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Working memory (WM) is one of the most impaired cog-
nitive processes in schizophrenia. Functional magnetic
resonance imaging (fMRI) studies in this area have typ-
ically found a reduction in information processing effi-
ciency but have focused on the dorsolateral prefrontal
cortex. In the current study using the Sternberg Item Rec-
ognition Test, we consider networks of regions supporting
WM and measure the activation of functionally connected
neural networks over different WM load conditions. We
used constrained principal component analysis with a finite
impulse response basis set to compare the estimated hemo-
dynamic response associated with different WM load
condition for 15 healthy control subjects and 15 schizo-
phrenia patients. Three components emerged, reflecting
activated (task-positive) and deactivated (task-negative
or default-mode) neural networks. Two of the components
(with both task-positive and task-negative aspects) were
load dependent, were involved in encoding and delay
phases (one exclusively encoding and the other both
encoding and delay), and both showed evidence for de-
creased efficiency in patients. The results suggest that
WM capacity is reached sooner for schizophrenia patients
as the overt levels of WM load increase, to the point that
further increases in overt memory load do not increase
fMRI activation, and lead to performance impairments.
These results are consistent with an account holding
that patients show reduced efficiency in task-positive
and task-negative networks during WM and also partially
support the shifted inverted-U-shaped curve theory of the
relationship between WM load and fMRI activation in
schizophrenia.
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Introduction

Workingmemory (WM) can be described as the ability to
hold a limited amount of information in consciousness,
for use in guiding behavior after the information is re-
moved from the environment.1 WM impairment is con-
sidered a fundamental feature of schizophrenia and can
be observed throughout the course of illness.2–5 Biolog-
ical explanations for this impairment have been put for-
ward, supported primarily by functional magnetic
resonance imaging (fMRI) studies.6,7 One dominant bi-
ological explanation based on fMRI studies has focused
on the dorsolateral prefrontal cortex (DLPFC) and is
based on findings that both hypoactivations and hyper-
activations are found in schizophrenia patients depend-
ing on the WM load condition.8,9 These studies have
used the term inefficiency to describe this pattern of
results, as they note that schizophrenia patients must de-
vote more cognitive resources (in this case increased
blood oxygen level–dependent [BOLD] response) to per-
form the same task. At lower load levels, this means that
schizophrenia patients show a heightened DLPFC
BOLD response relative to controls when performing
the task at the same accuracy levels; but at higher load
levels, both the patients DLPFC BOLD response and
their performance decrease significantly relative to the
healthy controls. Specifically, it has been proposed
that the DLPFC response to increasing memory load
in healthy people and people with schizophrenia con-
forms to an inverted U-shaped curve, whereby increases
in neural processing (and fMRI signal) in the DLPFC oc-
cur as WM load increases, with both groups becoming
relatively hypo-frontal as WM capacity is exceeded.
According to this account, schizophrenia patients appear
hypofrontal and hyperfrontal relative to controls at low
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and high WM loads, respectively, due to a leftward shift
in the U-shaped curve, suggesting reduced information
processing efficiency.

Although many of these studies focus on the DLPFC,10

corrected whole-brain group comparisons are also usually
carried out, and this pattern of load-related hypofrontality
and hyperfrontality can be observed in a number of neural
regions.8,9,11,12 Reviews of the literature are advocating
consideration of the DLPFC within a network of regions
supporting WM when studying schizophrenia,13 which is
ideally examined using functional connectivity methodol-
ogy. In the current study, our purpose was to link these
approaches to understanding WM in schizophrenia by
measuring the activation of functionally connected net-
works of neural regions over different WM load condi-
tions as a function of peristimulus time. Using this
methodology, we can draw conclusions about the effi-
ciency of a neural system by comparing network-level ac-
tivation across loads and across groups.

To estimate the hemodynamic response shape at the
systems level, we used constrained principal component
analysis (CPCA) for fMRI (fMRI-CPCA)14 with trials
modeled using a finite impulse response (FIR) basis
set.15 This methodology allows visualization, across mul-
tiple subjects, of how functional networks change over
the course of a WM delayed recognition trial (ie, across
peristimulus time), how these networks respond to exper-
imental manipulations, and how this response differs
between schizophrenia patients and healthy controls.
The goal of this analysis was to compare the estimated
hemodynamic responses (HDRs) of healthy control sub-
jects with schizophrenia patients at different levels of
WM load. If extended to functionally connected neural
systems (and not specific to the DLPFC), the shifted
U-shaped curve (or reduced information processing
efficiency) model would predict higher activation for
patients relative to controls at lower loads where behav-
ioral performance within the 2 groups is statistically
equivalent, and lower activation for patients relative to
controls at higher loads where the behavioral differences
in performance between the 2 groups are manifest.

