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Review

RNA silencing as a tool to uncover gene function and engineer novel traits 

in soybean

Megumi Kasai and Akira Kanazawa*

Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan

RNA silencing refers collectively to diverse RNA-mediated pathways of nucleotide-sequence-specific inhi-

bition of gene expression. It has been used to analyze gene function and engineer novel traits in various or-

ganisms. Here, we review the application of RNA silencing in soybean. To produce soybean lines, in which

a particular gene is stably silenced, researchers have frequently used a transgene that transcribes inverted

repeats of a target gene segment. Suppression of gene expression in developing soybean embryos has been

one of the main focuses of metabolic engineering using transgene-induced silencing. Plants that have en-

hanced resistance against diseases caused by viruses or cyst nematode have also been produced. Meanwhile,

Agrobacterium rhizogenes-mediated transformation has been used to induce RNA silencing in roots, which

enabled analysis of the roles of gene products in nodulation or disease resistance. RNA silencing has also

been induced using viral vectors, which is particularly useful for gene function analysis. So far, three viral

vectors for virus-induced gene silencing have been developed for soybean. One of the features of the soybean

genome is the presence of a large number of duplicated genes. Potential use of RNA silencing technology

in combination with forward genetic approaches for analyzing duplicated genes is discussed.

Key Words: epigenetic changes, metabolic engineering, post-transcriptional gene silencing, RNA interfer-

ence, soybean (Glycine max), transgene, virus-induced gene silencing.

Introduction

Gene silencing is one of the regulatory mechanisms of gene

expression in eukaryotes, which refers to diverse RNA-

guided sequence-specific inhibition of gene expression,

either at the post-transcriptional or transcriptional level

(reviewed by Brodersen and Voinnet 2006, Vaucheret 2006).

Post-transcriptional gene silencing (PTGS) was first discov-

ered in transgenic petunia plants whose flower color pattern

was changed as a consequence of overexpression of a gene

that encodes the key enzyme for anthocyanin biosynthesis in

1990 (Napoli et al. 1990, van der Krol et al. 1990). Similar

phenomena have also been reported for plants transformed

with various genes, which include virus resistance of plants

that have gene or gene segments derived from the viral ge-

nome (reviewed by Baulcombe 1996, Wilson 1993). Be-

cause of these findings, gene silencing is thought to have

developed to defend against viruses. Several lines of research

in plants indicated that double-stranded RNA (dsRNA) is

crucial for RNA degradation (Metzlaff et al. 1997,

Waterhouse et al. 1998). The potency of dsRNA to induce

gene silencing was demonstrated in Caenorhabditis elegans

by injecting dsRNA into cells in 1998 (Fire et al. 1998), and

the phenomenon was termed RNA interference (RNAi).

Subsequent genetic and biochemical analyses in several

organisms revealed that PTGS and RNAi share the same

pathway and consist of two main processes: (i) processing of

dsRNA into 20–26-nt small RNA molecules (short interfer-

ing RNA; siRNA) by an enzyme called Dicer that has

RNaseIII-like endonuclease activity; (ii) cleavage of RNA

guided by siRNA at a complementary nucleotide sequence

in the RNA-induced silencing complex (RISC) containing

the Argonaute (AGO) protein (reviewed by Matzke et al.

2001). The formation of dsRNA from single-stranded sense

RNA was explained by the synthesis of its complementary

strand by RNA-dependent RNA polymerase (RdRP). This

process provides templates for Dicer cleavage that produces

siRNAs and consequently allows amplification of silencing

(reviewed by Baulcombe 2004) (Fig. 1). siRNA is responsi-

ble for not only induction of sequence-specific RNA degra-

dation but also epigenetic changes involving DNA methyla-

tion and histone modification in the nucleus, which leads to

transcriptional gene silencing (TGS) (reviewed by Matzke et

al. 2009). It has become evident that siRNA plays a role in
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systemic silencing as a mobile signal (Dunoyer et al. 2010,

Molnar et al. 2010). In addition to siRNA, small RNA

molecules called micro RNAs (miRNAs) are also involved

in negative regulation of gene expression (reviewed by

Mallory and Vaucheret 2006). These gene silencing phe-

nomena that are induced by sequence-specific RNA interac-

tion are collectively called RNA silencing (reviewed by

Matzke et al. 2004, Voinnet 2002).

