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Abstract
We explore the theoretical foundation of different string methods used to find dominant reaction
pathways in high-dimensional configuration spaces. Pathways are assessed by the amount of
reactive flux they carry and by their orientation relative to the committor function. By examining
the effects of transforming between different collective coordinates that span the same underlying
space, we unmask artificial coordinate dependences in strings optimized to follow the free energy
gradient. In contrast, strings optimized to follow the drift vector produce reaction pathways that
are significantly less sensitive to reparameterizations of the collective coordinates. The differences
in these paths arise because the drift vector depends on both the free energy gradient and the
diffusion tensor of the coarse collective variables. Anisotropy and position dependence of
diffusion tensors arise commonly in spaces of coarse variables, whose generally slow dynamics
are obtained by nonlinear projections of the strongly coupled atomic motions. We show here that
transition paths constructed to account for dynamics by following the drift vector will (to a close
approximation) carry the maximum reactive flux both in systems with isotropic position
dependent diffusion, and in systems with constant but anisotropic diffusion. We derive a simple
method for calculating the committor function along paths that follow the reactive flux. Lastly, we
provide guidance for the practical implementation of the dynamic string method.
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1. Introduction
The folding of proteins and their enzymatic catalysis are examples of reactions that proceed
in a high-dimensional configuration space from an initial reactant state to a final product
state. Reaction pathways aim to describe this evolution through configuration space and thus
to capture the mechanism of the reaction. In molecular simulations, finding an ensemble of
trajectories that travel along the entire reaction pathway from the reactant to product states is
hampered by the long times needed to sample these generally rare transitions. One method
for finding such transition trajectories is transition path sampling (see refs 1,2 and for more
recent advances refs 3–5). Transition path sampling and more recently transition interface
sampling6 help uncover the reactive trajectories connecting predefined reactant and product
states through importance sampling techniques.1,2,6,7 These microscopic transition paths are
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expected to be highly diverse in full configuration space (e.g., with respect to the exact
sequence of dihedral angle changes in a protein folding trajectory). However, one may hope
that in the projection onto a suitably chosen set of coarse variables these transition paths are
nearly coincident, and therefore a large fraction of these reactive trajectories are contained
within a narrow tube around a dominant reaction pathway.

In a well-chosen space, such a pathway represents the mechanism of the reaction, in the
sense that it describes the changes in key variables as the system progresses from a reactant
to a product state along typical trajectories. One could identify the reaction pathway for this
chosen set of coarse variables by projecting an ensemble of previously obtained transition
paths from the full configuration space onto this coarse space. Alternatively, one can
initially identify a set of coarse variables and then aim to directly (and more rapidly) sample
the reaction pathway in the much smaller space of these coarse variables.

Coarse collective variables are typically chosen to capture the slow dynamics in
(bio)molecular systems associated with reactive transitions. For example, typical solvent
motions and bond vibrations are rapid compared to, e.g., torsion angles that depend on
cooperative motion of multiple atoms. Global variables, such as those describing protein
folding or large conformational changes, tend to relax even more slowly. Such coarse
variables can be used as order parameters to report on the state of the system, and may also
serve as reaction coordinates in simplified dynamic descriptions designed to capture the
motions associated with large, slow, and rare transitions of macromolecules in a space of
reduced and manageable dimensions.

The choice of coarse variables can have important consequences on both the convergence of
pathway optimization algorithms and the interpretation of the results. Poorly chosen
coordinates do not accurately parameterize the committor,2,8,9 which is defined as the
probability for trajectories to proceed to a particular state, starting from a given point in
configuration or phase space. As a result of the dependence on unresolved slowly relaxing
degrees of freedom, estimators of both static and time dependent observables in the space of
coarse variables will converge poorly. Among the consequences (and thus indicators!) of
poor coordinate choices are hysteresis effects10,11 and large and often conflicting variations
in the estimated local free energy gradients or drift vectors. Resulting estimates of free
energy barriers tend to be inaccurate10,12,13 and misleading because the physically relevant
barriers are not resolved. The assessment and optimization of reaction coordinates by
exploiting the committor and related functions is thus the focus of intense ongoing
efforts.9,14–16,17,1819

Here we explore different approaches for constructing dominant reaction pathways in a
predefined space of coarse variables that are assumed to provide suitable reaction
coordinates. These pathways provide one-dimensional representations of molecular
reactions that serve as a basis for their mechanistic interpretation. In describing the slow
dynamics in terms of transitions we assume that the configuration space can be divided into
a set of identifiable states. For simplicity, we will focus on two states, reactant and product,
but many of the concepts can be extended to systems with a larger number of identifiable
states.

A variety of methods have been devised to find reaction pathways between two regions in
configuration space. Searches in the space of paths aiming to maximize the flux20,21 or the
path action22,23 result in boundary value equations where the reactant and product state must
be defined a priori. The advantage of the action maximization is in resolving motion over
arbitrary timescales, allowing one to identify motion also in the basins.22 However, the
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imposition of fixed end points constrains the evolution of the pathway and the results may
be sensitive to the initial guess of the path.

As a possible alternative, the string method avoids such problems.24,8 Given molecular
dynamics (MD) simulations in a large space (e.g., each atom’s coordinates) the string
method provides a flexible framework for identifying configurations along the pathway from
reactant to product states through a reduced space of coarse variables, and without the need
to impose fixed end points. The pathway is represented by an ordered series of
configurations connecting reactant and product regions. These configurations are iteratively
updated to converge onto distinct final reaction pathways in the coarse variable space. One
can use variants of the string method to find a minimum free energy path,25 a most probable
path,26 a maximum flux path,27 or a principal curve (as in the finite temperature string (FTS)
method28). As a major distinction, minimum free energy paths (MFEP)25 and principal
curves28 follow the free energy surface and do not consider the influence of coarse variable
dynamics on the reaction path, in contrast to the maximum flux path and the most probable
path.