Methods

Details regarding the motivation for task design, nature
of the sample, data acquisition, and preprocessing have
been published previously.11 Fifteen patients with schizo-
phrenia were recruited from outpatient community care
teams, and 15 healthy controls were recruited from the
community. Participant groups did not differ signifi-
cantly on the demographic variables of age, gender, pa-
rental socioeconomic status, or on estimates of
intellectual functioning (all Ps > .60). All patients were
taking oral antipsychotics. Participants provided written
informed consent and were screened forMRI compatibil-
ity before entering the scanning room. All experimental

procedures met with university and hospital ethical
approval.

Task Design

Each subject completed two 10min, 53 s runs of a variable
load WM task. A modified version of the Sternberg Item
Recognition Test (SIRT) was presented on a personal
computer using Presentation Software (version 5.0,
www.neurobs.com). During a single trial of this task,
subjects saw a string of 2, 4, 6, or 8 different uppercase
consonants for 4 s. They were instructed to remember
these consonants over a short delay (6 s). A single con-
sonant in lowercase was presented for 1 s after this delay,
and subjects were required to indicate if this letter had
been present in the preceding string. ‘‘Present’’ and
‘‘Not Present’’ responses were indicted via a fiber-optic
response device (Lightwave Medical). Binary responses
were indicated by right-handed index and middle finger
presses, and the finger-response assignments were coun-
terbalanced across subjects. The probability of the test
letter having been in the remembered string was 0.5.

Data Analysis

CPCA for fMRI

fMRI-CPCA combines multivariate regression analysis
and principal component analysis into a unified frame-
work and allows derivation of images of neural activity
when the analyzed BOLD signal is constrained to the
scans occurring in peristimulus time, using all other scans
as baseline. CPCA allows (1) determination of multiple
functional networks involved in the execution of a cogni-
tive task, (2) estimation of the time course of BOLD
changes associated with each functional network across
peristimulus time points, and (3) a statistical test of
the degree to which experimental manipulations affect
each functional network.
The details of the fMRI-CPCA method are presented

elsewhere.14,15 For the comprehensive CPCA theory
and proofs, please see previously published work.16–18

The fMRI-CPCA application is available online, free
of charge (www.nitrc.org/projects/fmricpca). We now
briefly present the matrix equations for the current
application of CPCA. This application of CPCA in-
volved preparation of 2 matrices. The first matrix, Z,
contained the BOLD time series of each voxel, with
one column per voxel and one row per scan. Each column
contained normalized and smoothed activations over all
scans, for all subjects, and for both groups (patients and
controls). For the current data, 214 functional scans were
collected from each of the 30 subjects, producing a Zma-
trix consisting of 12 840 rows (30 subjects 3 214 scans 3

2 runs) and 23 621 columns (one for each voxel). For the
analysis presented here, the mean value for each voxel
was centered to zero for each subject separately, and
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the variance of each column in the Zmatrix was normal-
ized to a standard deviation (SD) of 1.0 for each subject
separately.
The second matrix, G, can be referred to as the ‘‘design

matrix.’’ It contained FIR models of the expected BOLD
response to the timing of stimulus presentations (de-
scribed in detail below). The matrix of BOLD time series
and design matrices are taken as input, with BOLD in Z
being predicted from the FIR model in G. In order to
achieve this, multivariate least-squares linear regression
was carried out, whereby the BOLD time series (Z)
was regressed onto the design matrix (G):

Z =GC þ E; ð1Þ

where C=
�
G#G

��1
G#Z. This analysis yielded condition-

specific regression weights in the C matrix (ie, regression
weights specific to the experimental conditions as defined
by the design matrix). The condition-specific regression
weights are often referred to (in conventional fMRI anal-
yses) as beta images.GC contains variability inZ that was
predictable from the design matrix G, that is to say, var-
iability in Z that was predictable from the timing of stim-
ulus presentations. For the analysis presented here, the
mean value for each column of G was centered to zero
for each subject separately, and the variance of each col-
umn in the G matrix was normalized to a SD of 1.0 for
each subject separately.
The next step involved singular value decomposition

of the activation variability that was predictable from
the design matrix (GC), in order to extract components
representing networks of functionally interconnected
voxel activations related to the experimental stimulus
presentations:

UDV # =GC; ð2Þ

whereU, matrix of left singular vectors;D, diagonal ma-
trix of singular values; V, matrix of right singular vec-
tors. Each column of V can be overlaid on a struc-
tural brain image to allow visualization of the neural
regions involved in each functional network. In the cur-
rent application of CPCA, we orthogonally rotated15

and rescaled the V matrix prior to display, so that a ro-
tated ‘‘loading matrix’’ is displayed. The values of the
loading matrix are weights that represent the contribu-
tion of each component (functional network) to the var-
iance of each column of GC and can be scaled to contain
the correlations between the components in U and the
variables in GC. The rotation transformation matrix
is then used to transform the rescaled left singular vec-
tors U into rotated component scores (with rows corre-
sponding to scans).

Preparation of G

The G (design) matrix consisted of a FIR basis set, which
can be used to estimate the increase in BOLD signal at

specific peristimulus scans relative to all other scans.
The value 1 is placed in rows ofG for which BOLD signal
amplitude is to be estimated, and the value 0 in all other
rows (‘‘mini boxcar’’ functions). The time points for
which a basis function was specified in the current study
were the first to eighth scans following stimulus presen-
tation. Since the repetition time (TR) for these data was
3 s, this resulted in estimating BOLD signal over a 24 s
window, with the start of the first time point (time = 0)
corresponding to encoding stimulus onset. In this analy-
sis, we created a Gmatrix that would allow us to estimate
subject- and condition-specific effects by inserting a
separate FIR basis set for each condition and for each
individual subject. The columns in this subject- and
condition-basedGmatrix code 8 peristimulus time points
for each of 4 load conditions (2, 4, 6, and 8 letters) for
each of the 30 subjects, totaling 960 columns (8 3 4 3

30 = 960).

Predictor Weights

To interpret the components with respect to the condi-
tions represented in G, we produced ‘‘predictor
weights’’18 in matrix P. These are the weights that would
be applied to each column of the matrix of predictor var-
iables (G) to createU (U = G 3 P) and can also be aligned
to the rotated solution via multiplication by the rotation
transformation matrix. They indicate the importance of
each column in the G matrix to the networks represented
by the components, thus are essential for relating the
resultant components to the experimental conditions of
interest represented in G.

Statistical Inference Procedure

The predictor weights in P resulting from this G matrix
are appropriate for use in familiar tests of statistical sig-
nificance, such as ANOVA.Due to the structure of theG
matrix, for each component, predictor weights are pro-
duced for each combination of peristimulus time, load
condition, and subject. These predictor weights can be
used to statistically test the reliability of the compo-
nents, effects of increasing memory load on the compo-
nents, and to compare the components between groups
because they can be considered repeated measurements
(condition/time point combinations) on individual sub-
jects. Leaving out the first point of peristimulus time
(which is adjusted to zero for predictor weights in all
conditions for the purposes of display and data analy-
sis), this analysis is carried out as a 7 3 4 3 2 mixed-
model ANOVA, with the within-subjects factors of
Timepoint (7 TRs or full-brain scans) and Load (2, 4,
6, or 8 letters) and the between-subjects factor of Group
(patient vs controls). The 7 time points refer to scans (ie,
TRs) 2–8 after the initiation of a trial. Because the TR
for these data was 3 s, the 7 time points cover 3–24 s
posttrial onset. Selecting the ‘‘repeated’’ option in the
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SPSS for Windows19 GLM procedure for the within-
subjects factors (Load and Time Point) allows signifi-
cance tests to be restricted to adjacent time points
and/or adjacent load conditions, breaking down the
Time Point effect to contrasts of adjacent bins instead
of the complex shape of the HDR and/or the Load effect
to contrasts of adjacent loads. This is helpful when inter-
preting interactions involving the repeated measures.
Tests of sphericity were carried out for all repeated
measures ANOVAs. In the cases where this assumption
was violated, the Greenhouse–Geisser adjustment to
degrees of freedom was carried out. In all cases, this
did not affect interpretation of results; therefore, the un-
adjusted degrees of freedom are reported below.

