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Summary

During pathogenesis of diabetes, pancreatic islets are exposed to high levels of
cytokines and other inflammatory mediators that induce deterioration of
insulin-producing beta cells. Macrophage migration inhibitory factor (MIF)
plays a key role in the onset and development of several immunoinflamma-
tory diseases and also controls apoptotic cell death. Because the occurrence of
apoptosis plays a pathogenetic role in beta cell death during type 1 diabetes
development and MIF is expressed in beta cells, we explored the influence of
MIF deficiency on cytokine-induced apoptosis in pancreatic islets. The results
indicated clearly that elevated MIF secretion preceded C57BL/6 pancreatic
islets death induced by interferon (IFN)-g + tumour necrosis factor (TNF)-
a + interleukin (IL)-1b. Consequently, MIF-deficient [MIF-knock-out (KO)]
pancreatic islets or islet cells showed significant resistance to cytokine-
induced death than those isolated from C57BL/6 mice. Furthermore, upon
exposure to cytokines pancreatic islets from MIF-KO mice maintained
normal insulin expression and produced less cyclooxygenase-2 (COX-2) than
those from wild-type C57BL6 mice. The final outcome of cytokine-induced
islet apoptosis in islets from wild-type mice was the activation of mitochon-
drial membrane pore-forming protein Bcl-2-associated X protein and effector
caspase 3. In contrast, these apoptotic mediators remained at normal levels in
islets from MIF-KO mice suggesting that MIF absence prevented initiation of
the mitochondrial apoptotic pathway. Additionally, the protection from apo-
ptosis was also mediated by up-regulation of prosurvival kinase extracellular-
regulated kinase 1/2 in MIF-KO islets. These data indicate that MIF is involved
in the propagation of pancreatic islets apoptosis probably via nuclear
factor-kB and mitochondria-related proteins.
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Introduction

Type 1 diabetes (T1D) is characterized by the progressive loss
of beta cells due to autoimmune attack and consequent
inflammation. Although the induction of autoimmunity
involves the adaptive immune system, innate effector cells
(monocytes/macrophages, dendritic cells, natural killer cells,
natural killer T cells and gd T cells) are important in priming
or promoting autoimmune response [1]. All these islet-
infiltrating as well as resident cells produce cytokines
[tumour necrosis factor (TNF)-a, interleukin (IL)-1b, IL-17,
IL-18, interferon (IFN)-g] and other proinflammatory
mediators (reactive oxygen and nitrogen species) that induce

dysfunction of beta cells, and ultimately apoptosis (reviewed
in [2–4]).

Under the influence of cytokines, pancreatic islets follow
two pathways of apoptotic death that are either nuclear
factor (NF)-kB- [5–7] or mitochondrial-driven [7,8]. NF-kB
is an important transcription factor that induces production
of cytokines (such as IL-1b), death receptors, chemokines,
prostaglandins and nitric oxide (NO) that can provoke beta
cell death in either autocrine or paracrine fashion [6,7].
Prostaglandin E2 (PGE2) is implicated in cytokine-mediated
beta cell dysfunction and diabetes development, as selective
inhibition of cyclooxygenase-2 (COX-2) (the key enzyme for
prostaglandin biosynthesis) attenuates the development of
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immunoinflammatory diabetes induced by multiple low
doses of streptozotocin [9] and protects rat islets from
cytokine-induced inhibition of glucose-stimulated insulin
secretion [10,11]. NO is another proinflammatory mediator
that is thought to be detrimental for beta cell function and
survival in the inflammatory settings during T1D, as it has
been demonstrated by the anti-diabetogenic efficacy of spe-
cific antagonists of inducible NO synthase (iNOS) in several
models of T1D [12]. The final outcome of NF-kB-driven
apoptotic pathway is similar to the mitochondrial pathway,
as it includes mitochondrial permeabilization and caspase
activation leading ultimately to cell death [13,14]. Mitochon-
drial pathway is governed by the Bcl-2 family of proteins that
includes Bcl-2-associated X protein (BAX) – a mitochon-
drial membrane pore-forming protein. The leakage of pro-
apoptotic proteins into cytoplasm initiates a downstream
cascade of apoptotic events that leads eventually to activa-
tion of effector caspase 3 and cleavage of vital cell proteins
[14].