Our main focus is on pathway optimization methods that take into account the dynamics of
sampling coarse variable space and aim to construct pathways that follow the reactive flux.
The dynamics of the coarse variables is assumed to be effectively diffusive, arising from
coupling between the underlying atomic coordinates, whether they obey Hamiltonian,
Langevin or Brownian dynamics in the full space. Therefore, no assumptions need be made
about the dynamics of the full coordinate space, as the string method is applied only to
subsets of collective variables. An ensemble of multiple short MD trajectories, starting from
a given initial condition in the space of coarse variables, can be used to determine the local
drift vector of the coarse variable dynamics.29 These trajectories need to extend beyond a
molecular time, in which the dynamics is dominated by fast inertial motions, to probe the
relevant slow “diffusive” motion in coarse variable space.29 This estimate of the local drift
has been used by Pan and Roux to update the string.26

There are two main reasons to use dynamic information in the construction of reaction
pathways with string methods. First, the coarse-graining in time typically employed in the
dynamic string method helps avoid getting trapped in local minima on a rough free energy
surface in the coarse space. Second, local variations in the dynamics can result in favorable
pathways redirected to pass through regions of higher diffusivity despite higher free energy.
The idea of the minimum free energy path not necessarily carrying the highest number of
reactive trajectories originated in early work by Berezkhovskii and Zitserman.30,31 These
authors pioneered the concept of saddle-point avoidance, where reactive trajectories
sacrifice free energy in exchange for faster mobility.

In many practical problems we expect substantial variations in the local diffusivity (or
friction), even for a reduced set of Cartesian coordinates. One such example is protein
folding, where the effective diffusivity of Cartesian-like coordinates such as the end-to-end
distance was found to be one to two orders of magnitude smaller in the compact folded state
than in the open unfolded state32. Relative motions of two groups on a protein chain tend to
be dominated by solvent friction in the unfolded state, and by internal friction in the folded
state, being hindered by the tight packing. In the case of protein folding, the assumption of
position independent diffusion in the Cartesian sub-space of the end-to-end distance vector
is thus clearly violated. Variations in diffusivity along coordinates also arise naturally in
studies of stochastic dynamical systems.33

In this article we characterize the pathway constructed to incorporate dynamic information
by following the direction of the average drift vector. We compare the flux and the
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committor q along this dynamic path (Figure 1), and distinguish it from the non-dynamic
paths of FTS and MFEP methods. These comparisons are also relevant for related paths that
were constructed without considering dynamic information, such as pathways determined
using metadynamics approaches.34 To establish the properties of these paths even in the
presence of non-constant, position dependent diffusion tensors we use coordinate
transformations between different coarse-grained representations of the same dimensions
(i.e., without averaging over coordinates). We start out in a system with constant diffusion,
and perform a coordinate transformation to define a new coordinate system where variables
will propagate with a position dependent diffusion tensor. Then, we compare the pathways
sampled in each coordinate representation with the knowledge that the underlying physical
systems are the same in both. This procedure helps unmask deficiencies in approaches in
which the “optimum” path shows artificial dependences on the chosen coordinate system.
We note that we are not comparing subspaces defined through different sets of coarse
variables, but rather pathways obtained for the same subspace but with different coordinate
representations related by linear or nonlinear transformations.

We first provide the theoretical background on the Smoluchowski equation for describing
the dynamics of the coarse variables and on the committor function. Next we derive how the
rules for transforming between two coordinate systems determine the relationship between
the paths in the presence of general position dependent diffusion. We show that the drift
path, unlike the MFEP or principal curve, follows the reactive flux within close
approximation, and that the FTS path, which follows the gradient, depends on the coordinate
representation of the system studied. We also derive an equation for calculating the
committor along paths following the direction of the reactive flux. In the results section we
provide numerical illustrations of the drift path for a selection of representative problems.
Finally, we discuss the dynamic string method in more detail and the effect of parameter
choice on the converged path.

2. Theory and Background
2.1. Diffusive Dynamics

2.1.1. Diffusion—We assume that a diffusion process accurately describes the dynamics in
the space of coarse variables. Accordingly, the Smoluchowski equation defines the
probability distribution p(x⃗) of the N-dimensional coarse variable positions x⃗ = (x1,…, xN)T

evolving in time

(1)

where the diffusion tensor D(x⃗) is a positive-definite symmetric matrix and in general a
function of the coordinates, peq (x⃗ ) = Z−1 exp(−βV(x⃗)) is the equilibrium distribution
normalized by Z, V(x⃗) is the potential, and β=(kBT)−1 is the inverse temperature T with kB
Boltzmann’s constant. The derivatives are denoted by the column vector

 and superscript T denotes the transpose. The dynamics of the coarse
variables that sample this probability distribution are defined by the stochastic equations for
(infinitesimal) time steps δt:

(2)
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The σ tensor35 can be obtained by a Cholesky decomposition, Dij = Σkσikσjk, and Rj are
uncorrelated Gaussian random variable with zero mean and unit standard deviation. The last
term defines the stochastic diffusive motion. The drift vector is defined by the first terms in
parentheses,

(3)

or in matrix notation, .