Results

Behavioral

Errors and response times (RTs) for correct responses
are plotted as a function of group and memory load in
figure 1. These were analyzed using a mixed-model
ANOVA, with Group (healthy controls, schizophrenia
patients) as the between-subjects factor and Load (2, 4,
6, or 8 letters) as the within-subjects factor and polyno-
mial contrasts on the within-subjects factor. For both
errors and RTs, the ANOVA revealed a main effect of
Load, F3,84 = 37.56, P < .001, F3,84 = 33.98, P < .001,
respectively, with both showing significant linear trends
as a function of increasing load, F1,28 = 74.08, P < .001,
F1,26 = 60.35, P < .001, respectively. In addition to the
linear trend, a quadratic trend was also significant for
errors, F1,28 = 17.57, P< .001. The linear effect for errors
interacted significantly with group, F1,28 = 4.63, P < .05,
whereby errors increased as load increased to a greater
extent for patients compared with controls. No other
effects or interactions involving the Group factor were
significant (all Ps > .10).

Neuroimaging

Component Extraction. Visual inspection of the scree
plot (ie, the singular values sorted bymagnitude and plot-
ted) suggested extraction of 3 components. All 3 compo-
nents showed significant effects of Timepoint, and
observation of the predictor weights confirmed that a he-
modynamic response shape was associated with all,
thereby validating the component as reflecting BOLD
signal change over peristimulus time. The percentages
of task-related variance accounted for by each rotated
component were 19.72%, and 13.70%, and 5.62% for
Components 1, 2 and 3, respectively.
The neural regions comprising the functional network

represented by Component 1 for the CPCA analysis are
displayed in figure 2A, with anatomical descriptions of
these displayed regions in table 1. This component was
characterized by a functional network with activations
including the bilateral dorsal anterior cingulate gyri
(BA 24, 32), left inferior frontal gyrus (BA 44), bilateral
precentral gyri (BA 6), and bilateral thalamus and basal
ganglia.
The neural regions comprising the functional network

represented by Component 2 for the CPCA analysis are
displayed in figure 2B, with corresponding anatomical
description in table 2. The second component was char-
acterized by a functional network primarily characterized
by activations including bilateral occipital cortex (BA 17,
18, 19) as well as left precentral gyrus (BA 4) and left sup-
plementary motor area (BA 6).
The neural regions comprising the functional network

represented by Component 3 for the CPCA analysis are
displayed in figure 2C, with corresponding anatomical
descriptions in table 3. The third component was

Fig. 1. Mean Number of Correct Responses and Response Times
(RTs) forCorrectResponsesPlottedasaFunctionofMemoryLoad
Condition andGroup.RTs are inmilliseconds and error bars depict
SEs.
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characterized by both deactivations and activations. The
deactivations were found bilaterally in precuneus/poste-
rior cingulate (BA 23), medial frontal cortex (BA 10), lat-
eral occipital cortices (BA 39), and middle temporal gyri
(BA 20, 21). The activations were observed bilaterally in
dorsal anterior cingulate cortex (BA 24, 32) and insula, in
the left inferior frontal gyrus (BA 44) and middle frontal
gyrus (BA 46), and in the left inferior parietal cortex (BA
39, 40).

Statistical Test of Load Dependence and Group
Differences

Component 1. An ANOVA carried out on the Compo-
nent 1 predictor weights (displayed in figure 2A) revealed
significant main effects of Timepoint, F6,168 = 40.31, P <
.001, a significant Timepoint3Load interaction, F18,504 =
3.02, P < .001, and a significant Timepoint 3 Group in-
teraction, F6,168 = 2.94, P < .05. The Timepoint 3 Load
interaction was dominated by the contrast of 4 vs 6 letters
and 6 vs 8 letters, F1,28 = 29.11, P < .001, F1,28 = 19.14,
P< .001, respectively, on the change between 16 and 20 s.
This was due to HDR peak appearing earlier for some
loads relative to others, although this did not reflect a lin-
early increasing load effect. The Timepoint 3 Group in-
teraction was stable over timepoint comparisons (P
values ranging from .07 for the increase from 13 to 16 s
to .30 for the increase from 10 to 13 s), reflecting a steadily
steeper increase in HDR for the controls relative to
patients. No other effects involving group were signifi-
cant (all Ps > .28).