RNA silencing plays an important role in many biologi-

cal processes including development, stability of the ge-

nome, and defense against invading nucleic acids such as

transgenes and viruses (reviewed by Baulcombe 2004,

Matzke et al. 2009, Vaucheret 2006). It can also be used as a

tool for analyzing specific gene functions and producing

new features in organisms including plants (reviewed by

Frizzi and Huang 2010, Kanazawa 2008, Mansoor et al.

2006). Here, we review the application of RNA silencing in

the genetic analysis and molecular breeding of soybean

[Glycine max (L.) Merrill].

Methods of transgene-induced RNA silencing in soy-

bean

Engineering novel traits through RNA silencing in soybean

has been done using transgenes or virus vectors: examples

are listed in Tables 1–3. RNA silencing in some transgenic

soybean plants was induced by introducing a transgene that

transcribes sense RNA homologous to a gene present in the

plant genome, a phenomenon termed co-suppression (Napoli

et al. 1990). This type of silencing was first discovered in

transgenic petunia plants that had silencing of CHS-A for

chalcone synthase (Napoli et al. 1990, van der Krol et al.

1990), in which mRNA transcribed from both CHS-A trans-

gene and endogenous CHS-A gene was degraded. When

sense transcripts from a transgene trigger RNA degradation,

the pathway is also referred to as sense (S)-PTGS (Brodersen

and Voinnet 2006). To obtain plants that have RNA silenc-

ing of a particular gene target, it is possible to generate co-

suppressed plant lines as a byproduct of a transformation to

overexpress the gene under the control of a strong promoter.

However, a more promising method to induce RNA degra-

dation is to transform plants with a construct comprising an

inverted repeat (IR) sequence of the target gene, which

forms dsRNA upon transcription (IR-PTGS) (Helliwell and

Waterhouse 2005, Wesley et al. 2001). This idea was based

on the understanding of general mechanisms of RNA silenc-

ing in which dsRNA triggers the reaction of RNA degrada-

tion. The majority of transgene-induced RNA silencing in

soybean have actually been done using such an IR construct

(Table 1). IR-PTGS can also be induced when multiple

transgenes are integrated in the same site in the genome in an

inverted orientation and fortuitous read-through transcrip-

tion over the transgenes produces dsRNA.

An interesting finding reported in soybean is that RNA si-

lencing is induced by a transgene that transcribes inverted

repeats of a fatty acid desaturase FAD2-1A intron (Wagner

et al. 2011). This result is contrary to the earlier belief that

RNA silencing is a cytoplasmic event and intron does not

trigger RNA degradation, which has been shown, for exam-

ple, by using viral vector in plants (Ruiz et al. 1998) or by

dsRNA injection to C. elegans cells (Fire et al. 1998), al-

though irregular nuclear processing of primary transcripts

associated with PTGS/RNAi has been reported previously

(Metzlaff et al. 2000). The FAD2-A1 intron-induced RNA

silencing led to the understanding that RNA degradation can

take place in the nucleus (Hoffer et al. 2011). Although

whether RNA degradation in the nucleus is inducible for

other genes or in other plants is not known, this phenomenon

is intriguing because the involvement of nuclear events has

been assumed for amplification of RNA silencing via transi-

tivity (Vermeersch et al. 2010) or intron-mediated suppres-

sion of RNA silencing (Christie et al. 2011).

Transcribing a transgene with a strong promoter tends to

induce RNA silencing more frequently than that with a weak

promoter (Que et al. 1997). For obtaining a higher level of

transcription in soybean plants, the Cauliflower mosaic virus

Fig. 1. Pathways of RNA silencing used to engineer novel traits in
plants. Posttranscriptional gene silencing is triggered by dsRNA. Tran-
scripts from transgenes that have an IR sequence can form dsRNA.
Sense transcripts can produce dsRNA through the synthesis of com-
plementary strand by RdRP. The replication intermediate or duplex
structures formed within single-stranded RNA of the viral genome can
also provide dsRNA. These dsRNAs are processed into siRNAs by the
endonuclease Dicer. The siRNA is loaded into the RISC complex that
contains AGO and guides the RISC complex to the mRNA by base-
pairing. The RISC complex cuts the mRNA, which is subsequently de-
graded. siRNA can also induce epigenetic changes involving DNA
methylation and/or changes in histone modification in the nucleus.
These changes can convert nucleosomes to a more tightly packed
structure, thereby transcription is repressed. Abbreviations: IR, invert-
ed repeat; RdRP, RNA-dependent RNA polymerase; dsRNA, double-
stranded RNA; siRNA, short interfering RNA; RISC, RNA-induced
silencing complex; AGO, Argonaute.
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(CaMV) promoter has been used as in other plant species.