2.1.2. Committor—The committor function q(x⃗) has a central role in the characterization
of the reaction paths between reactant and product states.2,8 It defines the probability at each
point that the system will reach the product state first before reaching the reactant state, and
thus varies between zero and one. The surface of coordinates where q(x⃗)= ½ (i.e., the
isocommittor ½ surface) defines an ensemble of transition states. For the diffusive systems
studied here, the committor36 satisfies the steady state backward Kolmogorov equation

(4)

which is the adjoint of eq 1. The boundary conditions are q=0 in the reactant state, and q=1
in the product state. The quantity in parentheses is the drift vector component.

2.1.3. Reactive Flux—Another quantity central to the characterization of reactions is the

reactive flux,37  or in matrix notation,

(5)

jR measures the flux of trajectories that reach the product state before returning to the
reactant state, and as such is a subset8 of the total flux, defined as

(6)

At equilibrium in a diffusive system described by eq 1 the total flux j is zero because of
detailed balance, but the reactive flux jR is not as it travels in one direction. From eq 5 we
see that the direction of the reactive flux vectors is determined by D (x⃗)∂q/∂x⃗. This implies
that any path that follows the direction of the reactive flux also follows the direction of D(x⃗)
∂q/∂x ⃗. One implication is that for anisotropic D(x⃗), the reactive flux will not be
perpendicular to the isocommittor surfaces, as has been noted previously38 and is illustrated
in Figure 2a. This means that the paths traveling along the reactive flux are not proceeding
in the direction of the steepest increase in q to reach the product state. However, the speed of
motion along coordinate directions is accounted for in the reactive flux direction.
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2.2. Reaction Pathways
2.2.1. FTS and MFEP path—The FTS and MFEP are pathways obtained by the string
method with distinct update rules. The FTS path is constructed under the assumption that in
the low dimensional space of the chosen coarse variables, the dynamics, whether Langevin
or Brownian, has a constant diffusion coefficient. One samples the equilibrium position of
the coordinates in a constrained volume such as a Voronoi cell, and thereby follows the free
energy gradient between the product and reactant well but with less localized sampling.28

The MFEP25 is constructed under the assumption that the dynamics in the Cartesian space of
all positional coordinates was described by Langevin dynamics with a constant diffusion
coefficient for all coordinates. Then, under the additional assumption that the chosen
collective variables provide a good set of variables to describe the reaction, the collective
variable dynamics should obey eq 2 with the diffusion tensor replaced by a metric tensor.
This metric tensor accounts for the effects of the coordinate transformations on the
displacement along each coordinate. The MFEP then follows the new free energy gradient,
as transformed by the metric tensor. This method does not account for the dynamics of
sampling the coarse variable space because the dynamics does not arise strictly from
coordinate transformations, but depends in a generally complex nonlinear manner on the
dynamics of the original coordinates.

2.2.2. Maximum Flux / Minimum Resistance Path—Berkowitz et al.20 showed that
for a diffusive system with isotropic diffusion (Dij=D(x)δij), the path of maximum flux
satisfies the coupled differential equations

(7)

with s the arc length of the path and k the coordinate index. The derivation of this relation
assumes that the minimum resistance path (MRP) x⃗(s) in a Cartesian space follows the
direction of the flux and that the flux is constant along the path. While the constant flux
assumption is not generally true, it is nevertheless a reasonable approximation. Specific
boundary conditions are also required in this derivation, such that the flux leaves the reactant
state and arrives in a defined product state. The generalization of the MRP to systems with
anisotropic and position dependent diffusion is shown in supporting information S3.

2.2.3. Drift Path—The drift path is defined by using the averaged drift vector of eq 3 in the
coarse variable space. According to eq 2, for short times Δt an ensemble of trajectories
starting at a point x⃗(t) will on average drift by an amount Σj (−βDij∂V/∂xj + ∂Dij/∂xj)Δt in
each direction i. The drift term in eq 2 can thus be estimated by monitoring the
(deterministic!) displacement of the mean position29 from repeated simulations to average
out the effect of random diffusive motion (or initial conditions in phase space conditioned
on x⃗). In contrast to the MFEP, the physical diffusion tensor entering the average drift
describes the motion of the coarse variables as they sample their space. When diffusion is
isotropic and independent of the position x⃗, the drift vector will simply follow the direction
of the gradient. For general position dependent diffusion, the FTS, MFEP and drift paths
will differ. For details, see section 3.2.

For the case of isotropic diffusion, from eq 7 we see that the MRP follows the drift vectors if
one ignores the curvature term D(x⃗)d2 x⃗/ds2. The curvature term does cause deviations
between the MRP and the path following the drift vectors, because the MRP will not make
turns as sharply as the drift vector. In Figure 2b we provide an example comparing the MRP
(calculated using eq 7 above) with the drift path determined using the dynamic string
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method for a system with position dependent diffusion. The sources of deviation are
confined to regions along the path where the drift vector is relatively small but sharply
changing its orientation, such that the MRP will essentially cut the corners of the drift path
to maintain a smoother path between the fixed reactant and product end points. This makes
sense when considering that the drift vector depends only on the local energy surface and
diffusion tensor, not on the fixed end points.

