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Abstract

There has been great public health interest in estimating usual, i.e., long-term average, intake
of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish,
red meat and whole grains. Short-term measurements of episodically consumed dietary
components have zero-inflated skewed distributions. So-called two-part models have been
developed for such data in order to correct for measurement error due to within-person variation
and to estimate the distribution of usual intake of the dietary component in the univariate case.
However, there is arguably much greater public health interest in the usual intake of an
episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of
whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for
different total amounts of caloric intake. Because of this public health interest, it is important to
have models to fit such data, and it is important that the model-fitting methods can be applied to
all episodically consumed dietary components.

We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have
fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS
NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally
slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the
programs either fail to converge or converge to models with a singular covariance matrix. For
these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which
allows for both frequentist and Bayesian inference. There are technical challenges to developing
this solution because one of the covariance matrices in the model is patterned. Our main
application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we
illustrate our methods for modeling the energy-adjusted usual intake of fish and whole grains. We
demonstrate numerically that our methods lead to increased speed of computation, converge to
reasonable solutions, and have the flexibility to be used in either a frequentist or a Bayesian
manner.

KEYWORDS: Bayesian approach, latent variables, measurement error, mixed effects models,
nutritional epidemiology, zero-inflated data
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1 INTRODUCTION

This paper is about the important public health problem of understanding the

distribution of episodically consumed dietary component intakes in terms of

their energy-adjusted amounts, and relating this to diet-disease relationships.

Before commenting in more detail, we first discuss the literature for simpler

problems that are also of interest.

In nutritional surveillance and nutritional epidemiology, there is consider-

able interest in understanding the distribution of usual dietary intake, which

is defined as long-term daily average intake. In addition, of interest is the

regression of this intake on measured covariates, which is needed to correct

diet-disease relationships for measurement error in assessing diet. If the di-

etary component of interest is ubiquitously consumed, as most nutrients are,

the data are continuously distributed and methods are well-established for

solving both problems. See for example Nusser, et al. (1997) for surveillance

and Carroll, et al. (2006) for measurement error modeling.

Another class of dietary components is those which are episodically con-

sumed, as is true of most foods, e.g., fish, red meat, dark green vegetables,

whole grains. When consumption is measured by a short-term instrument

such as a 24 hour recall, hereafter denoted by 24hr, the episodic nature of

these dietary components means that their reported intake may either equal

zero on a non-consumption day, or is positive on a day the component is

consumed. In many studies, non-consumption days predominate for several

episodically consumed foods of interest. For example, in our data example,

for fish and whole grains, 65% and 12% reported no consumption on both

of two administrations of the 24hr, respectively. Thus, data on episodically

consumed dietary components are zero-inflated data with measurement error.

Recently, Tooze, et al. (2006) for nutritional surveillance and Kipnis, et al.

(2009) for nutritional epidemiology have reported so-called two-part meth-

ods, which are actually nonlinear mixed effects models, for analyzing episod-

ically consumed dietary components in the univariate case. These methods

are known commonly as the “NCI method” because many of the co-authors

of these papers are members of the National Cancer Institute (NCI), and

because SAS routines based upon the NLMIXED procedure are available

at http://riskfactor.cancer.gov/diet/usualintakes/, an NCI web site. Other
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Schafer (2001), Tooze, et al. (2002) and Li, et al. (2005).

We are interested in the more complex public health problem of un-

derstanding the usual intake of an episodically consumed dietary compo-

nent adjusted for energy intake (caloric intake), along with the distribu-

tion of usual intake of energy. This is critical because it addresses the

issue of dietary component composition, and makes comparable diets of

individuals whose usual intakes of energy are very different. As an ex-

ample, the U.S. Department of Agriculture’s Healthy Eating Index-2005

(www.cnpp.usda.gov/HealthyEatingIndex.htm) is a measure of diet quality

that assesses conformance to Federal dietary guidance. One component of

that index is the number of ounces of whole grains consumed per 1000 kilo-

calories: there are other items in the HEI-2005 that deal with episodically

consumed dietary components, and all of them are adjusted for energy intake.

The data needed to compute such variables are thus the usual intake of the

dietary component consumed and the usual amount of calories consumed, and

(possibly normalized) ratios of them.

Recently, Kipnis, et al. (2010) have developed a model for an episodically

consumed dietary component and energy, see Section 2. They fit this model

using nonlinear mixed effects models with likelihoods computed by adaptive

Gaussian quadrature using the SAS procedure NLMIXED. However, as de-

scribed in Section 2 and documented in Section 4, this form of computation

can be slow, and can have serious convergence issues. This is extremely prob-

lematic, because of the importance of the problem and the fact that solutions

will find wide use in the nutrition community, but only if they are numerically

stable.

In this paper, we take an alternative Markov Chain Monte Carlo (MCMC)

approach to computation, which is faster and numerically more stable. There

are many good introductory papers reviewing MCMC, such as Casella, et al.

(1992), Chib, et al. (1995) and Kass, et al. (1998). Effectively, we exploit

the well-known fact (Lehmann and Casella, 1998, Chapter 6.8) that in fully

parametric regular models of the type we study, Bayesian posterior means

of parameters are asymptotically equivalent to their corresponding maximum

likelihood estimators. To implement an MCMC approach in our problem, there

are technical issues that have to be overcome, including the fact that one of

the covariance matrices in the model of Kipnis, et al. (2010) is patterned.

two-part models in different contexts are described for example in Olsen and
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the parameter estimates to then estimate the distributions of the usual intake

of energy and energy-adjusted usual intake of dietary components.

In Section 2, we describe the model of Kipnis, et al. (2010). In Sec-

tion 2, we also briefly outline some of the details of our implementation, al-

though the technical details are given in the Appendix. In Sections 3 and

4, we take up the analysis of the NIH-AARP Study of Diet and Health

(http://dietandhealth.cancer.gov/) as an illustration of our model and method.

Section 5 gives concluding remarks.

2 Data and Model

2.1 The Data

In practice, the response data often come from repeated 24hr. Necessarily, due

to cost and logistical reasons, the number of recalls is limited, and is rarely

greater than 2. In a 24hr, what is observed is whether a dietary component

is consumed, and if it is consumed, the reported amount. In addition, the

amount of energy reported to be consumed is also available. Thus, for person

i = 1, ..., n, and for the k = 1, ...,mi repeats of the 24hr, the data are Ỹik =

(Yi1k, Yi2k, Yi3k)
T, where

• Yi1k = Indicator of whether the episodically consumed dietary component

is consumed.

• Yi2k = Amount of the dietary component consumed as reported by the

24hr, which equals zero if the dietary component is not consumed.

• Yi3k = Amount of energy consumed as reported by the 24hr.

There are also generally covariates such as age category, ethnic status and in

many cases the results of reported intakes from a food frequency questionnaire.

