in rodents yield similar observations. We have completed a series of studies in
outbred and genetically selected lines of obesity-prone (OP) and obesity-resistant (OR)
Sprague-Dawley rats [43]. We first compared chow-fed, lean with high-fat-fed, obese rats as
verified by measurements of body composition and circulating leptin levels. We found that
the obese rats shifted their sucrose and corn oil preference towards higher concentrations
compared with the lean rats, as measured by the brief access (10 s) lick test in the Davis Rig.
Specifically, obese rats licked significantly less for 0.01 and 0.03 M (0.34 and 1.02 %)
sucrose and for 0.06 – 4% corn oil, but licked significantly more for 0.3 and 1 M (10 and
34%) sucrose and for 64% corn oil [43]. We then calorie-restricted another cohort of high-fat
diet-induced obese rats by providing about 50% of the normal daily ration of high-fat diet
before dark-onset for 3 weeks and kept them at a reduced body weight ~100 g below their
obese level (and not significantly different from chow-fed rats) for another 2 weeks, by
providing about 70% of their pre-restriction level. Reassessment of brief access lick
performance during this weight-reduced plateau showed almost complete reversal of the
obesity-induced right shift of the concentration-response curves for both sucrose and corn
oil. In other words, weight-reduced rats behaved very similar to never obese, chow-fed rats,
suggesting that the alterations in the obese rats were secondary to the obese state and fully
reversible. The reversibility of the phenotype was further underscored by a renewed right-
shift when the restricted animals were again allowed unlimited access to high-fat diet [43].
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In separate experiments, we examined the effects of acute food deprivation and, although
food deprivation generally increased lick performance, the significantly lesser licking for
low concentrations of both tastants in obese rats was preserved [43]. These data suggest that
the signal responsible for the reversal of lick performance after weight loss is different from
signals generated by acute food deprivation. Because circulating leptin levels are
proportional to adiposity, and leptin has been shown to directly affect taste receptor cells
(see [63] for recent review), it is possible that a direct action of leptin on taste receptor
function underlies these changes in taste responsiveness. We thus administered leptin (1 mg/
kg, i.p.) or saline to our weight-reduced, formerly obese rats, 1-h before brief access testing.
As mentioned above, after control saline administration, these weight-reduced rats licked the
low sucrose and corn oil concentrations very eagerly, not much different from lean rats.
After leptin administration, the concentration-response curve was shifted to the right,
towards that seen in the obese state. Leptin significantly reduced responding to the lowest
sucrose and corn oil concentrations, but did not affect licking of the higher
concentrations [43]. Although consistent with a direct action of leptin on taste buds [64], these
findings do not rule out leptin action in the brain. That leptin can act in the brain, possibly
on the mesolimbic dopamine system to modulate food reward in general, and sweet reward
specifically, is suggested by a number of studies [65–68]. Most recently, using optogenetic
stimulation of dopamine neurons, it was demonstrated that leptin administration to the brain
reverses the fasting-induced increase in the value of sucrose [68]. However, there are other
potential signaling mechanisms besides leptin that could influence the rewarding effect of
palatable foods under conditions of obesity and weight loss. For example, circulating levels
of both insulin and the lower gut hormone GLP-1 are affected by obesity [69], and both have
been shown to modulate reward functions [70,71]. It is also known that GLP-1 can directly
modulate taste receptor cells, but it is not clear whether this is due circulating or locally
produced GLP-1 [72].

Interestingly, and in stark contrast to self- or experimenter-imposed caloric restriction,
patients with anorexia nervosa [73] or anorexia secondary to cancer [74,75] or cancer
treatment therapies [76–78], have generally lower gustatory and olfactory sensitivities that
improve with weight recovery and increasing body mass index. These observations suggest
fundamentally different mechanisms for causing the taste alterations.

4. Effects of bariatric surgery on taste responsiveness and food reward
functions

Given the difficulties in developing effective drugs, bariatric surgery has rapidly advanced
to the most effective treatment of obesity, and the volume of surgeries has steadily
increased [79]. Compared with available drugs and/or behavior and lifestyle changes, weight
loss after bariatric surgeries is more profound and sustained. For example, in the Swedish
Obese Subjects (SOS) study, average sustained weight loss, 15 years after Roux-en-Y
gastric bypass surgery, was 25%, while the mean weight change in an unoperated control
group was less than +/− 2% [80,81]. It also improved all traditional risk factors for diabetes
and cardiovascular disease and decreased overall mortality.