We therefore assume that the drift path largely follows the path of maximum flux for the
isotropic diffusion case and below we will use coordinate transformations to extend this
condition to anisotropic diffusion. Also, because the drift path is aligned with the flux, it will
be roughly parallel to the reactive flux, assuming that distorting effects of the end-point
constraints arising from the choice of reactant and product states can be neglected. Eq 5 thus
also implies (assuming isotropic diffusion) that the drift path is roughly parallel to ∂q(x⃗)/∂x⃗.
This conclusion is consistent with previous work noting that in the subset of systems with
constant diffusion ∂V/∂x⃗ and ∂q(x⃗)/∂x⃗ are parallel,25,28 because for constant diffusion ∂V/
∂x⃗ would also define the orientation of the drift vector. In Figure 2c we provide an example
of the drift path for a rough28 Muller potential along with the isocommittor contours and the
reactive flux vectors.

Thus far we have considered properties of the drift path for the case of isotropic and position
independent diffusion. To examine how a non-constant diffusion tensor impacts the
properties of reaction pathways, we use coordinate transformations between physically
identical systems.

3. Effects of Dynamics on Reaction Pathways
3.1 Coordinate Transformation of the Smoluchowski Equation

With appropriately redefined potentials, corresponding equilibrium probability densities,
and diffusion tensors, the Smoluchowski diffusion equation retains its functional form eq 1
in two different coordinate systems.39,40 When transforming from Cartesian coordinates xi
to new coordinates zi(x1, x2, …, xN), the Jacobian matrix of the transformation,

, and the matrix of the back transformation ,
account for volume changes under coordinate transforms, which here amount to entropic

corrections. The fact that Jz (z⃗) = Jx (x⃗)−1 implies that  (with δik the
Kronecker delta). The role of the Jacobian term in transformations to nonlinear coordinates
has been discussed in several earlier works on free energy landscapes41–43 and transition
state theory, see e.g. 42,44,45. The supporting information section S1 details transformation
rules for the different quantities entering the Smoluchowski equation. With eqs S2, S5 and
S6, it is possible to determine how the committor, a path x⃗(s) with s its arc length, the flux,
and the drift vector will transform, both in orientation and in magnitude.

3.1.1 Flux Vector and Committor Transformations—Both the reactive flux and the
full-time dependent flux change their orientation and magnitude under a coordinate
transformation. Specifically, using the rules above we see that the flux transforms as

(8)

The relative magnitude of the flux at different positions thus changes if the determinant |Jz
(z⃗)| of the Jacobian is not constant, which is the case for nonlinear coordinate
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transformations. Their orientation transforms as a tangent vector (discussed further below),
leaving their direction invariant under coordinate changes. The committor function always
transforms as a scalar (q(z⃗) = q(x⃗)x⃗ = x(z⃗)).

3.2 Reaction Pathways Under Coordinate Transformations
Paths through coordinate space are one-dimensional curves that can be defined by the
coordinates along the path and the tangent vector to the path. The path can be conveniently
parameterized by its arc length along the curve s varying from zero to sf such that the
tangent to the curve is a unit vector given by dx⃗/ds. Under a transformation, the coordinates
of the original path in x-space can be directly shifted to the corresponding coordinates in z-
space. The path or curve is then redefined by transforming the tangent vectors at the
corresponding coordinates in the z-space via dz = Jx (x⃗)dx (i.e., these are contravariant
vectors40). This transformation by Jx (x⃗) is notable because it means that the vector in the z-
space basis is equivalent to the original vector in the Cartesian basis.

Critically, because the original path transforms as a tangent, any path that follows the
direction of the flux in x-space will continue to follow the flux in z-space, and vice versa.
Another important implication of these transformation rules is that if a path follows the
reactive flux in a system with arbitrary diffusion, it must follow the reactive flux and ∂q/∂x⃗
in the back-transformed system with isotropic diffusion (assuming the back-transformation
is possible40).

In the following, we study how the transformed original path relates to the new, z-space path
constructed to follow the gradient or the drift vector in the z-space, and in which way the
key properties of the new z-space path, where diffusion is not isotropic, differ from those of
the original x-space path.

3.2.1 Gradient Path—If the original x-space path followed the gradient ∂V/∂x⃗, as in the
FTS method, the corresponding transformed path will in general not align with the new
gradient path ∂Vz/∂z ⃗. This means that paths constructed to follow the derivative of the free
energy will depend on the choice of coordinate system. The new z-space gradient is related
to the original x-space gradient via

(9)

Again for linear transformations the second term on the right-hand side (RHS) will be zero,

but because the transformed gradient path is tangential to the vectors , the
new path following the gradient according to eq 9 is clearly different. The gradient path
transforms covariantly by the matrix Jz (z⃗)T, in the same way as the basis vectors (eq S1),
rather than by Jx (x⃗), as a tangent vector would.

One implication of this difference in transformation rules is that along the new gradient
descent path ∂Vz/∂z ⃗ is in general not parallel to ∂q/∂z⃗ and therefore not perpendicular to the
isocommittor surfaces. It would appear advantageous to construct paths that follow ∂q/∂z⃗ to
maximize the rate of increase in the probability of reaching the reactant state. However, in
general the gradient path follows neither ∂q/∂z⃗ nor the reactive flux for anisotropic diffusion
tensors. Even under a simple rescaling of the coordinates, the gradient path is not invariant
under coordinate transformations.
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3.2.2 Drift Path—As an alternative to the gradient path, we now consider the drift path
(Figure 1). The new drift vector in z-space is related to the original vector in x-space via

(10)

This transformation rule applies if the original system has isotropic diffusion. In general, for
a transformation from any arbitrary system with anisotropic position dependent diffusion,

the components k of the second term on the RHS of eq 10 become40 .