Conversely, one of the molecules that play a crucial role in
preserving beta cells from various detrimental stimuli is
extracellular signal-regulated kinase 1/2 (ERK1/2). Activa-
tion of this kinase seems to sustain beta cell survival and/or
growth in response to glucose or serum [15,16].

One of the potentially deleterious molecules for beta cell
function is macrophage migration inhibitory factor (MIF).
MIF is a pluripotent cytokine involved in microbe eradica-
tion, promotion of inflammation (through up-regulation of
proinflammatory cytokines and prostaglandins), regulation
of glucocorticoid action and glucose metabolism [17–19].
Because of its role in propagating inflammation, MIF is
involved in the pathogenesis of several inflammatory condi-
tions, including T1D [20]. Evidence indicates that disease
incidence in non-obese diabetic (NOD) mice treated with
recombinant MIF is highly increased, while MIF deficiency
or inhibition protects mice from streptozotocin-induced
diabetes [20–22]. Apart from evident production in various
immune cells, MIF is also produced by beta cells and local-
ized within insulin secretory granules [23].

Both pro-apoptotic and anti-apoptotic effects were
observed in the circumstances of excessive concentration of
MIF [24–30]. Regarding the impact of MIF on beta cell
death, our recent results confirm that innate MIF deficiency
conveys a resistance to palmitic acid-induced apoptosis
through inactivation of the caspase 3-dependent pathway
[30]. In addition, cultured MIF-deficient [MIF-knock-out
(KO)] islets exhibit a better survival rate both after trans-
plantation and in vitro compared to wild-type (WT)
islets [31]. As we have shown previously that in vivo MIF
inhibition or innate mif gene deficiency ameliorates
streptozotocin-induced T1D development in C57BL/6 mice
[22,32], the aim of this study was to investigate the in vitro
role of MIF in cytokine-induced apoptosis of pancreatic
islets by using MIF-deficient (MIF-KO) islets. In addition, we
compared the expression of proinflammatory mediators,

pro-apoptotic and pro-survival molecule(s) in the islets
obtained from WT and MIF-KO mice under cytokine
stimulation.

Methods

Animals

The generation of homozygous mif gene-deficient (MIF-
KO) mice (background: C57BL/6) has been described else-
where [33]. The mice were further bred using homozygous
MIF-KO animals and kept under standard conditions (non-
specific pathogen-free) in the Animal Facility at the Institute
for Biological Research ‘Sinisa Stankovic’, along with their
WT C57BL/6 counterparts. The experiments were approved
by the Ethic Committee for Animal Experimentation at Bel-
grade University and conducted in accordance with local and
international legislation regarding the wellbeing of labora-
tory animals. Male mice (10 weeks old) were killed by cervi-
cal dislocation and pancreata were removed aseptically.

Isolation of pancreatic islets and islet cells
and treatments

Pancreatic islets were isolated by collagenase V (Sigma-
Aldrich, St Louis, MO, USA) digestion technique followed by
handpicking [34]. Before performing the experiments, islets
were cultured overnight in RPMI-1640 medium containing
10% fetal calf serum (FCS) (PAA Chemicals, Pasching,
Austria), 10 mM HEPES, 5 mM b-mercaptoethanol, 2 mM
L-glutamine, 1 mM sodium pyruvate, 100 IU/ml penicillin
and 100 mg/ml streptomycin (all from Sigma-Aldrich) in a
humidified (5% CO2, 95% air) atmosphere at 37°C.

Pancreatic islets were cultured in six-well non-adhesive
culture plates (Sardstedt, Numbrecht, Germany) in 2 ml of
medium.

Pancreatic islet cells were obtained after enzymatic diges-
tion of pancreatic islets with 0·025% trypsin and 0·04% eth-
ylenediamine tetraacetic acid (EDTA) in phosphate-buffered
saline (PBS) (all from Sigma-Aldrich). After 10 min of incu-
bation at 37°C with occasional shaking, disrupted islets were
washed three times by centrifugation at 350 g in PBS + 5%
FCS. Cells were counted by trypan blue exclusion test.

Pancreatic islets or islet cells were treated with mouse
IFN-g (R&D, Minneapolis, MN, USA), mouse TNF-a
(R&D) and rat IL-1b (R&D), 10 ng/ml each.