It appears that weight loss induced by bariatric surgery does not trigger the same strong
biological adaptive responses seen with dieting - decreased energy expenditure and
increased hunger [82]. Current hypotheses propose increased secretion of the lower gut
hormones GLP-1 and PYY as well as decreased levels of ghrelin and their actions on
peripheral tissues and on the brain as major candidate mechanisms in the beneficial effects
of at least Roux-en-Y gastric bypass surgery (e.g. [69,83,84]. It has been demonstrated that
these hormones have powerful effects on neural circuits controlling food intake through
homeostatic and non-homeostatic mechanisms (see [85] for recent review).
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The first indication that bariatric surgery might reduce food intake by effects on taste
responsiveness came from a study in severely obese subjects undergoing intestinal bypass
surgery, leaving the gastric volume intact [86]. One year post-surgery, patients had lost about
half of their body weight (~ 70kg) and reported daily calorie intake that was about half of
the pre-surgical level. They rated the pleasantness of 40% sucrose solution lower than before
surgery and lower compared to 10% sucrose, and this was not changed by a glucose load
before the taste test [86]. More recent studies using Roux-en-Y gastric bypass showed that
intake of sweets and high-calorie beverages, as well as milk and ice cream, was decreased at
6 and 24 months postsurgery, and to a lesser extent after gastroplasty [87]. In another study,
the recognition threshold for sucrose fell from 0.047 mol/L (1.6%) to 0.024 mol/L (0.8%) at
6 weeks, and 0.019 (0.65%) at12 weeks postoperatively [88]. At 6 weeks postoperatively, all
patients reported that foods tasted sweeter and they modified food selection accordingly [88].
There was also a trend for reduced taste acuity for sweet and salt as well as increased taste
acuity of bitter and sour in a similar study [89]. A decreased preference for fatty foods was
also noted after RYGB [90–92]. In a recent study, RYGB patients showed increased taste
sensitivity to low sucrose concentrations compared to normal weight controls, but they both
considered the same sucrose concentration as “just about right’ [93].

The observations in bariatric surgery patients prompted us to further examine taste
responsiveness and other food reward behaviors in our RYGB rat model, eventually
allowing more invasive analyses of the underlying mechanisms [94]. Using the brief access
lick test described above, we found that 3–5 months after RYGB surgery, the concentration-
response curves for sucrose and corn oil were not much different from chow-fed lean rats,
except that after RYGB there was a tendency for reduced licking at the highest
concentrations [95]. Similar RYGB-induced left-shifts in the concentration-response curves
for sucrose and corn oil were also observed in genetically select obesity-prone rats [95].
Thus, RYGB and calorie-restriction (see section 2 above) had very similar effects on taste
responsiveness as measured by the brief access test, suggesting that weight loss and its
consequences, such as reduced leptin levels, may be the major common mechanism.

While in humans, the hedonic value or ‘liking’ of taste stimuli or foods can be assessed by
explicit questioning, in non-humans, we can only measure implicit ‘liking’, e.g. by the taste
reactivity test that quantitates the positive hedonic orofacial reactions to the taste of
sucrose [96,97]. In this test, the sham-operated obese rats showed a right shift of the sucrose
concentration-response curve, with obese rats liking the lowest sucrose concentration
significantly less, but liking the highest sucrose concentration significantly more than chow-
fed lean rats [95]. The results obtained with the brief access test and the taste reactivity test
thus were similar. Three months after RYGB, the concentration-response curve shifted back
to the left. RYGB rats liked the lowest sucrose concentration of 0.01 M significantly more
than both sham-operated and chow-fed lean rats, but liked the highest concentration of 1 M
significantly less than the sham-operated obese rats. In fact, they liked all three sucrose
concentrations tested (0.01, 0.1, and 1.0 M) at an equally moderate level [95].