For a linear transformation, Jx (x⃗)is independent of position. As a result, the second term on
the RHS of eq 10 vanishes. The transformed original path has new tangent vectors defined
by Jx (x⃗)drift(x⃗)x⃗ = x(z⃗). Therefore the new z-space drift path aligns exactly with the
transformed original path. Because the flux transforms in the same way as the path (as a
tangent vector), the new drift path will follow the flux just as the original path did in x-
space. Also, because the flux changes magnitude uniformly everywhere (because |Jz (z⃗)| is
constant), the maximum flux path does not change and therefore the new drift path also
continues to follow the maximum flux.

For nonlinear transformations, the new drift path is shifted from the transformed original
path because of the second term on the RHS of eq 10. This means that for these
transformations the new path is not guaranteed to be aligned with the reactive flux.
However, in the examples considered below we find that the deviations tend to be small.
Therefore, the transformed drift path should still follow closely the reactive flux. To justify
this expectation, we note that the shift factor that produces the deviation (the second term on
RHS of eq 10) is independent of the potential surface being sampled, whereas the drift
vectors and the reactive flux are not. Hence only for shallow potentials where the path
follows drift vectors of relatively small magnitude will the shift factor have a sizeable
impact on the direction of the drift. In steeper potential valleys where the flux is more
concentrated and the magnitude of the drift vectors is accordingly larger, this shift will have
less effect on changing the drift path. For example, if we compared two systems with the
same potential and diffusion constant but at different temperatures, at the lower temperature
the drift vectors should be larger, with the impact of the shift therefore lessened, and the
differences between the old and new paths should be smaller. At high temperature the paths
will differ more, but the ensemble of reaction paths should then also widen, as the sampling
of the potential becomes less sensitive to small variations in the surface. This is illustrated
below in section 5.2.

Finally, under nonlinear transformations the Jacobian is not constant and the magnitude of
the flux also changes. This means that although the transformed original path still follows
the direction of the reactive flux, the length of the flux vectors have changed by |Jz (z⃗)| and
this could indicate that larger flux vectors are offset from the original path. Empirically, this
change in magnitude seems to increase the size of the flux vectors in the direction opposite
to the shift in the shift of the drift vector, suggesting that even if the new path aligns with the
reactive flux, an optimized path would be displaced to follow the larger flux vectors. One
hypothesis for an improved path is to follow the contravariant drift vector introduced by
Graham39 instead of the normal drift. If the determinant of the diffusion tensor is
independent of position, this amounts to following
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(11)

in z-space (otherwise, additional corrections enter). Eq 11 is further motivated by the
observation that out of all the paths following the reactive flux (eq 5), assuming that
variation in the magnitude of D ∂q/∂z⃗ is small relative to variation in peq, the path with the
highest probability defined by exp(−βVz(z)) should have the largest flux. Hence, this would
be the path defined by D ∂q/∂z ⃗ that also follows the minimum of βVz(z), or the vector in eq
11. However, there is no simple algorithm for constructing this path, as multi-dimensional
position dependent diffusion tensors are not trivial to extract from simulations, although
examples46–48 demonstrate it is certainly possible. Most directly, one can estimate D from
the covariance matrix of the endpoints of the ensemble of trajectories run for a time Δt to
construct the drift path, Dij ≈ cov(xi, xj)/2Δt.

4. Committor Along the Path
Along a converged drift path, we can estimate the value of the committor q using an
analytical approximation. We first solve eq 5 for the gradient of q and project the gradient
onto the reactive flux vector. An infinitesimal change of q along the path then becomes

. Here we assumed that the drift path points in the direction of the
reactive flux jR. If we further assume that the magnitude |jR| of the flux is constant along the
path (as was assumed also in the construction of the MRP20), we obtain an approximate
expression for the committor along the path,

(12)

where D−1(s) = tTD−1(s)t with t a unit tangent vector of the drift path at arc-length s, and
peq(s) ∝ exp(−βV(s)). Eq 12 generalizes earlier results,8 applies to any path that follows the
reactive flux, such as the drift path, and is exact for one-dimensional systems (as has been
previously noted9,49). The potential V(x⃗(s)) = V(s) along the path can be obtained by
integrating its gradient, i.e., the mean force, which can be estimated, e.g., from harmonically
restrained simulations (see, e.g., ref 50). In supporting information section 2 we provide an
alternative derivation of eq 12 starting from eq 4 and under slightly different assumptions.

In Figure 3 we compare the committors calculated along different paths using eq 12 with the
full solutions to the 2D committor equation (eq 4). The agreement is very good, with only
small deviations for the rough Muller potential, suggesting that the approximations made in
the derivation of eq 12 are reasonable.

5. Results and Discussion
5.1. Linear Coordinate Transformations

We first study the double-well potential defined in ref 38 and pictured in Figure 4a. For this
system, the MRP and the drift path are in excellent agreement. We then perform a linear
transformation to a stretched coordinate system, z1=αx1 and z2=x2, with α=5 (Figure 4b). In
this stretched coordinate system, the diffusion tensor is still diagonal but anisotropic, such
that D11= α2, and D22=1. The determinant of the Jacobian is a scalar, α−1, and drops out of
both the committor equation and the Smoluchowski equation. Hence the potential V
sampled in z-space is not modified from the one sampled in x-space (except for a constant
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shift factor). As we noted above for linear transformations, the new drift path follows the
transformed original path, and the magnitude of the flux changes uniformly everywhere.
Therefore, the new drift path is parallel to the reactive flux direction D ∂q/∂x⃗ and follows the
maximum flux path (as it did in the original x-space).