Cell viability assay

In order to assess the viability of pancreatic islets or
islet cells, we used the mitochondrial-dependent reduction
of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) (Sigma-Aldrich) to formazan [35]. At the
end of the appropriate treatments, islet cell culture superna-
tants were removed from the plates and MTT solution
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(1 mg/ml) was applied. Alternatively, pancreatic islets were
collected into tubes, spun down, supernatants removed and
the cell pellet dissolved in the MTT solution. Incubation
with MTT lasted for 30 min at 37°C. Dimethylsulphoxide
(DMSO) (Zorka Farma, Belgrade, Serbia) was added to the
pellet to dissolve the formazan crystals. The absorbance was
measured at 570 nm, with a correction at 690 nm, using
automated microplate reader (LKB 5060-006; LKB, Vienna,
Austria).

Determination of cytokine and nitrite levels in
culture media

MIF concentration in the supernatants of cultured pancre-
atic islets was measured by sandwich enzyme-linked immu-
nosorbent assay (ELISA), according to the manufacturer’s
instructions. Paired MIF antibodies specific for mouse MIF
[mouse monoclonal immunoglobulin (Ig)G1, k as capture
antibody, goat polyclonal IgG with biotin as detection anti-
body] were purchased from US Biological (Swampscott, MA,
USA). The results were calculated using standard curve
which was made on the basis of known concentrations of
recombinant mouse MIF (R&D).

Nitrite accumulation, an indicator of NO production, was
measured in cell culture supernatants using the Griess
reagent. The supernatants (50 ml) were mixed with an equal
volume of Griess reagent (a mixture at 1:1 of 0·1% naphth-
ylethylenediamine dihydrochloride and 1% sulphanilamide
in 5% H3PO4) (both purchased from Sigma-Aldrich) and the
absorbance at 570 nm was measured in a microplate reader
(LKB). The nitrite concentration was calculated from a
NaNO2 standard curve. The data obtained from triplicates
are presented as mM of nitrite.

Caspase 3 assay

The activity of caspase 3 was determined in cultures using
the caspase 3 DEVD-R110 Fluorimetric and Colorimetric
Assay Kit (Biotium, Hayward, CA, USA), according to the
manufacturer’s protocol. The ability of cell lysates to cleave
the specific caspase 3 substrate was quantified fluorimetri-
cally using an excitation wavelength of 485 nm and emission
wavelength of 535 nm with a microplate reader (Chameleon,
Hidex, Turku, Finland). The results are expressed as amount
of substrate conversion, as deduced from standard curve
generated according to known concentrations of the dye
R110.

Western blot

Pancreatic islets (groups of 100) were disrupted in the lysis
buffer containing 62·5 mM Tris-HCl (pH 6·8 at 25°C), 2%
w/v sodium dodecyl sulphide (SDS), 10% glycerol, 50 mM
dithiothreitol (DTT) and 0·01% w/v bromophenol blue
(all from Sigma-Aldrich). The concentration of proteins was

measured using Bradford method. All samples (50 mg of
each) were loaded onto a 15% SDS-polyacrylamide gel and
electrophoresed. After electrotransferring to polyvinylidene
difluoride membranes at 5 mA/cm2, using a semi-dry blot-
ting system (Semi-Dry Transfer Unit; GE Healthcare, Chal-
font St Giles, UK), the blots were blocked with 5% w/v
bovine serum albumin (BSA) in PBS-Tris (PBST) buffer
(80 mM Na2HPO4; 20 mM NaH2PO4; 100 mM NaCl; 0·1%
Tween-20) (all obtained from Sigma-Aldrich) and probed
with specific mouse IgG1antibody for mouse p-IkB (Santa
Cruz Biotechnology Inc., Santa Cruz, CA, USA) at 1:1000
dilution in 1% blocking buffer or rabbit anti-mouse IgG
p-p44/42 (ERK1/2), rabbit anti-mouse IgG b-actin (both
from Cell Signaling Technology Inc., Danver, MA, USA),
rabbit anti-mouse IgG BAX (1:100) (eBioscience) or rabbit
anti-mouse IgG COX-2 (1:200) (SantaCruz Biotechnology
Inc.), followed by incubation with secondary sheep anti-
mouse IgG horseradish peroxidase (HRP) antibody at
1:2500 dilution or donkey anti-rabbit IgG HRP antibody at
1:10000 dilution (GE Healthcare) in 1% blocking buffer.
Detection was performed by colorimetric reaction with
tetramethylbenzidine (TMB) (Sigma-Aldrich) specific for
membranes. Protein production was calculated by Scion
Image Alpha version 4·0.3·2 (Scion Corporation, Frederick,
MD, USA).