Our observations have recently been confirmed in other laboratories. Compared with sham-
operated rats, RYGB in obese OLETF rats reduces brief access lick performance and 24-h
two bottle sucrose preference for the highest sucrose concentrations [98]. Similarly, one
month after RYGB in chow-fed Sprague-Dawley rats, there was significant decrease in lick
performance for the highest, but not the lowest sucrose concentrations [99]. At the neuronal
level, there was a rightward-shift of the concentration-response curve of recorded pontine
parabrachial taste neurons after RYGB in OLETF rats [98]. Together, these findings confirm
obesity-related alterations in taste functions and the ability of RYGB to reverse these
impairments [98].
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As discussed above, changes in taste sensitivity in bypass patients seem to translate into
long-term changes in food preferences [88,90–92]. Can such changes in food selection also be
demonstrated in rodent models of bypass surgery? We provided RYGB and sham-operated
rats with a choice of two nutritionally complete diets, one low (10%) in fat and one high
(30% of energy) in fat. When two solid diets were available throughout the postsurgical
period starting one month after surgery, we observed a gradual decrease in fat preference
after RYGB [94]. Preference for a solid high-fat (60% energy) diet before surgery and in
sham-operated rats is generally between 95–100%, whereas after RYGB, preference
decreased to about 85% at 2 months, and to between 50–60% at 5–8 months
postoperatively [94,95]. Similarly, preference for a liquid high-fat diet as assessed in 12-h
tests, was only 20% at 5 months after RYGB compared to 55% in sham-operated rats [94].
Together, these results demonstrate that like humans, rats with gastric bypass surgery
change their eating habits by choosing less fatty and energy-dense foods, although the exact
mechanisms involved remain to be identified.

5. Conclusions and Perspectives
Healthy eating is an important strategy in preventing and treating chronic diseases, yet we
do not fully understand the physiological and psychological factors determining optimal
food choice. Taste sensitivity, the hedonic response to taste (palatability), and the
reinforcing value of taste are among these factors. The relationship between obesity and
these factors is reciprocal, with high palatability assisting hyperphagia and possibly obesity,
and the obese state secondarily altering taste sensitivity and hedonic processing. A review of
the literature suggests that in general, obese humans and rodents are less resoponsive to
sweet and fatty tastes and shift their preference to higher concentrations, thus further
aggravating hyperphagia. Furthermore, reversibility of this right-shift in the concentration-
response curve after weight loss suggests that it is due to secondary effects of the obese state
and is not necessarily a preexisting trait.

Understanding the behavioral alterations associated with obesity, weight loss, and bariatric
surgery is just the first step. An important second step is to understand the underlying
mechanisms. Because of space limitations, the above discussion has offered little
information regarding potential underlying mechanisms. Ultimately motivation and
behavioral choices, including the selection of foods, are guided by a complex neural
circuitry extending through most of the brain [100]. In particular, the midbrain dopamine
system, with its projections to the ventral and dorsal striatum, prefrontal cortex, amygdala,
hippocampus, and hypothalamus has been suggested to encode economic value of different
actions and the best option in a given situation [101,102]. This system appears to be crucial for
calculating the value of a particular food and making optimal decisions under given
circumstances [1]. It also provides the strong motivation or implicit wanting to obtain a goal
object such as palatable food. Operating at mostly subconscious levels, implicit wanting is
difficult to suppress with “will power”, as demonstrated in alcohol and drug abuse.

However, whether implicit wanting of palatable food is neurologically equal to the self-
destructive wanting of drugs remains to be determined. How this system interacts with
metabolic signals and the homeostatic regulatory systems in the brainstem and medial
hypothalamus has been recently reviewed [103,104]. Because leptin levels are closely
correlated with these body weight-dependent changes and are known to modulate taste
processing, leptin signaling is a potential mechanism. However, other changes in hormone
signaling, as well as changes in central proinflammatory signaling associated with obesity
and high-fat diets [105] are likely to play a role. An exciting prospect is that bariatric
surgeries may impinge on mechanisms of taste sensitivity and hedonic processing to
produce their powerful beneficial effects on body weight and chronic disease progression.
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However, the weight loss-independent contributions of such surgeries on taste perception,
hedonic processing, and reward generation remain to be demonstrated.
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Highlights

• Examines existing literature on taste sensitivity and food reward as affected by
obesity and weight loss

• Describes recent studies in rats with calorie-restriction-induced and gastric
bypass-induced weight loss

• Concludes that taste sensitivity and reward functions are influenced by both
preexisting traits and secondary effects of obesity
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