For completeness, we note that the MRP defined by the differential equation of Berkowitz et
al.20 does not simply transform as a tangent vector, and therefore does not align exactly with
the transformed original MRP. Since the flux itself does transform as a tangent and in this
example |Jz (z⃗)| is constant, this means the MRP is no longer in complete agreement with the
maximum flux path. This inconsistency in the behavior of the MRP under transformation
appears to be due to the curvature constraints on the path resulting from fixed boundary
points and the assumption that the flux along the path is constant.

5.2. Nonlinear Coordinate Transformations
To demonstrate the properties of the drift path in a system with general position dependent
diffusion, we start from an x-space system with constant diffusion sampling the Muller
potential, shown in Figure 5a (defined, e.g., in ref 27). In one nonlinear transformation of the
Muller potential, we define z1=(x+3)(y+1) and z2=y. This transformation results in a
position dependent Jacobian and diffusion tensor in z-space. However, in this example
(Figure 5b) the new drift path does in fact align exactly with the transformed original path

because the second term on the RHS of eq 10 vanishes, . Therefore in this case
the new drift path follows the reactive flux just as the original path did. However, the
magnitude of the flux did change because |Jz (z⃗)| is position dependent. So again, the larger
flux seems to be shifted slightly away from the transformed drift path.

In another example, we perform the nonlinear transformation, z1=(x+2)2 and z2=(y+1)2

(with x>−2 and y>−1). In this case, from eq 10 we see that the direction of the new z-space
drift path is shifted from the transformed original path by the constant vector

 in the z1 and z2 directions. As we noted above, this shift factor is
independent of the temperature. When we compare the new drift path and the transformed
original path at a relatively low temperature kBT =9 creating a barrier of ~9kBT, they are
nearly the same, and both closely follow the features of the potential surface (Figure 5c).

By scaling this Muller potential by a factor of 0.18, we create a much shallower potential to
start with, such that the barrier is only ~1.7kBT (Figure 6a). For this system the direction of
the reactive flux is less sensitive to the shallower potential surface and the MRP will actually
pass through the saddle region at very slightly higher energy (even with constant diffusion)
to maintain lower curvature of the path. After performing the same coordinate
transformation as above, the new drift path is slightly offset compared to the transformed
original path (Figure 6b). With the increased width of the high flux region, both paths appear
to follow the reactive flux fairly accurately. However, regions of large reactive flux are
shifted in the opposite direction compared to the new drift path. We note that this higher flux
path appears to agree well with the path postulated above in eq 11.

5.3. Isotropic, Position Dependent Diffusion
In Figure 2b we used an example system where the diffusion tensor is position dependent
but isotropic, as defined in ref 51. This system provides an example of saddle-point
avoidance, where the paths carrying the maximum flux avoid the lowest energy region of the
transition surface because the diffusion is slowed there. This diffusion tensor is imposed,
rather than resulting from a coordinate transformation, such that a position independent
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diffusion cannot be obtained through a variable transformation.40 However, because the
diffusion is isotropic, the drift path will still follow the maximum flux. The small deviations
between the MRP and the drift path in Figure 2b are due to the lack of curvature constraints
imposed on the drift path.

6. Implementation of Dynamic String Method
A possible implementation of the dynamic string method has been described elsewhere.26

Here we comment on the role of the algorithm parameters in defining the final path. To
briefly summarize the method (see also Figure 1), an initial string is defined between
proposed reactant and product states by connecting a series of configurations through, e.g.,
interpolation. Following ref 29 each point along the string is initialized by drawing all
degrees of freedom from equilibrium distributions conditioned on the coarse variables (see
Section 6.3). From such configurations, multiple trajectories are launched without
constraints and run for a time Δt. The difference between the average final position and the
initial position, divided by Δt, is used as an estimate of the drift vector. The points along the
string are moved along these vectors to their new positions. The string is then
reparameterized to maintain equal arc length segments between the points (or images) along
the string. The string endpoints can be updated to refine their positions.

6.1. Convergence Parameters
The major parameters to choose when implementing the algorithm are the number of images
along the string, the number of trajectories to run from each image, the number of iterations
to converge to the final string, the time length Δt of the trajectories, and any smoothing or
curvature constraints on the string shape. The first three parameters listed largely control the
convergence of the string. Beyond a certain limit, additional images, trajectories, or
iterations will not significantly alter the location or shape of the final string. If too few
images along the string are used, the final path will capture only the major features defining
the flux. The resolution can be improved by adding more images to a converged string. Too
few trajectories will introduce noise into the drift vector estimates and slow down the
convergence of the string.

6.2. Time Resolution of the Path
The time length Δt of the short MD trajectories is the most important parameter in defining
the final drift string. Changing the time length of the drift trajectories can change the
location of the final converged string. However, the effect of trajectory length on the final
string is predictable. This dependence on the length of the drift is consistent with defining
the mechanism of the reaction over a specific coarse-grained time resolution. Short
trajectories resolve faster motions and therefore more features of the potential surface. For
very long trajectories, the images along the string will have sufficient time to reach, or
nearly reach, the minima on the free energy surface. As a result, all images will pull the
string towards either the reactant or product state, and the reparameterized string will stretch
linearly from one state to the other. For intermediate lengths this pulling will be less
pronounced and more localized, allowing the string to cut corners in shallow regions of the
energy surface. This smoothing or pulling of the string is similar to adding a curvature
constraint on the strings’ shape.