We will generically call these covariates X.

2.2 The Model

Here we describe the nonlinear mixed effects latent variable model of Kipnis,

et al. (2010). There are i = 1, ..., n individuals and k = 1, ...,mi repeats

Besides fitting the model, our main focus in this paper is to discuss how to use
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of the 24hr. Also, the observed data have three parts, relating to whether

the episodically consumed dietary component is consumed, the amount if it is

consumed, and the amount of energy. Also with the observed data, we will have

covariates for the individual, generically called X, see below for more precise

notation. Finally, Kipnis, et al. (2010) use what are called in nutritional

epidemiology “person-specific random effects” which are generically denoted

by U , so that individuals actually differ from one another in usual intake when

they have the same values of the covariates.

To be more precise, for the ith individual there are covariates (Xi1,Xi2,Xi3):

Xi1 are the covariates for the indicator of consumption, Xi2 are the covariates

for the consumption amount of the dietary component of interest, and Xi3 are

the covariates for the consumption of energy. Often, in practice, the covari-

ates for each observed data component are the same, so that Xi1 = Xi2 = Xi3.

Along with the covariates, there are corresponding person specific random ef-

fects (Ui1, Ui2, Ui3), the role of which is to allow different people who share

the same covariates to have different amounts of usual intakes. As we will

see shortly, there are also errors accounting for day-to-day variation. Only

the covariates, the person-specific random effects, and, because of transfor-

mations, the variances of the random errors are relevant to the definitions of

usual intake, which are given below at equations (6)-(7).

The model of Kipnis, et al. (2010) uses a latent variable approach. Let

(Wi1k,Wi2k,Wi3k) be latent variables that are assumed to follow the linear

mixed effects model

Wijk = XT
ijβj + Uij + ϵijk for j = 1, 2, 3, (1)

where (Ui1, Ui2, Ui3) = Normal(0,Σu) are the person-specific random ef-

fects, while the within-person errors that account for day-to-day variation

(ϵi1k, ϵi2k, ϵi3k) = Normal(0,Σϵ). The (Ui1, Ui2, Ui3) and (ϵi1k, ϵi2k, ϵi3k) are mu-

tually independent.

The observed data are related to the latent variables as follows:

Yi1k = I(Wi1k > 0); (2)

Yi2k = Yi1kg
−1(Wi2k, λF ); (3)

Yi3k = g−1(Wi3k, λE), (4)

where I(·) is the indicator function and g−1(x, λ) is the inverse of the Box-Cox

transformation g(x, λ) = (xλ − 1)/λ for λ ̸= 0 and g(x, 0) = log(x) if λ = 0.
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We used the same Box-Cox transformations as Kipnis, et al. (2009, 2010).

Under the model defined by (1)-(4), the probability to consume follows the

probit model

pr(Yi1k = 1|Xi1, Ui1, Ui2, Ui3) = Φ(XT
i1β1 + Ui1), (5)

where Φ(·) is the standard normal distribution function. The probit model is

commonly used to model a relationship between a binary dependent variable

and one or more independent variables. The probit link was used in Kipnis, et

al. (2010) to allow the day-to-day variation in whether a food is consumed to

be correlated with the amount of energy consumed, and in such a way that the

day-to-day variation random variables (ϵi1k, ϵi2k, ϵi3k) are jointly normal, thus

facilitating both nonlinear mixed effects software and the MCMC. The Box-

Cox transformations in (3)-(4) allow for skewed distributions typically seen

with dietary data. Of course, the notation in (5) means that consumption

depends on (Ui1, Ui2, Ui3) only through Ui1.

Under the assumption that the 24hr is unbiased for usual (mean) in-

take, the usual intake of the dietary component and energy are given as

TFi = E(Yi2k|Xi1,Xi2, Ui1, Ui2) and TEi = E(Yi3k|Xi3, Ui3). Kipnis, et al.

(2009, 2010) use a Taylor series approximation E{g−1(v + ϵ)|v) ≈ g−1(v, λ) +

(1/2)var(ϵ){∂2g−1(v, λ)/∂v2}. Using this approximation, see equation (19) of

Kipnis, et al. (2009), and under the covariance matrix restriction described

below in Section 2.3, they show that the usual intake TFi of the dietary com-

ponent and the usual intake TEi of energy for individual i are given as

TFi = Φ(XT
i1β1 + Ui1)g∗{XT

i2β2 + Ui2, λF ,Σϵ(2, 2)}, (6)

TEi = g∗{XT
i3β3 + Ui3, λE,Σϵ(3, 3)}, (7)

where the (j, k) element of Σϵ is denoted as Σϵ(j, k) and g∗(v, λ, σ
2
ϵ ) =

g−1(v, λ) + (1/2)σ2
ϵ{∂2g−1(v, λ)/∂v2}. Of course, (6)-(7) are approximations

because g∗(·) is an approximate inverse of g(·). We can combine the usual

intakes of dietary component and energy in various ways, e.g., the number of

ounces of whole grains per 1000 kilo-calories, i.e., 1000× TFi/TEi.

Remark 1 The Taylor series approximation to computing expectations of

inverses of the Box-Cox transformation is used here because it was used by

Kipnis, et al. (2009, 2010). More precise quadrature formulae can be used,

and we have done so, finding almost no numerical changes. The computational

convenience of the approximation makes it attractive.

5

Zhang et al.: Model for Episodically Consumed Dietary Components

Published by Berkeley Electronic Press, 2011



 

 

2.3 Restriction on the Covariance Matrix

There are two restrictions necessary in the specification of Σϵ. First, following

Kipnis, et al. (2009, 2010), we set ϵi1k and ϵi2k to be independent. The

intuitive way to think about the independence between the first two is that

whether the dietary component is consumed or not and the amount consumed

are assumed to be independent. This actually makes sense because a dietary

component being consumed cannot indicate how much was consumed. Second,

for identifiability of β1 and the distribution of Ui1, we require that var(ϵi1k) =

1, because otherwise the marginal probability of consumption is Φ{(XT
i1β1 +

Ui1)/var
1/2(ϵi1k)}. Without this second restriction, β1, var(Ui1), cov(Ui1, Ui2)

and cov(Ui1, Ui3) are identified only up to scale factors. Hence we have that

Σϵ =


1 0 s13

0 s22 s23

s13 s23 s33

 . (8)

The difficulty with parameterizations such as (8) is that (s13, s23, s22, s33)

cannot be left unconstrained, or else (8) need not be a covariance ma-

trix. Define s13 = ρ13s
1/2
33 and s23 = ρ23(s22s33)

1/2. Then the determinant

|Σϵ| = s22s33(1− ρ213 − ρ223). Since Σϵ is a covariance matrix, its determinant

must be non-negative, and hence we cannot allow the correlations (ρ13, ρ23)

to vary freely. There are many ways to parameterize Σϵ in an unrestricted

way that forces it to be positive semi-definite. Here we use a polar coordi-

nate representation, ρ13 = γ cos(θ) while ρ23 = γ sin(θ), with γ ∈ (−1, 1) and

θ ∈ (−π, π).