Component 2. An ANOVA carried out on the Compo-
nent 2 predictor weights (displayed in figure 2B) revealed
significant main effects of Timepoint, F6,168 = 81.23, P <
.001, Load, F3,84 = 22.45, P < .001, a highly significant
Timepoint 3 Load interaction, F18,504 = 61.50, P <
.001, and a significant Load 3 Group interaction, F3,84 =
3.91, P < .05. The Timepoint 3 Load interaction was
caused by a linearly load-dependent increase in activation
for Component 2 between approximately 5 and 17 s, with
the peak at approximately 10 s. The Load 3 Group in-
teraction was dominated by the contrast between 6
and 8 letters, F1,28 = 10.48, P < .01, whereby patients dis-
played higher activation for 6 letters relative to controls
(peaks = .44 vs .38, respectively), but lower activation for
8 letters for patients relative to controls (peaks = .52 vs
.61, respectively). Although the statistical tests of the dif-
ferences between these means were not significant on
their own, t28 = 1.67, P = .11, t28 = �1.47, P = .15, respec-
tively, it is the reversal of the ‘‘direction’’ of these mean
differences that underlies the significant interaction.

Component 3. An ANOVA carried out on the Compo-
nent 3 predictor weights (displayed in figure 2C) revealed
significant main effects of Timepoint, F6,168 = 43.34, P <

.001, Load, F3,84 = 13.17, P < .001, a significant Time-
point 3 Load interaction, F18,504 = 8.75, P < .001, and
a significant Timepoint 3 Group interaction, F3,84 =
3.59, P < .05. The Timepoint 3 Load interaction for
Component 3 was caused by a linearly load-dependent
increase in activation between approximately 5 and 21
s, with the peak at approximately 16 s. The Timepoint 3

Group interaction was dominated by the changes occur-
ring between 10 to 13 s, F1,28 = 4.54, P< .05 and between
19 to 22 s, F1,28 = 4.50, P < .05, which was caused by
a higher peak in HDR (averaged over all WM load con-
ditions) for the patients (M = 0.35) relative to the controls
(M = 0.24). Although the Load 3 Group interaction was
not significant, F3,84 = 1.32,P = .28, we followed up on the
reversal of the direction of the mean differences observed
in Component 2 for loads 6 and 8. For Component 3, the
interaction based only on the contrast between 6 and 8
letters, including all time points, was nonsignificant,
F1,28 = 1.70, P = .20; however, the interaction was highly
significant for the change between 7 to 10 s, F1,28 = 13.10,
P < .01 and between 16 to 19 s F1,28 = 6.06, P < .05,
whereby patients displayed substantially steeper activa-
tion increases for 6 letters relative to controls (peaks =
0.40 vs 0.23, respectively), but similar activation increases
for 8 letters in both patients and controls (peaks = 0.48 vs
0.42, respectively). Although neither of these means com-
parisons are significant on their own, t28 = 1.76, P = .09,
t28 = 0.27, P = .79, respectively, the difference in the steep-
ness of the inclines of the estimated HDRs for the 6 letter
condition (relative to the 8 letter condition) dominates
the significant interaction involved in Timepoint changes
from 7 to 10 s and 16 to 19 s.

Discussion

In the current fMRI study, we used CPCA with a FIR
basis set to extract functional networks common to
both healthy control subjects and schizophrenia patients
and subsequently used the estimated hemodynamic
responses from each group in order to compare the func-
tional activity associated with different WM loads in each
of the groups. The results suggested that 3 neural networks
were underlying performance on the WM task. The first
network peaked late in the trial (17–20 s) and involved ac-
tivation in bilateral sensory and motor areas, dorsal ante-
rior cingulate cortex, and bilateral superior parietal and
subcortical activations. It showed no linear load depen-
dence and was more active for controls than patients.
The second peaked early in the trial (approximately
10 s) and involved extensive activation in bilateral visual
cortex showed strong linear load dependence and dis-
played higher activation for 6 letters for patients relative
to controls, combined with lower activation for 8 letters
for patients relative to controls. The third peaked at a peri-
stimulus time point intermediate to the first 2 (approxi-
mately 16 s) and involved activation in dorsal anterior
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Fig. 2.TheDominant 5%ofComponentLoadings fromEachExtractedComponent ImageDisplayedonaStructuralBrain ImageTemplate.
(A) Component 1 image with positive component loadings displayed in red (minimum5 0.26, maximum5 0.34). No negative component
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cingulate and bilateral insular cortex and deactivation in
medial prefrontal and posterior cingulate cortex and bilat-
eral middle temporal gyrus. This network showed strong
linear load dependence and a higher peak in estimated
HDR (averaged over all conditions) for the patients
(M = 0.35) relative to the controls. This higher peak
was most sharply defined in the 6 letter condition. These
results support a model whereby patients experience high-
er cognitive load andmore neural activity in activated and
deactivated networks at moderate WM loads, suggesting
that impaired performance in schizophrenia at high WM
loads may result from an inability to recruit additional
neural activity in the face of increasing demands.