Seed-specific promoters, such as those derived from the

genes encoding subunits of β-conglycinin, glycinin, or

Kunitz trypsin inhibitor, have also been used in soybean to

induce seed-specific silencing, one feature that is exploited

for metabolic engineering in soybean.

A gene construct that induces RNA silencing has been in-

troduced to the soybean genome using either Agrobacterium

tumefaciens infection or particle bombardment, which can

produce stable transgenic soybean lines that have altered

traits. In addition, RNA silencing can be induced in soybean

roots using A. rhizogenes-mediated transformation, which

has been used for gene functional analysis. Methods for soy-

bean transformation are reviewed in another article of this

issue (Yamada et al. 2012).

Metabolic engineering of soybean plants by transgene-

induced RNA silencing

Because soybean seeds are valued economically for food

and oil production, most modifications to transgenic soy-

bean plants using RNA silencing are focused on seed com-

ponents. Metabolic pathways in developing seeds have been

targeted in terms of altering nutritional value for human or

animals, e.g., changing seed storage protein composition

(Kinney et al. 2001, Schmidt et al. 2011), and reducing phyt-

ic acids (Nunes et al. 2006, Shi et al. 2007), saponin (Takagi

et al. 2011) or allergens (Herman et al. 2003) (Table 1). Met-

abolic engineering has also targeted oil production (Chen et

al. 2006, Flores et al. 2008, Kinney 1996, Lee et al. 2011,

Schmidt and Herman 2008, Wagner et al. 2011, Wang and

Xu 2008) (Table 1). These modifications were done by in-

hibiting a step in a metabolic pathway to decrease a product.

On the other hand, RNA silencing can also be used to in-

crease the concentration of a specific metabolite. For exam-

ple, Yu et al. (2003) has produced transgenic soybeans that

contain more isoflavone. They induced the activation of

genes involved in phenylpropanoid pathway by introducing

a transcription factor gene and by blocking a competing

branch pathway via co-suppression. Similarly, Artkit et al.

(2011) demonstrated that RNA silencing of the amino alde-

hyde dehydrogenase gene induced the biosynthesis of a vol-

atile compound, 2-acetyl-1-pyrroline, in soybean calli, an

outcome expected from studies in rice.

RNA silencing can be induced efficiently in soybean

roots using A. rhizogenes-mediated root transformation.

This method has been used for analyzing roles of gene prod-

ucts in nodule development and/or function, which occurs

as a consequence of interaction between legume plants and

the nitrogen-fixing symbiotic bacterium Bradyrhizobium

japonicum (Dalton et al. 2009, Govindarajulu et al. 2009,

Hayashi et al. 2008, Lee et al. 2005, Libault et al. 2010,

Subramanian et al. 2006). The hairy root system was also

used for analyzing roles of a MYB transcription factor in

isoflavonoid biosynthesis (Yi et al. 2010).

Transgene-induced RNA silencing has also been induced

in leaf tissues for the β-glucuronidase gene (Reddy et al.

2003) or the senescence-associated receptor-like kinase

gene (Li et al. 2006).

Disease resistance of soybean plants by transgene-

induced RNA silencing

Another focus of modifying soybean plants through RNA si-

lencing is resistance against diseases, particularly to those

caused by viruses. The effects of gene silencing in plants

were first used to develop resistance to viral diseases, even

though the mechanism was not clear at the time. Resistance

to viruses was achieved by transforming plants with genes or

segments of genes derived from viruses and was referred to

as pathogen-derived resistance (reviewed by Baulcombe

1996, Goldbach et al. 2003, Prins and Goldbach 1996,

Wilson 1993). The resistance did not need protein translated

from the transgene (Mueller et al. 1995, Sijen et al. 1996,

Smith et al. 1994), which led to the understanding that RNA

is the factor that conferred resistance to the plants and that

the enhanced resistance is acquired via a mechanism ana-

logous to that involved in co-suppression. Use of transgene-

induced RNA silencing for plants to acquire resistance

against viruses has been reported for various combinations

of plants and viruses (reviewed by Baulcombe 1996,

Goldbach et al. 2003, Mansoor et al. 2006). Using this strat-

egy, soybean plants resistant to Soybean mosaic virus

(SMV; Furutani et al. 2006, 2007, Wang et al. 2001), or

Soybean dwarf virus (Tougou et al. 2006, 2007) have been

produced (Table 2).