The zero entries in (8) are not required, although they are implicit in the

two part model used in the original papers involving only the episodically

consumed dietary component and not energy (Tooze, et al., 2006; Kipnis, et

al., 2009) and they make intuitive sense in our context. We have chosen to

use this restriction for these reasons and especially so that the marginal model

for the episodically consumed dietary component is the same as that in the

literature.

Kipnis, et al. (2010) explore a sample selection model (Heckman, 1976,

1979; Leung and Yu, 1996; Kyriazidou, 1997; Min and Agresti, 2002) that does

not have this restriction. They found that such a sample selection model can be

very unstable in our context, with the components ofΣu andΣϵ varying wildly.

6

The International Journal of Biostatistics, Vol. 7 [2011], Iss. 1, Art. 1

http://www.bepress.com/ijb/vol7/iss1/1
DOI: 10.2202/1557-4679.1267



 

 

Although it is possible to use MCMC computations to fit the sample selection

model, given the acceptance of the restriction in nutritional epidemiology and

of the NCI method, we focus on the covariance model (8).

Remark 2 It is very important to allow for Σϵ being non-diagonal. The term

s23 ̸= 0 simply reflects the reality that, within a person and hence conditional

on (Ui1, Ui2, Ui3), the amount of food reported consumed and the amount of

energy consumed are sometimes highly correlated. The reason we allow s13 ̸= 0

is to account for the very real possibility that, again within a person, the very

fact that one consumes a food leads to a higher or lower reported energy

(caloric) intake.

2.4 Model Fitting and Computation

It is possible in principle to fit model (1)-(8) using nonlinear mixed effects soft-

ware. Kipnis, et al. (2010) use the SAS procedure PROC NLMIXED. How-

ever, we have found that such implementation is slow and not very stable, with

many issues of convergence. NLMIXED uses adaptive Gaussian quadrature

to integrate the likelihood over the distribution of random effects. NLMIXED

can have convergence problems, especially when there are too many, or too

few, zeros. What typically happens is that corr(Ui1, Ui2) tries to go to 1.00 or

sometimes even −1.00, or that var(Ui1) or var(Ui2) tries to go to 0.00. When

one of these things happens, the model usually converges, according to the

change-in-likelihood criterion, but the Hessian is not positive definite. Occa-

sionally, NLMIXED fails to converge at all. In general, we have found that

when NLMIXED does not have such numerical problems, its results and ours

are in reasonable agreement. These issues are described in more detail in

Section 4.2.

Hence, for stability and speed, we have turned to a Bayesian approach

for fitting the model described by equations (1)-(8). We emphasize that the

Markov Chain Monte Carlo computation can either be thought of as a strictly

Bayesian computation with ordinary Bayesian inference, or as a means of

developing frequentist estimators of the crucial parameters, based on the well-

known fact that in parametric models such as ours, the posterior mean of the

parameters is a consistent and asymptotically normally distributed frequentist

estimator, see for example Lehmann and Casella (1998, Chapter 6.8).
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Our computational algorithm, described in detail in the appendix, uses

Gibbs sampling with some Metropolis-Hastings steps. We have implemented

this approach in both Matlab and R, and it is fast enough for practical use. In

the NIH-AARP Diet and Health Study described in Section 3, with a sample

size of 899, for a burn-in of 1, 000 steps followed by 10, 000 MCMC iterations,

our Matlab and R programs take approximately 2 minutes and 11.7 minutes

on an Intel(R) Xeon(TM) CPU with 3.73GHz and 7.8GB of RAM in a Linux

system, respectively. For a burn-in of 5, 000 steps followed by 15, 000 MCMC

iterations, our Matlab and R programs take approximately 3 minutes and 17.5

minutes, respectively. Both programs are available from the first author.

We have also developed an implementation in WinBUGS with a BUGS

model called from R by using the package R2WinBUGS. Details are available

from the third author. As to be expected, the WinBUGS code is much slower

than the custom programs, taking approximately 5 hours (Pentium computer

with 3.5GHz CPU and 1.99GB of RAM in a Windows system) for a burn-

in of 1, 000 steps followed by 10, 000 MCMC samples. We are also currently

developing a SAS macro for use by the nutritional community. On various test

data sets, the WinBUGS, R, SAS and Matlab code gave very similar answers.

In our empirical work, we use the Matlab code.

Remark 3 There are important data conventions that we use. These are de-

scribed in detail in the Appendix. For example, in Section A.1, we mention

that covariates are always standardized to have sample mean zero and sample

variance one. The reason is a matter of scaling: energy intake is in terms of

calories, which are typically in the 1,000’s, so that the corresponding regres-

sion parameters, without standardization, with the FFQ energy as a covariate,

would necessarily be tiny, making it hard to develop a plausible prior distri-

bution. As described in Section A.1, we also standardize the responses for

numerical stability and weaken dependence upon the prior distributions, and

in Section A.2 we describe why this standardization makes sense. We have fit

our method with various different prior distributions, and there is very little

sensitivity to prior specification.

8

The International Journal of Biostatistics, Vol. 7 [2011], Iss. 1, Art. 1

http://www.bepress.com/ijb/vol7/iss1/1
DOI: 10.2202/1557-4679.1267



 

 

2.5 The Role of Covariates

Covariates are important for estimating the distribution of usual intakes, for

at least three reasons.

• First, as a matter of model specification. Consider abstractly the simple

linear regression model Y = β0+β1X + ϵ: given X, ϵ might be normally

distributed, but if X is not simultaneously normally distributed, then

removing it from the model would give a model Y = κ0 + ξ, and ξ

would not be normally distributed, and our model assumptions would

be violated.

• Subar, et al. (2006) studied using food frequency questionnaire (FFQ)

data as covariates to estimate the distributions of individual usual in-

takes of episodically consumed dietary components. They found strong

and consistent relationships between FFQ and 24hr. This supports the

postulate that FFQ data may provide important covariate information in

supplementing 24hr for estimating usual intake of dietary components.

Besides FFQ, there are some other clinical covariates such as gender,

age, body mass index (BMI), etc. that may be associated with usual in-

take. Thus, our covariates included an intercept, age, BMI, the FFQ for

energy intake and the FFQ for the dietary component of interest. They

are used to reduce the error with which the usual intake is estimated,

and to make more plausible our distributional assumptions.

• Kipnis, et al. (2009) state in their abstract “One feature of the proposed

method is that additional covariates potentially related to usual intake

may be used to increase the precision of estimates of usual intake and of

diet-health outcome associations”. In their introduction they state “In

Section 3, using data from the Eating at Americas Table Study (EATS),

we quantify the increased precision obtained from including a FFQ report

as a covariate”.