The late peak for Component 1 (17–20 s), absence of
linear load dependence, activations in sensorimotor
regions, and left cortex/right cerebellar activations, sug-
gest involvement in button pressing during the probe
phase. Component 1 appears consistent with some of
the regions in the task-positive functional network20

and showed a steeper activation peak for controls relative
to patients.
The early peak associated with Component 2 (10 s),

strong load dependence, and activation in visual regions
is congruent with involvement in the encoding phase. The
load dependency of the visual cortical regions is expected
due to load-dependent visual displays, and the fusiform

Table1. ClusterVolumes forMostExtreme5%ofComponent 1Loadings,withAnatomicalDescriptions,MontrealNeurological Institute
(MNI) Coordinates, and Brodmann’s Area for the Peaks Within Each Cluster

Cortical Regions
Cluster
Volume (mm3)

Brodmann’s
Area for Peak
Locations

MNI Coordinate
(x, y, z) for Peak
Locations

Positive loadings
Cluster 1: left hemisphere 25 792
Supramarginal Gyrus 40 �52, �36, 48
Postcentral Gyrus 3 �40, �32, 60
Precentral Gyrus 6 �32, �12, 64
Superior Parietal Lobule 5 �36, �44, 60
Angular Gyrus 39 �36, �52, 40

Cluster 2: bilateral 11 840
Supplementary Motor Area 6 �4, 4, 48
Paracingulate Gyrus 32 4, 24, 40
Anterior Cingulate Gyrus 24 0, 8, 44

Cluster 3: right hemisphere 2112
Cerebellum (Lobule VI) n/a 16, �56, �24

Cluster 4: left hemisphere 1664
Thalamus n/a �12, �20, 8
Pallidum n/a �20, 0, 12

Cluster 5: left hemisphere 832
Precentral Gyrus 6 �48, 8, 28
Inferior Frontal Gyrus
(pars opercularis)

44 �44, 8, 24

Cluster 6: right hemisphere 640
Thalamus n/a 8, �5, 8
Caudate n/a 12, 8, 8

Cluster 7: right hemisphere 512
Precentral Gyrus 6 44, 0, 44

Note: Only clusters > 25 mm3 are presented here. Only positive loadings are presented in the table, as no negative loading voxels
exceeded the threshold. n/a = not applicable.

loadings passed this threshold. Axial slices are located at the following Montreal Neurological Institute (MNI) z
axis coordinates: �30, 11, 28, 38, 57. (B) Component 2 image with positive component loadings displayed in red (minimum 5 0.21,
maximum 5 0.35). No negative component loadings passed this threshold. Axial slices are located at the following MNI z axis
coordinates: �13, �6, 1, 43, 65. Error bars are SEs. (C). Component 3 image with negative component loadings displayed in blue and
positive component loadingsdisplayed in red (minimum5 j0.14j,maximum5 j0.23j).Axial slices are locatedat the followingMNI z axis
coordinates: �22, �9, 0, 29, 47. For each component, the mean FIR-based plot of predictor weights for healthy controls and
schizophreniapatients areplottedas a functionofperistimulus time andare locatedbeneath the functional brain image for the respective
component. Error bars are SEs.

Fig. 2. continued.
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gyrus has previously been found to be sensitive to encod-
ing load.23

The intermediate peak associated with Component 3
(approximately 17 s) and strong load dependence makes
it the primary candidate for involvement in the delay
phase. However, it is also likely to be involved in the
encoding phase, given that its activation begins increas-
ing at the 4 s point. This is too early for an HDR response
to the delay period to emerge since the delay period also
begins at 4 s peristimulus time. Component 3 appears
consistent with some of the regions in the task-positive
functional network as well as many involved in the
task-negative (or default-mode) network.19 Component
3 clusters identified as associated with the task-positive
network include supplementary motor area (SMA)/pre-
SMA (BA 6/32), inferior parietal lobule (BA 39/40),
left DLPFC (BA 46), and bilateral insula. All of these
neural regions are typically reported in WM studies.22–29

Component 3 clusters identified as being associated with
the task-negative network include posterior cingulate/
precuneus (BA 23), medial prefrontal cortex (BA 11/
10), bilateral superior lateral occipital cortices (BA 39),
and bilateral inferior temporal regions (BA 20/21). As
for Component 2, Component 3 is characterized by
patients displaying higher activation on the 6 letter con-
dition relative to controls.