RNA isolation, reverse transcription and polymerase
chain reaction (PCR)

Total RNA was isolated from pancreatic islets (groups of 80)
with TRIzol reagent (Genosys, Woodlands, TX, USA),
according to the manufacturer’s instructions. RNA was
reverse-transcribed using Moloney leukaemia virus reverse
transcriptase and random hexamers (Pharmacia, Uppsala,
Sweden). PCR amplification of cDNA with primers specific
for the gene in question and b-actin as a housekeeping gene
was carried out in a Mastercycler Gradient thermal cycler
(Eppendorf, Hamburg, Germany) as follows: 30 s of dena-
turation at 95°C, 30 s of annealing at 58°C and 30 s of exten-
sion at 72°C. For each gene, preliminary experiments were
conducted to ascertain that amplification of cDNA was in
the linear range under the respective cycling conditions.
Primer pair sequences are given in Table 1. The PCR prod-
ucts were visualized by electrophoresis through 2·5% agarose
gels containing ethidium bromide and gels were photo-
graphed by GelDoc (Biorad, Hercules, CA, USA). Results
were analysed by densitometry using Kodak 1D 3·6 software
and the expression of target gene was calculated relative to
b-actin mRNA expression. Relative BAX and insulin mRNA
expression was determined by real-time PCR (Applied Bio-
systems, Woolston, UK) using SYBRGreen PCR master
mix (Applied Biosystems) as follows: 10 min at 50°C for
dUTP activation, 10 min at 95°C for initial denaturation of
cDNA followed by 40 cycles (15 s of denaturation at 95°C
and 60 s for primer annealing and chain extension step at
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60°C). The efficiency of PCR reaction for target cDNAs was
similar to that for b-actin (Eb-actin = 94·92%; Einsulin = 90·08%;
EBAX = 90·25%).

The expression of BAX and insulin was calculated accord-
ing to the formula 2–(Ct-Ctactin), where Ct is the cycle threshold
of the gene of interest and Ctactin is the cycle threshold value
of housekeeping gene (b-actin) (last three primer pairs
in Table 1). Data were analysed quantitatively using SDS
version 2·1 software (Applied Biosystems).

Statistical analysis

To analyse the significance of the differences between various
treatments, analysis of variance (anova) was used followed
by the Student–Newman–Keuls test for multiple compari-
sons or Student’s t-test, as appropriate. A P-value less than
0·05 was considered significant. The statistical package used
was statistica version 6·0 (StatSoft Inc., Tulsa, OK, USA).

Results

MIF deficiency protects pancreatic islets from
cytokine-induced dysfunction

To determine the causal relationship between MIF and
pancreatic islet death, we treated pancreatic islets isolated
from C57BL/6 mice (WT) with a combination of cytokines
(TNF-a + IL-1b + IFN-g). After 6 h of cultivation, cytokine-
stimulated pancreatic islets secreted higher levels of MIF
compared to non-treated islets (Fig. 1a). Along with elevated
MIF, a prominent decrease in islet cells and pancreatic islets
viability was observed after 24 h and 48 h of culture with
cytokines (Fig. 1b,c), suggesting a potential role of MIF in
the propagation of pancreatic islet death. In contrast, islet
cells from MIF-KO mice were fully protected from the del-
eterious effects of these cytokines as determined by MTT
assay after 24 h of incubation (Fig. 1b). In addition, pancre-
atic islets from MIF-KO mice displayed similar features
regarding viability (Fig. 1c), and showed a completely

normal function depicted by intact insulin expression
(Fig. 1d). Based on these results, it is reasonable to assume
that MIF participates in cytokine induced loss of viability of
insulin-producing cells.