A referee has asked whether the β-coefficients for the covariates are inter-

pretable, and whether it would be of interest to make inferences about whether

the covariates are associated with usual intake. Because energy adjusted usual

intakes involve three β-coefficients for each covariates, interpretation of any one

of them is difficult. Whether a particular covariate is associated with usual in-

9
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 take is a mildly interesting question, but if far less important than estimating

distributions of energy-adjusted usual intakes.

2.6 Simulation Study

We performed a simulation study that was based upon our empirical study

given in Section 3, in order to ascertain whether the methodology results in

reasonably unbiased estimates of (β1,β2,β3,Σu,Σϵ). To test whether our

algorithm can produce non-near-zero correlations when the true correlations

are actually far from zero, we simulated 200 data sets, each of size n = 1, 000,

roughly the size of the NIH-AARP calibration cohort in Section 3. In this

simulation, we used the same covariates for each of the three outcomes, i.e.,

we set Xi1 = Xi2 = Xi3. The covariate vectors had three components, the

first equal to 1.0 for an intercept, and the other two generated as Normal(0, 1).

The parameters (β1,β2,β3) were generated as Uniform(0, 1) for each simulated

data set. We used

Σu =


0.50 0.24 0.24

0.24 0.70 0.35

0.24 0.35 0.70

 ; Σϵ =


1.00 0.00 0.47

0.00 1.20 0.78

0.47 0.78 1.40

 .

The mean of the posterior means of (β1,β2,β3) was unbiased overall and are

not reported here. The mean of the posterior means of (Σu,Σϵ) were

Σ̂u =


0.51 0.27 0.27

0.27 0.68 0.33

0.27 0.33 0.67

 ; Σ̂ϵ =


1.00 0.00 0.39

0.00 1.23 0.80

0.39 0.80 1.43

 .

Crucially, for the main purposes of estimating the distribution of usual intakes,

the posterior means were essentially unbiased for estimating Σu. As seen in

the Appendix, Σϵ also has a role in the definition of usual intake, and it

too was essentially unbiased except for a small bias of size 0.08 in estimating

cov(ϵi1k, ϵi3k), a term that does not appear in the definitions of usual intake.

Remark 4 We give here only the results of a single simulation because what

we have shown above are representative of other simulations we have done.
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For example, we have simulated cases where the off-diagonal elements of Σu

were zero and cases where some of them were negative. We have also simulated

cases that the diagonal elements of Σu were smaller and somewhat larger. In

none of the cases did we see any significant bias in the estimates.

Remark 5 We have not displayed the simulation results for the Proc NLMIXED

procedure because in those cases that it converges, it is very nearly unbiased,

just like our method.

3 Empirical Analysis: Methods

3.1 Introduction to the NIH-AARP Diet and Health

Study

The NIH-AARP Diet and Health Study, see http://dietandhealth.cancer.gov/

and Schatzkin, et al. (2001), has two components, the main study with diet

assessed by a Food Frequency Questionnaire (FFQ) and a calibration sub-

study with additional diet assessment by two 24hr. We considered a part of

the main study that consists of np = 142, 364 women, who contributed an

FFQ as well as relevant demographic characteristics. The data used were the

same as in Sinha, et al. (2010). The covariates X used included an intercept,

age, body mass index, the FFQ for energy intake and the FFQ for the dietary

component in question. The 24hr was not available for these subjects. Thus,

the primary sample represents data on Xi = Xi1 = Xi2 = Xi3 for i = 1, ..., np.

In addition to the primary sample, there was a subsample of nv = 899

women in the calibration sub-study who completed an FFQ and demo-

graphic characteristics, so that there are Xi = Xi1 = Xi2 = Xi3 for

i

= np + 1, ..., nv + np. In addition, these women completed two 24hr. Hence

we observed (Yi1k, Yi2k, Yi3k) for k = 1, 2 and for i = np + 1, ..., nv + np.

We illustrate our computational algorithm using data from both the two

24hr and the FFQ for whole grains, fish and energy intake, along with covari-

ates. Following Kipnis, et al. (2009, 2010), the FFQ values for fish, whole grain

and energy intake were transformed using λ = 0.25, λ = 0.33 and λ = 0.00,

respectively. The 24hr used λ = 0.50, λ = 0.33 and λ = 0.33, respectively.
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The MCMC calculations result in samples from the posterior distribution

of B = (βT
1 ,β

T
2 ,β

T
3 )

T, Σu, Σϵ and (Ui1, Ui2, Ui3), the latter only for i =

np + 1, ..., nv + np. The means of the samples for (B,Σu,Σϵ) can be taken

as frequentist point estimates of these quantities, and are denoted here as

(β̂1, β̂2, β̂3, Σ̂u, Σ̂ϵ). We will use shorthand notation for usual intake:

Usual dietary component intake is TFi

= G1{Xi1,Xi2,β1,β2, Ui1, Ui2,Σϵ(2, 2)}, see (6);

Usual energy intake is TEi = G2{Xi3,β3, Ui3,Σϵ(3, 3)}, see (7).

For both usual dietary component intake and usual energy intake, 24hr samples

are available for i = np + 1, ..., nv + np.

3.2 Frequentist Analysis

We are going to write the variable of interest as H(TFi, TEi). Thus, (a) the

dietary component is H(TFi, TEi) = TFi; (b) energy is H(TFi, TEi) = TEi; and

(c) the energy adjusted dietary component is H(TFi, TEi) = 1000 × TFi/TEi.

In general then, the usual intake variable of interest for person i can be written

as

Qi = H [G1{Xi1,Xi2,β1,β2, Ui1, Ui2,Σϵ(2, 2)},G2{Xi3,β3, Ui3,Σϵ(3, 3)}] ,

for i = 1, ..., np + nv, where we have that (Ui1, Ui2, Ui3) = Normal(0,Σu).

Estimation of the distribution of Q across the population is easily accom-

plished by a Monte-Carlo computation. This is a different Monte-Carlo com-

putation than the MCMC, and is performed after the MCMC has been done.

Specifically, for a large B, where we took B = 5, 000, and for b = 1, ..., B gen-

erate (Ubi1, Ubi2, Ubi3) = Normal(0, Σ̂u). Here B is not the number of burn-in

steps, but simply a large enough number to do numerical integration. Then

the distribution of usual intake can be estimated as the empirical distribution

of the values

Qbi = H
[
G1{Xi1,Xi2, β̂1, β̂2, Ubi1, Ubi2, Σ̂ϵ(2, 2)},G2{Xi3, β̂3, Ubi3, Σ̂ϵ(3, 3)}

]
,

taken across i = 1, ..., nv + np and b = 1, ..., B.