In addition to resistance against a virus, transgenic soy-

bean plants resistant to cyst nematode (Heterodera glycines)

have also been produced using RNA silencing (Steeves et al.

2006), in which an inverted repeat of the major sperm pro-

tein gene from cyst nematode was transcribed from the

transgene. RNA silencing was elicited in cyst nematode after

nematode ingestion of dsRNA molecules produced in the

soybean plants; as a consequence, reproductive capabilities

of the cyst nematode were suppressed. The effects of RNA

silencing on controlling H. glycines (Li et al. 2010) or root-

knot nematode (Meloidogyne incognita) (Ibrahim et al.

2011) infection have been assayed in soybean roots using

A. rhizogenes-mediated transformation. On the other hand,

this root transformation method has also been used for analyz-

ing a role of host genes in resistance against diseases caused

by Phytophthora sojae (Graham et al. 2007, Subramanian et

al. 2005), Fusarium solani (Lozovaya et al. 2007) or cyst

nematode (Melito et al. 2010).

VIGS as a powerful tool to analyze gene function

Although transgenes that express a virus-derived gene or

gene segment can confer enhanced resistance against virus,

plants intrinsically have the ability to cope with viruses.

When plants are infected with an RNA virus, dsRNA of

the viral genome is degraded by the infected plants (Al-Kaff
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et al. 1998, Covey et al. 1997). The dsRNA in the virus-

infected cells is thought to be the replication intermediate of

the viral RNA (Lu et al. 2003) or a duplex structure formed

within single-stranded viral RNA (Molnar et al. 2005). The

viral genomic RNA can be processed into siRNAs, then tar-

geted by the siRNA/RNase complex. In this scenario, if a

nonviral segment is inserted in the viral genome, siRNAs

would also be produced from the segment. Therefore, if the

insert corresponds to a sequence of the gene encoded in the

host plant, infection by the virus results in the production of

siRNAs corresponding to the plant gene and subsequently

induces loss of function of the gene product. This fact led to

the use of a virus vector as a source to induce silencing of a

specific gene in the plant genome, which is referred to as

virus-induced gene silencing (VIGS; Kumagai et al. 1995,

Purkayastha and Dasgupta 2009, Ruiz et al. 1998). So far, at

least 11 RNA viruses and five DNA viruses were developed

as a plant virus vector for gene silencing, as listed previously

(Kanazawa 2008). Three vectors are now available in soy-

bean: those based on Bean pod mottle virus (BPMV; Zhang

and Ghabrial 2006), Cucumber mosaic virus (CMV;

Nagamatsu et al. 2007) and Apple latent spherical virus

(ALSV; Yamagishi and Yoshikawa 2009) (Table 3).

An advantage of VIGS is its ease for making a gene con-

struct and introducing nucleic acids to cells. In addition, the

effect of silencing can be monitored within a short time after

inoculating plants with the virus. Because of these features,

VIGS is suitable for gene function analysis (reviewed by

Burch-Smith et al. 2004, Lu et al. 2003, Metzlaff 2002) and

has been used for gene identification via downregulating a

candidate gene(s) responsible for a specific phenomenon in

soybean. When Nagamatsu et al. (2007) tested VIGS on the

putative flavonoid 3′-hydroxylase (F3′H) gene, the content

of quercetin was decreased relative to kaempferol in the up-

per leaves after viral infection, which indicated that the pu-

tative gene actually encodes the F3′H protein. Nagamatsu et

al. (2007) also demonstrated that VIGS of CHS genes result-

ed in lack of pigmentation in the seed coat tissues. Similarly,

VIGS was used to confirm that the GmTFL1b gene, a candi-

date gene for the genetically identified locus Dt1, actually

controls the determinate habit of soybean plants (Liu et al.

2010). VIGS has also been used to identify genes involved

in resistance of soybean plants against pathogens such as

SMV, BPMV, Pseudomonas syringae or Phakopsora

pachyrhizi (Fu et al. 2009, Kachroo et al. 2008, Meyer et al.

2009, Pandey et al. 2011, Singh et al. 2011).