Other studies have considered the role of the task-
negative network in WM function in schizophrenia.30,31

Both of the cited studies reported evidence for reduced
task-related suppression of the task-negative (or default)
network during WM tasks, although one also reported

increased task-related suppression in some regions.30

However, both concluded that dysfunction in the task-
negative (or default) network during WM may adversely
affect performance and may provide an explanation for
WM impairment in schizophrenia. The current analysis
provides a slightly different perspective, namely, that
the task-negative network is not more dysfunctional
than the task-positive network; rather they work together
in a coordinated, reciprocal fashion.
This set of results can be interpreted within the context

of the hypothesized shifted inverted U-shaped response
of the DLPFC to increasing WM load for schizophrenia
patients and controls,8,12 and accounts holding that
schizophrenia patients show reduced efficiency with re-
spect to WM performance.8,11 For the networks involved
in encoding and encoding/delay, patients appear to have
reached their peak fMRI activation level in the 6 letter
condition, producing similar activation to the controls
in the 8 letter condition. However, when the patients
reach the 8 letter condition, the fMRI signal is reduced
or unchanged, in theory because they are past the peak
of the inverted U-shaped curve under the most demand-
ing conditions. Thus, when the networks represented by
Components 2 and 3 are considered as a whole, at higher
WM loads, patients reach capacity earlier than controls,
and at the highest WM load, behavioral deficits begin to
emerge when neural activity (as measured by fMRI) can
no longer be increased. There is not much evidence in the
current set of results for the supposition made by the
shifted inverted U-shaped curve theory that more activa-
tion should be observed for patients in the low load

Table 2. Cluster Volumes for Most Extreme 5% of Component 2 Loadings, with Anatomical Descriptions, MNI Coordinates, and
Brodmann’s Area for the Peaks Within Each Cluster

Cortical Regions
Cluster
Volume (mm3)

Brodmann’s
Area for Peak
Locations

MNI Coordinate
(x, y, z) for Peak
Locations

Positive loadings
Cluster 1: bilateral 153 152

Occipital Fusiform Gyrus 19 �36, �80, �20
Inferior Lateral Occipital Cortex 19 �40, �88, �12
Occipital Pole 18 16, �96, �8

Cerebellum (Crus I) n/a �28, �84, �20
Superior Lateral Occipital Cortex 7 24, �68, 52
Precuneus 7 8, �76, 52
Lingual Gyrus 18 �14, �82, 0
Intracalcarine Cortex 17 11, �82, 4

Cluster 2: left hemisphere 7296
Precentral Gyrus 4 �56, �4, 44
Postcentral Gyrus 3 �52, �14, 44

Cluster 3: left hemisphere 3520
Supplementary motor area 6 �4, 0, 64

Note: Only clusters > 25 mm3 are presented here. Only positive loadings are presented in the table, as no negative loading voxels
exceeded the threshold. n/a = not applicable.
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Table 3. Cluster Volumes for Most Extreme 5% of Component 3 Loadings, with Anatomical Descriptions, MNI Coordinates, and
Brodmann’s Area for the Peaks Within Each Cluster

Cortical Regions
Cluster
Volume (mm3)

Brodmann’s Area
for Peak Locations

MNI Coordinate
(x, y, z) for Peak
Locations

Positive Loadings

Cluster 1: bilateral 7872
Paracingulate Gyrus 32 0, 20, 48
Supplementary Motor Area 6 �4, 8, 56
Anterior Cingulate Gyrus 24 4, 12, 42

Cluster 2: left hemisphere 4096
Precentral Gyrus 6 �44, 0, 36
Inferior Frontal Gyrus (pars
opercularis)

44 �54, 20, 28

Cluster 3: left hemisphere 3008
Supramarginal Gyrus 40 �44, �44, 44
Angular Gyrus 39 �44, �48, 40

Cluster 4: right hemisphere 1984
Insula n/a 32, 24, 0

Cluster 5: left hemisphere 1216
Insula n/a �36, 20, 4

Cluster 6: left hemisphere 768
Middle Frontal Gyrus 46 40, 36, 28
Inferior Frontal Gyrus (pars
triangularis)