Standard errors and confidence intervals for the distribution of usual intake

can be formed easily by bootstrapping. We used 400 bootstrap samples in our

numerical work.
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Remark 6 For bootstrap confidence intervals, it is often recommended to use

at least 399 bootstrap samples, as we have done, see for example Davidson and

MacKinnon (1999). We have experimented with using up to 1, 000 bootstrap

samples, but this significantly increases computing time without changing the

basic results in any material way.

3.3 Bayesian Analysis

As described below, Bayesian inference on the distribution of usual intake

depends on estimating the distribution of the covariates. The distribution

of usual intake H(TF , TE) in a population can be described as follows. Let

X = (X1,X2,X3) and let fX(X|ζ) = fX(X1,X2,X3, ζ) be the distribution of

X in the population, based on a parameter ζ. Write U = (U1, U2, U3)
T. Use

the shorthand notation

K(X,B,U,Σϵ)

= H [G1{X1,X2,β1,β2, U1, U2,Σϵ(2, 2)},G2{X3,β3, U3,Σϵ(3, 3)}] .

Then the distribution of usual intake is

F (v|B,Σu, ζ,Σϵ) = pr {K(X,B,U,Σϵ) ≤ v|B,Σu,Σϵ, ζ}

=

∫
I {K(X,B,U,Σϵ) ≤ v} fU(U|Σu)fX(X|ζ)dUdX.

We suggest approximating this using Monte-Carlo integration, as follows.

Again, let B be large where we took B = 1, 000, and for b = 1, ...B, let

ub = Normal(0, I3). Let Σ
1/2
u be the symmetric square root of Σu. Then

F (v|B,Σu, ζ,Σϵ) ≈ B−1
∑B

b=1

∫
I
{
K(X,B,Σ1/2

u ub,Σϵ) ≤ v
}
fX(X|ζ)dX.

The posterior distribution of F (v|B,Σu, ζ,Σϵ) is then calculated from the

MCMC samples: our methods in the Appendix are easily generalized to sample

from the posterior distribution of ζ.

In the NIH-AARP Diet and Health Study, with a sample size of np +nv >

140, 000, we effectively know the distribution of X. Let the values in the data

be Xi for i = 1, ..., nv + np. Then we have

F (v|B,Σu, ζ,Σϵ)

≈ {(nv + np)B}−1
∑B

b=1

∑nv+np

i=1 I
{
K(Xi,B,Σ1/2

u ub,Σϵ) ≤ v
}
.
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 The posterior distribution of F (v|B,Σu, ζ,Σϵ) can then be calculated from

the MCMC samples.

4 Results

Along with illustrating the distributions of usual intakes of the dietary com-

ponents adjusted for energy, we also compared our results with NLMIXED.

4.1 Analysis

We used a burn-in of 5,000 steps followed by 15,000 MCMC samples. We

saved every 10th sample to reduce autocorrelation.

4.1.1 Frequentist Analysis

In Table 1 we present summary statistics (mean, standard deviation and se-

lected percentiles) of the usual intakes as well as the usual intakes adjusted

for energy. Figures 1 and 2 give density estimates for usual intake and energy

adjusted intake of fish and whole grains, respectively: a similar plot for usual

energy intake was also produced but not displayed here. The evident skewness

of the usual intakes of fish and whole grains is expected, as are the somewhat

less skewed nature of the energy adjusted intakes.

We bootstrapped the validation and primary data sets separately 400 times,

see Remark 6, reran the analysis, and formed bootstrap confidence intervals.

Since the distribution of the covariates X is essentially known because of the

size of the primary study, this bootstrap simply reflects the uncertainty in

the parameter estimates as they propagate through to usual intakes. To give

a graphical summary including uncertainty, in Figure 3 we plot the actual

estimated percentiles of the distribution of adjusted fish intake against the

percentile number, as well as the 95% pointwise bootstrap confidence interval

for these percentiles.
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Figure 1: Density estimates for fish. The solid line is the density estimate for
usual intake in the unit of oz. The dashed line is the density estimate for usual
intake per 1000 kilo-calories.
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Figure 2: Density estimates for whole grains. The solid line is the density
estimate for usual intake in the unit of cups. The dashed line is the density
estimate for usual intake per 1000 kilo-calories.
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Whole Grains Fish Energy
Usual Intake per Usual Intake per Bayes, per Usual Intake
(Unit: cup) 1000 kcals (Unit: oz.) 1000 kcals 1000 kcals (Unit: kcal)

Mean 1.013 0.625 0.539 0.338 0.339 1631.77
s.d. 0.631 0.375 0.486 0.309 0.315 369.16
5th 0.181 0.121 0.053 0.033 0.028 1075.70
10th 0.287 0.189 0.089 0.057 0.057 1180.37
25th 0.536 0.345 0.193 0.122 0.122 1370.29
50th 0.911 0.569 0.399 0.249 0.249 1604.04
75th 1.375 0.841 0.736 0.456 0.456 1863.01
90th 1.867 1.127 1.176 0.731 0.731 2118.74
95th 2.195 1.320 1.508 0.945 0.951 2282.50

Table 1: Estimated distributions of the usual intake for Whole Grains, Fish
and Energy and the estimated distributions of energy-adjusted usual intake for
Whole Grains and Fish, for women. The 5th percentile of the distribution is
labeled as 5th, etc. For energy-adjusted fish intake, we give the results for both
the frequentist (“Freq”) and the Bayesian (“Bayes”) fits. Estimates were very
similar for both Freq and Bayes fits and thus we have only displayed results
for fish.

4.1.2 Bayesian Analysis

In Table 1 we also give the Bayesian analysis for energy-adjusted fish intake.

As seen there, the Bayesian analysis posterior means of the distribution of

energy-adjusted fish intake is nearly identical to the frequentist analysis. The

same thing was found for all the columns in Table 1.

In addition, posterior credible interval lengths were almost equivalent to

those of the frequentist method and are not displayed here.

16

The International Journal of Biostatistics, Vol. 7 [2011], Iss. 1, Art. 1

http://www.bepress.com/ijb/vol7/iss1/1
DOI: 10.2202/1557-4679.1267



 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 3: Quantile functions for usual fish intake per 1000 kilo-calories. Hori-
zontal axis is the relative percentile, e.g., the value at 50 is the median. The
vertical axis is the estimated percentile (solid line) in the unit of oz./(1000
kcal). Dashed lines are the pointwise 95% bootstrap confidence intervals.

 
 

effects program and our MCMC approach. It can be seen that the MCMC

approach is considerably faster. While not displayed here, for Milk for men,

which had only 12% reported non-consumption on the 24hr, the nonlinear

mixed effects program took 200 minutes, while ours took only 4 minutes. This

illustrates our claim concerning speed of computation.

4.2 Comparison With Proc NLMIXED

We described in Section 2.4 some of the motivation for our computational

approach. In this section, we show documentation of those claims.