Production of proinflammatory mediators in
stimulated MIF-KO islets

Because proinflammatory cytokines trigger NF-kB activa-
tion and subsequent expression of proinflammatory media-
tors such as COX-2 and iNOS [6], we determined their
production upon exposure to cytokines in both types of
islets. Concordant with previous findings [3], cytokine-
provoked WT islets contained higher levels of phosphory-
lated IkB (p-IkB) and therefore of more active NF-kB
transcription factor. In contrast, p-IkB content in MIF-
KO islets was down-regulated significantly after cytokine
stimulation (Fig. 2a). In addition, cytokine-stimulated
COX-2 expression and production were suppressed in
MIF-KO islets in contrast to WT islets (Fig. 2b,c). However,
iNOS expression and NO production in stimulated MIF-KO
islets were enhanced further compared to WT islets
(Fig. 2d,e).

BAX and caspase 3 activities are suppressed in
stimulated MIF-KO islets

Mitochondria-associated proteins usually mediate terminal
events in cytokine-induced apoptosis of beta cells in pancre-
atic islets [13,14]. Therefore, we have measured BAX expres-
sion and production in both types of islets and found that
this pore-forming molecule is up-regulated highly in
cytokine-stimulated WT islets (Fig. 3a,b). In contrast, BAX
expression and production remained at a similar level in
both untreated and cytokine-treated MIF-KO islets. The
executor apoptotic molecule, caspase 3, was also suppressed
significantly in MIF-KO islets after cytokine treatment
judging by its potential to convert the substrate R110
(Fig. 3c).

Table 1. Primer pairs sequences.

Gene Primer pairs PCR product (bp) GenBank acc. no.

b-actin 5′-TCCTTCTTGGGTATGG-3′ 358 NM_007393·3

5′-ACGCAGCTCAGTAACAG-3′
COX-2 5′-GTGAATGCCACCTTCATCC-3′ 343 NM_008969·3

5′-CCATCTTTCCAGAGGTCTTGA-3′
iNOS 5′-AAGTCAAATCCTACCAAAGTGA-3′ 409 NM_010927·3

5′-CCATAATACTGGTTGATGAACT-3′
BAX 5′-TGAAGACAGGGGCCTTTTTG-3′ 140 NM_007527

5′-AATTCGCCGGAGACACTCG-3′
Insulin 5′-CCATCAGCAAGCAGGT-3′ 184 NM_008386

5′-GGGTGTGTAGAAGAAGCCA-3′
b-actin 5′-GGACCTGACAGACTACC-3′ 337 NM_007393·2

5′-GGCATAGAGGTCTTTACGG-3′

BAX, Bcl-2-associated X protein; COX-2, cyclooxygenase 2; iNOS, inducible nitric oxide synthase; PCR, polymerase chain reaction; bp, base pairs.
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MIF-KO islets enhance the content of ERK1/2 upon
cytokine stimulation

To determine the activation of prosurvival molecule
ERK1/2 in beta cells, we have measured the quantity of
phosphorylated forms of p44 (ERK1) and p42 (ERK2) in
pancreatic islets of both WT and MIF-KO mice. The
obtained results indicate that activation of ERK1/2 is sup-
pressed significantly in WT islets upon cytokine treatment,
while MIF-KO islets up-regulated the content of p-ERK1/2
(Fig. 4). The change in activation of ERK1/2 was related
inversely to the induction of apoptosis in islets of both
strains, thus indicating that ERK1/2 plays a role in preser-
vation of beta cells.

Discussion

This paper shows that endogenous MIF is indispensable for
cytokine-induced pancreatic cell dysfunction in vitro. The
inability of IL-1b, TNF-a and IFN-g to sufficiently activate
NF-kB-driven production of COX-2 and the mitochondrial
apoptotic pathway in MIF-KO islets proves to be a dominant
role of MIF in the islet apoptotic process during
inflammation.
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Beta cells are highly susceptible to cytokine-induced
damage due to very low levels of anti-oxidant protection
[36]. In addition to succumbing to external effects of cytok-
ines, beta cells themselves can produce cytokines that operate
in both autocrine and paracrine fashion and further

promote apoptosis [37,38]. MIF is one of the cytokines pro-
duced by beta cells [23], and is known to induce apoptosis in
several cell types [24–27], including beta cells [30]. Our
results indicate that MIF secretion precedes the occurrence
of apoptosis in cytokine-stimulated C57BL/6 islets, suggest-
ing its potential role in triggering the apoptotic pathway.
This is corroborated by the fact that the absence of MIF
confers resistance to cytokine-induced apoptosis of islets and
preserves normal insulin expression. Although MIF presence
within insulin granules is essential for proper glucose-
stimulated insulin release ([23] and our unpublished
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*P < 0·05 cytokine-treated versus untreated (0); #P < 0·05 MIF-KO