In the numerical example systems, the true dynamics of the systems was diffusive, and as a
result, the shortest possible trajectories still followed the direction of the drift vector.
However, when running simulations from full molecular systems, trajectories that are too
short will not allow the atomic degrees of freedom coupled to the collective variables
enough time to relax, preventing the coarse variables from ‘drifting’ to their new position.
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Hence the trajectory lengths for biomolecular systems cannot be taken arbitrarily small, and
Δt should be chosen appropriate for the system and coordinates to sample the relevant
diffusive dynamics, not the underlying inertial dynamics.

6.3. Numerical Simulation Methods
Simulations of the example systems were run by propagating eq 3 with a time step of
δt=10−4. Convergence of the string was checked by comparing the final string every 1000
iterations. Generally between 2000–5000 iterations were needed, depending on the potential
(which were performed here without attempts to optimize the computational efficiency). The
initial string was created as a line that did not need to start and end in the reactant and
product state, as the algorithm will update these positions along the string. The drift vectors
were collected from trajectories that ran for Δt =5–10δt from each image along the string.
The number of trajectories launched from each image was ~20–30, although higher numbers
were tried and results were not sensitive to the number of trajectories used. Around 30–50
images were used to determine the string, with more images being used for strings with
longer arc length. In the particular examples, we found that including substantially more
string images only introduced more noise in the sampling of the string rather than resolving
any additional features of the energy surface. At every iteration of the string update, each
image is moved along the direction of the drift vector a distance Δτ towards its new
location. This stepsize Δτ is similar to an overrelaxation parameter and can be much larger
than δt. It was set at values of ~0.05, although the results were not sensitive to this stepsize.
Simulations with Δτ=0.01, or 0.1 produced the same path, although for smaller Δτ more
iterations were needed.

The committor function (eq 4) was calculated numerically using the PDE toolbox of
MATLAB. To define the reactant and product state for the committor calculation, small
ovals were centered at the known basin minima. Neumann boundary conditions set to zero
were used for the edges of the coordinate domain. The MRP (eqs 7 and S14) was determined
using the boundary value solver in MATLAB. The reactive flux was calculated from the
numerical derivative of the committor function using eq 5.

6.4. Initializing the String Images
In practice, the space spanned by x is only a subspace of the full configuration space, such
that initial conditions have to be obtained by equilibration conditional on x, and trajectories
have to be projected onto x. Before multiple trajectories can be launched from each image
along the string, multiple configurations representing each image must be generated. This
can be accomplished by running simulations at each image where the coarse variables are
constrained (or restrained) to their current values, but the other degrees of freedom are
sampled from a conditioned equilibrium distribution.

7. Concluding Remarks
Reaction pathways through the conformational space of complex (bio)molecular systems
provide mechanistic insight into transitions of configurations and the rates of such
transitions. The reactive flux provides a basis for defining a reasonable transition path that
captures where most reactive trajectories will pass through configuration space. To construct
pathways that follow the reactive flux, we advocate the use of the dynamic string method.
For the cases of position independent anisotropic and position dependent isotropic diffusion
the resulting paths follow the direction of the maximum reactive flux and are independent of
the particular choice of coordinate representation in a given coarse variable space. Even for
cases with general diffusion tensors, we find that the resulting string remains close to the
direction of the reactive flux, with larger deviations expected for shallow potentials.

Johnson and Hummer Page 13

J Phys Chem B. Author manuscript; available in PMC 2013 July 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In contrast, reaction paths constructed to follow the free energy gradient vary artificially
with the coordinate representation and follow the reactive flux only for systems with
constant and isotropic diffusion. Paths constructed to follow the MRP would be an
improvement over these free energy paths, but finding the MRP is problematic as it solves a
boundary value problem that requires fixed end points and is sensitive to the roughness of
the potential surface.

The practical implementation of the dynamic string method is straightforward. By following
the averaged drift vector to update the string to convergence, the dynamic string method is
able to avoid local small traps on the free energy surface, similar to the FTS method and in
contrast to pure gradient based methods like the original string method and differential
equation based methods21 like the MRP. It also does not require fixed reactant and product
states but can move the string to locate these end points of the path. For relatively flat or
shallow regions of the energy surface, the FTS method of sampling the equilibrium position
results in noisy estimates of the local string position. The dynamic string method, however,
reduces this noise by following the drift vector. By averaging the drift over many
trajectories, small traps on the energy surface can be avoided. As a result, the path is more
sensitive in locating end states within wide basins, but not so sensitive as to become trapped
in local minima. Importantly, because the drift vector combines the effects of both the free
energy gradient and the local diffusion tensor, the diffusion tensor does not need to be
explicitly constructed from the simulations; in contrast, the MFEP requires the explicit
construction of the metric tensor for the path updates. The dynamic string method does
require choosing the length of the trajectories that define the drift vector and this can affect
the shape of the converged path, as discussed in Section 6.2. However, this parameter can be
interpreted as controlling the time resolution of the path in terms of the types of motion it
captures, and is somewhat analogous to the choice of force constants needed to constrain
images in the MFEP method.

The drift path is shaped by local features of the potential surface and unlike the reactive flux
does not rely on defining specific reactant and product states. While this is an advantage in
locating the path from unknown starting and end states, it excludes any curvature effects on
the shape of the path. The effect of curvature in shaping the path is more apparent in regions
where the path changes direction, and for potentials that are relatively shallow. A curvature
constraint can be included in the updates of the string path, as described in ref 28, which will
also help smooth the path.