First, in Table 2, we describe aspects of the analysis for women of whole

grains, fish and dark-green vegetables, using the AARP data set. The first line

in the table is the number of minutes of computation for the nonlinear mixed
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Whole Grains Fish Dark Green

NLMIXED MCMC NLMIXED MCMC NLMIXED MCMC

Time in Minutes 20 3 12 3 12 4
% zeros on 24hr 32% 77% 73%

Correlations
corr(Ui1, Ui2) 0.65 0.48 -0.39 0.08 1.00 0.48

(0.17) (0.09) (0.44) (0.07) (N/A) (0.06)
corr(Ui1, Ui3) 0.20 0.18 0.28 0.26 0.27 0.24

(0.08) (0.07) (0.14) (0.07) (N/A) (0.06)
corr(Ui2, Ui3) 0.37 0.40 0.02 0.02 0.27 0.28

(0.10) (0.07) (0.16) (0.09) (N/A) (0.06)

Table 2: Comparison between two computational methods, “NLMIXED” and
“MCMC”, to fit the bivariate nonlinear mixed effects model, for whole grains,
fish and dark-green vegetables. Displayed are the estimates of correlations
among the components of (Ui1, Ui2, Ui3), the estimates for the MCMC approach
being posterior means. The numbers displayed in parentheses are the stan-
dard errors from the inverse of the Hessian matrix (“NLMIXED”) and from
MCMC samples (“MCMC”). Here “Dark Green” refers to Dark-Green vegeta-
bles, where the nonlinear mixed effects analysis converged but to a singular
covariance matrix for Σu. The phrase “Time in Minutes” refers to computa-
tion time to complete the analysis. The overall % of zeros from the 24hr are
also displayed.

A second aspect is that we claimed that sometimes the nonlinear mixed

effects analysis of Kipnis, et al. (2010) suffered from convergence to a singular

covariance matrix estimate for Σu. This occurred for dark-green vegetables,

see Table 2, where it was estimated that the correlation between (Ui1, Ui2),

corr(Ui1, Ui2), was equal to 1.00. This seemingly ridiculous result is in marked

contrast to the much more sensible posterior mean of 0.48.

A third aspect of the comparison is that we claimed that when the method

of Kipnis, et al. (2010) converged to a reasonable answer, our results were in

 general agreement with theirs. This is borne out in Table 2, where we have

listed the standard errors of the estimates using the Hessian for the nonlinear

mixed effects analysis, and using the MCMC samples for our method. The
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estimates are quite similar with the exception of corr(Ui1, Ui2) for fish, which

can be explained as follows. We performed a separate bootstrap calculation

for this correlation with our method and the nonlinear mixed effects analysis,

which suggested a standard error as large as the difference between the two.

The other standard errors are also different, but this may well reflect impre-

cision in the former caused by using a Hessian in a nonlinear mixed effects

model instead of a bootstrap.

Remark 7 While it may seem obvious, it is useful to clarify what we mean by

the term “convergence”. We are not meaning asymptotic rates of convergence,

because these are the standard n1/2-type one sees in parametric models. We

are also not talking about theoretical rates of numerical convergence, e.g., how

fast is convergence of the Proc NLMIXED procedure in terms of number of

iterations. Instead, for us the term convergence has the meaning that Proc

NLMIXED announces that it has converged to a solution with a nonsingular

Hessian. Of course, our method, being based on proper priors, converges in

the usual MCMC sense.

5 Discussion

Understanding the distribution of energy-adjusted usual intake of episodically

consumed dietary components is of considerable public health importance,

having implications for basic understanding of both dietary component com-

position and policy. Being able to correct for measurement error due to within-

person variation in short-term assessment of intake, when investigating diet-

disease relationships in cohort studies, is equally important. Because of the

importance of these problems, models and fitting methods for addressing them

will find wide use in the nutrition community. Thus, it is not only important

that the models are reasonable, but that the fitting methods be reasonably

fast, that they converge, and that the answers from the fitting methods usu-

ally make sense. The main point of this paper has been to show that an MCMC

approach satisfies these criteria, and has the potential to be used widely in the
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nutrition community. The fact that the MCMC approach can be used in a fre-

quentist sense is a new insight for nutritional epidemiology, which is decidedly

frequentist in orientation, although the MCMC model fitting can also allow

Bayesian inference.

There is an enormous literature on measurement error models, both para-

metric and nonparametric, for estimating distributions (e.g., Fan, 1991; Wand,

1998; Johnson, et al., 2007; Staudenmeyer, et al., 2008; Delaigle, et al, 2008

among many others) and in regression (Ferrari, et al., 2004, e.g., Liang and

Wang, 2005 among many others). Many more references are given in Carroll,

et al. (2006). However, none of these papers deal with our topic of episodically

consumed and hence zero-inflated dietary components along with continuous

components that involve skewness, a structured covariance matrix, correlations

of random effects, and usual intakes on the original data scale.

An issue of practically much less importance is that the model of Kipnis, et

al. (2010) in equation (6) assumes that each food is consumed by all individu-

als. Kipnis, et al. (2009) address this issue, by adding a fixed effect regression

so as to model never-consumers. They show that even without energy in the

model, and with only two 24hr as is standard for such data, their method was

numerically very unstable. Our method easily handles such an extension, but

its practical implications are not particularly clear when, for example, in other

studies, less than 0.5% of subjects claimed on the FFQ never to eat fish or

whole grains.

User-friendly SAS macros are being written for distribution to the nutri-

tion community. These programs will also allow sampling weights, so that they

can be used in population-based survey samples, and will thus be of interest

both nationally and internationally. We are presently working on extending

the methods to analyze multiple foods and nutrients simultaneously, with al-

lowance for survey weights, so that analysis of dietary patterns and dietary

composite scores can be undertaken.
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Appendix: Details of the MCMC

A.1 Notational Convention

Standardization is important in MCMC applications both for numerical sta-

bility and to allow fairly off-the-shelf prior distributions to make sense. Prior

to analysis, we standardized the covariates to have mean 0.0 and variance 1.0.

The observed, transformed non-zero 24hr were standardized to have mean

0.0 and variance 2.0. More precisely, we first transformed the non-zero di-

etary component data as Zi2k = g(Yi2k, λF ), and then we standardized these

data as Qi2k =
√
2(Zi2k − aF )/sF . Similarly, for energy we transformed to

Zi3k = g(Yi3k, λE) and then standardized to Qi3k =
√
2(Zi3k − aE)/sE. Of

course, whether the dietary component is consumed or not is Qi1k = Yi1k.

Collected, the data are Q̃ik = (Qi1k, Qi2k, Qi3k)
T. The terms (aF , sF , aE, sE)

are not random variables but are merely constants used for standardization,

and we need not consider inference for them.