versus C57BL/6 islets.
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Fig. 4. Prosurvival p-extracellular-regulated kinase (ERK)1/2 is

up-regulated in cytokine-stimulated macrophage migration inhibitory

factor knock-out (MIF-KO) islets. Pancreatic islets (in groups of 100)

from C57BL/6 or MIF-KO mice were incubated in the presence or

absence of cytokine mixture (interleukin-1b + interferon-g + tumour

necrosis factor-a, 10 ng/ml each) for determination of phosphorylated

ERK subunits (p-p42 and p-p44) after 24 h. Data are presented as

mean � standard deviation from two experiments. *P < 0·05

cytokine-treated versus untreated (0); #P < 0·05 MIF-KO versus

C57BL/6 islets.
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results), in the circumstances of its excessive concentration,
MIF becomes a molecule with autodestructive features. This
concentration-dependent dichotomic feature is not attrib-
uted solely to the functions of MIF. For example, under
physiological circumstances IL-1b plays an important role in
the daily maintenance of beta cell mass and function,
whereas the long-term and pathologically elevated levels of
islet IL-1b associated with inflammation of the islet lead to
decreased beta cell function and beta cell mass in diabetes
[39].

Under cytokine stimulus, pancreatic islets undergo NF-kB
activation and subsequent production of proinflammatory
mediators COX-2 and NO [6]. Increase in COX-2 activity
augments PGE2 synthesis that may lead to loss in functional
beta cell mass and impairment of beta cell function [40].
Additionally, inhibition of COX-2 was shown to preserve beta
cell function and increase basal insulin secretion [41]. There-
fore, impaired activation of NF-kB and down-regulated
COX-2 expression and production in cytokine-stimulated
MIF-KO islets could account for the observed enhanced
viability of these islets and normal insulin expression.
However, Heitmeier et al. [42] showed that selective inhibi-
tion of COX-2 activity does not protect islets from cytokine-
induced beta cell dysfunction and islet degeneration.
Moreover, they showed that islet production of PGE2 does not
mediate cytokine-induced inhibitory and destructive effects.
Even so, inefficient activation of mitochondria-related apop-
totic proteins could account solely for MIF-KO islet resistance
to apoptosis.

In contrast to COX-2, iNOS expression and NO produc-
tion were fully preserved in stimulated MIF-KO islets, sug-
gesting that the absence of MIF could not interfere with this
pathway. However, NO was unable to promote damage to
MIF-KO islets. Some reports indicate that NO has a less
relevant role for cytokine-induced beta cell death in humans
and mice compared to rats. Thus, islets obtained from an
iNOS-KO mouse are only partially protected against death
induced by IL-1b + IFN-g [43].

Apart from inducing apoptosis indirectly via COX-
2-meditated action, cytokines also directly trigger
mitochondria-associated pro-apoptotic proteins that depend
largely upon the co-ordinated action of BAX and caspase 3
[14]. Our data suggest that MIF absence impairs activation of
both BAX production and caspase 3. This coincides with our
previous finding, where MIF-KO islets were exposed to det-
rimental effect of palmitic acid [30]; therefore it could be
assumed that apart from triggering NF-kB apoptotic
pathway, MIF also mediates apoptosis of islets through the
mitochondria-dependent pathway.

Beta cell survival and growth is often associated with
increased phosphorylation of ERK1/2 from a family of
mitogen-activated kinases [15,16]. Our results substantiate
these findings, as cytokine-induced apoptosis coincided with
decreased activation of both subunits of ERK. We demon-
strate currently that the absence of MIF may confer islet

resistance to cytokines through up-regulation of prosurvival
signals mediated by ERK.

Although, in physiological conditions, MIF regulates
beta cell function, during immunoinflammatory events the
pancreatic islets secrete high amounts of MIF that may
mediate islet apoptosis by inducing an inflammatory vicious
cycle, on one hand, and by promoting NF-kB and/or
mitochondria-dependent apoptotic pathways on the other
hand. These data further highlight MIF as a key pathogenic
molecule in autoimmune diabetogenesis and ideal therapeu-
tic target, for its prevention and reversal.
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