We demonstrated that for any path following the reactive flux the committor along the path
can be obtained by integration, eq 12. The behavior of the committor is dominated by the
variation in the unscaled potential along the path, which appears in the exponential rather
than as a scale factor like the diffusion tensor. The results for calculating the committor
along the path do not apply to the minimum free energy paths or the FTS path, except in the
case of constant diffusion, because in general these paths do not follow the reactive flux.
Finally, we note that even paths constructed to follow the reactive flux do not necessarily
provide an optimal one-dimensional reaction coordinate for calculating free energy barriers
and transition rates when the reaction rate is controlled by travel through the saddle region.
The gradient of this optimal one-dimensional reaction coordinate follows that of the
committor, in particular near the transition point.38 In the case of anisotropic diffusion this
direction is not coincident with the reactive flux or the free energy gradient, but can be
estimated via eq 5 from the reactive flux and the local diffusion tensor.

In conclusion, pathways following the gradient of the free energy only account for structural
or energetic changes in conformations, and are not invariant under simple
reparameterizations of the collective variables used in their construction. As a practical
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alternative, the drift path is less sensitive to reparameterizations and, in addition, includes
relevant dynamic information. Even if it does not perfectly track the reactive flux in all
systems, the drift path captures the effects of both structure and mobility in the dominant
reaction pathway.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic of dynamic string method. Multiple trajectories launched from the initial string
images (blue circles) end at the black points. The averages of these end points determine the
directions of the drift vectors (black arrows), and the new string images (purple circles) are
moved in the direction of the drift vectors. This new string would then be reparameterized to
achieve equal arc lengths between each pair of images along the string, where the total arc
length of the string is free to change at each iteration.
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Figure 2.
Illustrative examples of reactive fluxes, committors and reaction pathways. a) Directions of
the reactive flux (black arrows) and normal to isocommittor surface (red arrow), with
isocommittor contours from q ≈ 0 in brown to q ≈ 1 in tan, and isoenergy contours in
rainbow colors (blue to red for low to high energies). The dot-dash cyan line indicates the
minimum energy path. b) Saddle point avoidance in the presence of position dependent
isotropic diffusion, with the diffusion coefficient increasing radially from the saddle (black
and gray contours). The highest flux path (MRP shown in magenta and the drift path shown
in blue) travels through a region with slightly higher energy than the saddle where diffusion
is faster. c) The drift path, shown in blue and calculated on this rough Muller potential28

using the dynamic string method, indicates a transition route from a reactant to a product
state that captures the behavior of most reactive trajectories. A possible single reactive
trajectory is shown in black. This example also demonstrates the ability of the drift path to
avoid getting trapped in small local minima on this rough surface.
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Figure 3.
Committor along the path as a function of arc length s. a) For the potential shown in Figure
2a, the committor along the drift path is calculated using eq 12 (blue curve), and the solution
to the full committor equation (eq 4) is shown at each point along the path in red. b) The
approximate and exact committors along the drift path are compared for the rough Muller
potential shown in Figure 2c.
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Figure 4.
2D double-well potential with isotropic and anisotropic diffusion. a) Isotropic diffusion with
D=1. For this potential38 the drift path (blue) and the MRP (magenta) are in nearly exact
agreement. The isocommittor surfaces capture the progress of the reaction from the reactant
state and on the left, to the product state on the right, with brown and tan indicating q ≈ 0
and q ≈ 1, respectively. The reactive flux is shown as black arrows. In the simulations the
diffusion is constant (D=1) and the barrier height is 4.84kBT from well to saddle. b)
Anisotropic diffusion. Dashed lines are transformed paths; solid lines were calculated in the
transformed coordinate system. After a linear transformation stretching the x coordinate by a
factor of 5, the new drift path (solid dark blue) aligns with the transformed original path
(dashed magenta MRP curve from (a)). The gradient path obtained in the transformed
coordinate system is shown in cyan, and the corresponding MRP calculated with eq S14 is
shown in solid magenta. The reactive flux is no longer perpendicular to the isocommittor
surface, nor are any of the paths.
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Figure 5.
Nonlinear transformations of the Muller potential. a) In the original coordinate system the
simulations are run with diffusion constant D=1 and kBT=9. The MRP in magenta and the
drift path in blue are in close agreement. b) After the nonlinear transformation indicated by
the axis labels, the diffusion tensor is now position dependent. Dashed lines are transformed
paths, and solid lines are paths calculated in the new coordinates. Here the new drift path
(solid dark blue) aligns with the original path (dashed blue) because the shift factor in eq 10
is zero. The new MFEP path calculated for a string following the gradient at kBT=9, shown
for comparison in solid red, does not follow the reactive flux. c) For the nonlinear
transformation indicated by the axis labels, the shift factor is not zero. As a result, the new
drift path (solid dark blue) will not align exactly with the original drift path (dashed blue),
but the effect of the shift is small relative to the magnitude of the original drift vector, and
therefore the paths still closely align. The transformed original MRP is shown in dashed
magenta. The magnitude of the flux has not changed significantly and both paths still appear
to pass through the regions of highest flux.
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Figure 6.
Shallow Muller potential. a) Results for a Muller potential scaled by a factor of 0.18 with a
barrier of ~1.7kBT, D=1 and kBT=9. Because of the shallowness of the potential, the MRP
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(solid magenta), even in this constant diffusion case, cuts across the potential rather than
hugging the lowest energy points of the surface. The drift path (solid blue), however, still
follows the lower energy region. b) Results for a coordinate transformation as in Figure 5c.
Here the small shift in the drift vector is discernable as differences of the drift path (solid
blue) relative to the transformed original path (dashed blue). The green arrows are the drift
vectors in the transformed coordinate system.
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