We will first describe the algorithm used in terms of the Qijk, and then

in Section A.11, we describe the back-transformation method that we used to

obtain estimation and inference for usual intake.

Remark 8 Having the total variability of the non-zero transformed responses

equal to 2.0 is extraordinarily convenient. Effectively, this means that var(Uij)+

var(ϵij) ≈ 2.0 for j = 1, 2. Thus, neither component of this sum is at all likely

to be large. Hence, a prior mean for the diagonal elements of Σu all equalling

1.0, while too large in our examples, is at least relatively near a reasonable

answer. Having priors for var(ϵij) for j = 1, 2 that are Uniform[0, 3] is flexible

and does not allow ridiculous answers.

A.2 Prior Distributions

Because the data were standardized, following the discussion of Remark 8, we

used the following conventions.

• The priors for all βj were normal with mean zero and variance 100.
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• The prior for Σu was exchangeable with diagonal entries all equal to 1.0

and correlations 0.50. There was 5 degrees of freedom in the inverse

Wishart prior, i.e., mu = 5. Thus, the prior is IW{(mu − 3− 1)Ωu,mu}.

• The priors for s22 and s33 were Uniform[0,3]. This range is reasonable

because of the standardization.

• The priors for (γ, θ) were uniform on their range.

We experimented with different priors for Σu, e.g., setting the correlations

equal to 0.0, setting the diagonal elements equal to 0.5, etc. The results were

essentially unchanged when these were done.

A.3 Generating Starting Values for the Latent Vari-

ables

While we observe Q̃ik, in the MCMC we need to generate the latent variables

W̃ik to initiate the MCMC.

• For energy, Qi3k = Wi3k, no data need to be generated.

• For the amounts, Qi2k, we just simply set Wi2k = Qi2k.

• For consumption, we generate Ui = (Ui1, Ui2, Ui3)
T as normally distribu-

tion with mean zero and covariance matrix given as the prior covariance

matrix for Σu. We then also compute zik = |XT
i1β1,prior + Ui1 + Zik|,

where Zik = Normal(0, 1) are generated independently. We then set

Wi1k = zikQi1k − zik(1−Qi1k).

• We then updated W̃ik by a single application of the updates given in

Section A.9.
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A.4 Complete Data Loglikelihood

The loglikelihood of the complete data is∑n
i=1

∑2
k=1log{Qi1kI(Wi1k > 0) + (1−Qi1k)I(Wi1k < 0)}

+(n/2)log(|Σ−1
u |)− (1/2)

∑n
i=1U

T
i Σ

−1
u Ui

−(1/2)
∑3

j=1(βj − βj,prior)
TΩ−1

β,j(βj − βj,prior)

+{(mu + 3 + 1)/2}log(|Σ−1
u |)− (1/2)trace(ΩuΣ

−1
u )

−(1/2)(2n)log{s22s33(1− γ2)}

−(1/2)
∑n

i=1

∑2
k=1{W̃ik − (XT

i1β1, ...,X
T
i3β3)

T −Ui}TΣϵ
−1

×{W̃ik − (XT
i1β1, ...,X

T
i3β3)

T −Ui}.

A.5 Complete Conditionals for (γ, θ, s22, s33)

The complete conditionals for (γ, θ, s22, s33) do not have an explicit form,

so we use a Metropolis-Hastings within Gibbs sampler to generate them in

turn. Since Σϵ is determined by γ, θ, s22 and s33, we write it as Σϵ
−1 ≡

f(γ, θ, s22, s33). Also, current values are γt, θt, s22,t and s33,t.

Generation of γ. For convenience, we set γ to be discrete with 41 equally-

spaced values on its range. Let γt be the current value. The candidate value

y is selected randomly from γt and its two nearest neighbors. The candidate

value y is accepted with probability α(γt, y), α(γt, y) = min{1, g(y)/g(γt)},
where

g(y) ∝ (1− y2)−n

× exp

[
−(1/2)

∑n
i=1

∑2
k=1{W̃ik − (XT

i1β1, ...,X
T
i3β3)

T −Ui}T

×f(y, θt, s22,t, s33,t){•}
]
,

where {•} means that the term before f(·) is transposed and substituted. If

the candidate y is accepted, then γt+1 = y. Otherwise, γt+1 = γt.
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Generation of θ. This is done exactly as for γ, except now

g(y) ∝ exp

[
−(1/2)

∑n
i=1

∑2
k=1{W̃ik − (XT

i1β1, ...,X
T
i3β3)

T −Ui}T

×f(γt+1, y, s22,t, s33,t){•}
]
.

If the candidate y is accepted, then θt+1 = y. Otherwise, θt+1 = θt.

Generation of s22. Suppose the current value of s22 is s22,t. A candidate value

y is generated from the Uniform distribution of length 0.4 with mean s22,t: y

∼ Uniform[ s22,t - 0.2, s22,t + 0.2]. The candidate value y is accepted with

probability α(s22,t, y), where

α(s22,t, y) = min
{
(1, g(y)I[0,3](y)/g(s22,t)

}
;

g(y) ∝ y−n exp

[
−(1/2)

∑n
i=1

∑2
k=1{W̃ik − (XT

i1β1, ...,X
T
i3β3)

T −Ui}T

×f(γt+1, θt+1, y, s33,t){•}
]

If the candidate is accepted, then s22,t+1 = y. Otherwise, s22,t+1 = s22,t.

Generation of s33. This is the same as that for s22, except now

α(s33,t, y) = min
{
1, g(y)I[0,3](y)/g(s33,t)

}
;

g(y) ∝ y−n exp

[
−1

2

∑n
i=1

∑2
k=1{W̃ik − (XT

i1β1, ...,X
T
i3β3)

T −Ui}T

×f(γt+1, θt+1, s22,t+1, y){•}
]
.

If the candidate is accepted, then s33,t+1 = y. Otherwise, s33,t+1 = s33,t.

A.6 Complete Conditional for Σu

By “rest”, we mean all the observable data, latent variables and parameters

other than the one in question. By inspection, the complete conditional for

Σu is

[Σu|rest] = IW{(mu −K − 1)Ωu +
∑n

i=1UiU
T
i , n+mu}.
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A.7 Complete Conditionals for β

Let the elements of Σ−1
ϵ be σjℓ

ϵ . For any j, except for irrelevant constants,

log
[
βj|rest

]
= −(1/2)(βj − βj,prior)

TΩ−1
β,j(βj − βj,prior)

−(1/2)
∑n

i=1

∑2
k=1(Wijk −XT

ijβj − Uij)
2σjj

ϵ

−
∑n

i=1

∑2
k=1

∑
ℓ ̸=jσ

jℓ
ϵ (Wijk −XT

ijβj − Uij)(Wiℓk −XT
iℓβℓ − Uiℓ)

= CT
1 βj − (1/2)βT

j C
−1
2 βj

which implies
[
βj|rest

]
∼ Normal(C2C1,C2), where

C2 = (Ω−1
β,j + 2

∑n
i=1σ

jj
ϵ XijX

T
ij)

−1;

C1 = Ω−1
β,jβj,prior +

∑n
i=1

∑2
k=1σ

jj
ϵ Xij(Wijk − Uij)

+
∑n

i=1

∑2
k=1

∑
ℓ ̸=jσ

jℓ
ϵ (Wiℓk −XT

iℓβℓ − Uiℓ)Xij.