44, 32, 28

Cluster 7: left hemisphere 384
Lateral Occipital Cortex 7 �31, �60, 44

Negative loadings

Cluster 1: bilateral 24 640
Precuneus/Posterior Cingulate Cortex 23 4, �56, 24
Intracalcarine Cortex 17 �10, �64, 12

Cluster 2: bilateral 17 792
Medial Frontal Cortex 11 4, 52, �12
Frontal Pole 10 �12, 60, 28
Paracingulate Gyrus 10 �8, 48, 0
Superior Frontal Gyrus 9 �20, 36, 48

Cluster 3: right hemisphere 5248
Occipital Pole 18 34, �92, 2
Inferior Lateral Occipital Cortex 19 40, �82, �12
Lingual Gyrus 18 16, �88, �6

Cluster 4: left hemisphere 3520
Superior Lateral Occipital Cortex 39 �52, �68, 20

Cluster 5: right hemisphere 2176
Superior Lateral Occipital Cortex 39 48, �60, 20

Cluster 6: left hemisphere 1216
Posterior Middle Temporal Gyrus 20 �60, �12, �20
Anterior Middle Temporal Gyrus 21 �60, �4, �24

Cluster 7: right hemisphere 832
Posterior Middle Temporal Gyrus 20 56, �8, �24
Anterior Middle Temporal Gyrus 21 56, �2, �20

Cluster 8: left hemisphere 448
Posterior Temporal Fusiform Cortex 37 �32, �36, �20

Cluster 9: right hemisphere 384
Cerebellum (Crus II) n/a 28, �80, �40

Note: Only clusters > 25 mm3 are presented here. Positive and negative loadings are presented in the top and bottom sections of the
table, respectively. n/a = not applicable.
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conditions, and this may be due to the focus on networks
as opposed to the traditional focus on a single region (the
DLPFC). However, with respect to this, for Component
3, a higher peak in HDR was present for the patients av-
eraged over all WM load conditions. Overall, this set of
patient results, namely, hypoactivity for Component 1
(averaged over load) and hyperactivity for Components
2 and 3 (averaged over load for Component 3 but dom-
inated by the 6 letter condition for both components)
may contribute to the ongoing attempts to understand
how WM studies in schizophrenia can alternately report
hypoactivity and hyperactivity.10,13,32

The components reported here closely replicate those
found in our previous work using the same analysis
method with healthy subjects, on a slightly different ver-
sion of the Sternberg task.15 In that study, very similar
task-positive, task-negative, and visual cortex-based
components were retrieved. As in the current study,
the linearly load-dependent and visual cortex-based com-
ponents peaked at approximately 10 s. In our previous
work, the linearly load-dependent component that com-
bined the task-positive (including insula activation) and
task-negative networks onto a single component was sus-
tained between approximately 10 and 17 s, compared
with the rather sharp peak at 17 s for the current study.
This discrepancy may be related to the fact that in the
current study a delay period of 6 s was used for all trials,
whereas in the previous study, the delay period was ran-
domly jittered on a trial-by-trial basis to be 3, 4, or 5 s.
This is further indirect evidence that the task-positive/
task-negative network is involved primarily in the com-
bined encoding/delay period of WMwith a visual cortex-
based component being involved primarily in the encoding
period. It should be noted that both of the component
types begin to increase their activity sharply starting at
approximately 4 s, suggesting that all are involved to
some extent in the encoding phase, although the activity
in the task-positive/task-negative network appears to ex-
tend into the delay period. The currently reported late-
peaking Component 1 was not retrieved in our previous
study. Assuming that this network is exclusively involved
in the probe phase, this may be attributable to the fact
that the randomly determined length of the delay period
in the previous study (3, 4, or 5 s) may have reduced the
signal detectable from the probe phase as it occurred at
staggered time points relative to the start of the trial.

Conclusions

The results suggest that, at moderately high levels of WM
load, schizophrenia patients experience increased intrin-
sic cognitive load relative to controls at the scale of the
task-positive and negative (ie, default) networks. As
a consequence, capacity is reached sooner as the overt
levels of WM load increase to the point that further
increases in overt memory load do not increase fMRI ac-

tivation, leading to performance deficits for patients in
this study. These results are congruent with an account
holding that patients show reduced efficiency with re-
spect to WM performance, such that when task demands
become sufficiently high, the task-positive and task-
negative neural networks will reduce activation and sup-
pression, respectively. This also partially supports the
inverted U-shaped curve theory of the relationship be-
tween WM load and fMRI activation.
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