A.8 Complete Conditionals for Ui

Except for irrelevant constants, and remembering that j = 1, ..., 3,

log
[
Ũi|rest

]
= −(1/2)UT

i Σ
−1
u Ui

−(1/2)
∑2

k=1{W̃ik − (XT
i1β1, ...,X

T
i3β3)

T −Ui}TΣϵ
−1

×{W̃ik − (XT
i1β1, ...,X

T
i3β3)

T −Ui}

= CT
1Ui − (1/2)UT

i C
−1
2 Ui

which implies [Ui|rest] ∼ Normal(C2C1,C2), where

C2 = (Σ−1
u + 2Σϵ

−1)−1;

C1 =
∑2

k=1Σϵ
−1{W̃ik − (XT

i1β1, ...,X
T
i3β3)

T}.
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A.9 Complete Conditionals for Wi1k

Here we do the complete conditional for Wiℓk with ℓ = 1. Except for irrelevant

constants,

log [Wiℓk|rest] = log{QiℓkI(Wiℓk > 0) + (1−Qiℓk)I(Wiℓk < 0)}

−(1/2)(Wi1k −XT
i1β1 − Ui1, ...,Wi3k −XT

i3β3 − Ui3)Σϵ
−1(•)

= log{QiℓkI(Wiℓk > 0) + (1−Qiℓk)I(Wiℓk < 0)}

−(1/2)σℓℓ
ϵ (Wiℓk −XT

iℓβℓ − Uiℓ)
2

−
∑

j ̸=ℓσ
ℓj
ϵ (Wiℓk −XT

iℓβℓ − Uiℓ)(Wijk −XT
ijβj − Uij)

= log{QiℓkI(Wiℓk > 0) + (1−Qiℓk)I(Wiℓk < 0)}

+C1Wiℓk − (1/2)W 2
iℓkC

−1
2 ,

where

C2 = 1/(σℓℓ
ϵ )

C1 = σℓℓ
ϵ (X

T
iℓβℓ + Uiℓ)−

∑
j ̸=ℓσ

ℓj
ϵ (Wijk −XT

ijβj − Uij).

If we use the notation TN+(µ, σ, c) for a normal random variable with mean

µ, standard deviation σ is truncated from the left at c, and TN−(µ, σ, c) is

truncated from the right at c, then it follows that with µ = C2C1 and σ = C
1/2
2 ,

[Wiℓk|rest] = QiℓkTN+(µ, σ, 0) + (1−Qiℓk)TN−(µ, σ, 0)

= µ+QiℓkTN+(0, σ,−µ) + (1−Qiℓk)TN−(0, σ,−µ)

= µ+QiℓkTN+(0, σ,−µ)− (1−Qiℓk)TN+(0, σ, µ)

= µ+ σ{QiℓkTN+(0, 1,−µ/σ)− (1−Qiℓk)TN+(0, 1, µ/σ)}.

Generating TN+(0, 1, c) is easy: if c < 0, simply do rejection sampling of a

Normal(0, 1) until you get one that is > c. If c > 0, there is an adaptive

rejection scheme (Robert, 1995). The “truncated normal” was used because

the latent variable Wi1k is associated with Yi1k which indicates whether the

dietary component is consumed or not. If the dietary component is indeed

consumed, then based on our model (2), Wi1k should have a positive value.

Similarly, if the dietary component is actually not consumed, then Wi1k should
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have a negative value. In order to achieve these, we need a truncated distri-

bution. Besides, the conditional distribution of Wi1k proportional to a normal

distribution, thus we chose truncated normal.

A.10 Complete Conditionals for Wi2k When it is Not

Observed

For p = 2, the variable Wipk is not observed when Qi,p−1,k = 0, or, equivalently,

when Wi,p−1,k < 0. Except for irrelevant constants,

log [Wipk|rest] = −(1/2)
∑
j

∑
ℓ

σjℓ
ϵ (Wijk −XT

ijβj − Uij)(Wiℓk −XT
iℓβℓ − Uiℓ)

= −(1/2)W 2
ipkC

−1
2 + C1Wipk

where

C2 = 1/(σpp
ϵ );

C1 = σpp
ϵ (XT

ipβp + Uip)−
∑
ℓ ̸=p

σpℓ
ϵ (Wiℓk −XT

iℓβℓ − Uiℓ).

Therefore,

[Wipk|rest] = QipkQi,p−1,k + (1−Qi,p−1,k)Normal(C2C1,C2).

A.11 Usual Intake, Standardization and Transforma-

tion

Here we show how to go from the transformed and standardized data to usual

intakes. We first consider energy, where we used the transformation

Qi3k =
√
2{g(Yi3k, λE)− aE}/sE = gtr(Yi3k, λE, aE, sE) = XT

i3β3 + Ui3 + ϵi3k.

When λE = 0, the back-transformation is

g−1
tr (z, 0, aE, sE) = exp

{
aE + sEz/

√
2
}
;

∂2g−1
tr (z, 0, aE, sE)/∂z

2 =
s2E
2
g−1
tr (z, 0).
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When λE ̸= 0, the back-transformation is

g−1
tr (z, λE, aE, sE) =

[
1 + λE

{
aE + sEz/

√
2
}]1/λE

; (A.1)

∂2g−1
tr (z, λE, aE, sE)/∂z

2 =
s2E
2
(1− λE)

[
1 + λE

{
aE + sEz/

√
2
}]−2+1/λE

.(A.2)

Define

g∗tr{v, λE, aE, sE,Σϵ(3, 3)}

= g−1
tr (v, λE, aE, sE) + (1/2)Σϵ(3, 3)

∂2g−1
tr (v, λE, aE, sE)

∂v2
.

As in Kipnis, et al. (2009), the usual intake of energy for person i is

TEi = E
{
g−1
tr (X

T
i3β3 + Ui3 + ϵi3, λE, aE, sE)|Xi3, Ui3

}
≈ g∗tr

{
XT

i3β3 + Ui3, λE, aE, sE,Σϵ(3, 3)
}
.

Similarly, a person’s usual intake of the dietary component on the original

scale is defined as

TFi = Φ(XT
i1β1 + Ui1)g

∗
tr

{
XT

i2β2 + Ui2, λF , aF , sF ,Σϵ(2, 2)
}
.
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