Specific features of VIGS

The extent of the induction of silencing is not equivalent be-

tween different portions of virus-infected plants because in-

duction of the silencing is associated with propagation of the

virus whose extent is often different in different parts of the

host plants. This conditional nature of VIGS may have both

positive and negative aspects in terms of using the technolo-

gy for functional genomics. Although the instability may be

a negative aspect of VIGS, it may in turn be an advantage by

allowing observation of phenotypic changes caused by the

dysfunction of a gene whose complete loss of expression is le-

thal to the plant (Lu et al. 2003). In fact, phenotypic changes

have been induced by VIGS of the gene for proliferating

cell nuclear antigen (Peele et al. 2001) and RNA polymerase

II (Gosselé et al. 2002), for which null mutants cannot be re-

trieved by conventional or insertional mutagenesis ap-

proaches. Similarly, the effect of downregulation of the actin

and ribosomal protein genes was detected using VIGS in

soybean (Zhang et al. 2009).

VIGS has also been applied to genes whose products

have a function and/or accumulate during seed development.

Whether genes are actually downregulated in developing

embryo or donwnregulated in other tissues and the level of

transported products is decreased in seeds is intriguing.

Table 2. Enhancement of disease resistance through transgene-induced RNA silencing targeted to pathogens in soybean

Target gene Construct Promoter Transformation method Reference

Soybean mosaic virus, CP gene and 3′ UTR cDNA CaMV 35S A. tumefaciensa Wang et al. 2001
Bean pod mottle virus, CP gene cDNA CaMV 35S Particle bombardment Reddy et al. 2001c

Soybean dwarf virus, CP gene cDNA IR CaMV 35S Particle bombardment Tougou et al. 2006
Soybean dwarf virus, CP gene cDNA CaMV 35S Particle bombardment Tougou et al. 2007
Soybean mosaic virus, CP gene cDNA CaMV 35S Particle bombardment Furutani et al. 2006, 2007
Cyst nematode (Heterodera glycines), major sperm 
protein gene

cDNA IR Arabidopsis ACT2 Particle bombardment Steeves et al. 2006

H. glycines genes Cpn-1, Y25 and Prp-17 cDNA IR CaMV 35S A. rhizogenesb Li et al. 2010
Root-knot nematode (Meloidogyne incognita) TP and 
MSP genes

cDNA IR FMV A. rhizogenesb Ibrahim et al. 2011

a Agrobacterium tumefaciens-mediated transformation.
b Agrobacterium rhizogenes-mediated root transformation.
c The mechanism of virus resistance in this report could be mainly brought about by the expressed CP protein rather than through RNA silencing.
However, we could not exclude the possibility of the involvement of RNA silencing in the phenomenon because no data of the level of viral
RNA or CP mRNA in the virus-infected plants is presented.

Abbreviations: CP, coat protein; IR, inverted repeat; CaMV, Cauliflower mosaic virus; ACT2, actin 2; FMV, Figwort mosaic virus; TP, tyrosine
phosphatase; MSP, mitochondrial stress-70 protein precursor.
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Yamagishi and Yoshikawa (2009) showed that RNA silenc-

ing of the phytoene desaturase and isoflavone synthase 2

genes actually occurs in soybean embryos, resulting in photo-

bleaching and a decrease in isoflavone content, respectively,

by the ALSV vector. A decrease in isoflavone content in

soybean embryos has also been induced by the CMV vector

(Nagamatsu et al. 2007).

Modification and optimization of VIGS in soybean

When VIGS is used to analyze the function of a gene, viral

infection itself might be a problem depending on the target

gene. Symptoms of virus infection indicate that gene expres-

sion in the infected cells has been affected. If a gene with ex-

pression affected by viral infection is chosen as the target of

VIGS, the effect of VIGS might not appear as a specific ef-

fect caused by the sequence-specific degradation of the

RNA, but a nonspecific effect of the viral infection might

also be involved. Accordingly, efforts are sometimes needed

to reduce the extent of nonspecific effects of viral infection

and simultaneously efficiently induce VIGS. In this respect,

when a new combination of plant species and virus vector is

used, it is often necessary to control the efficiency of viral

infection and symptom production to optimize the induction

of VIGS (Kanazawa 2008).

Symptomless viral infection of soybean has been

achieved using CMV (Nagamatsu et al. 2007) and ALSV

(Yamagishi and Yoshikawa 2009). In case of CMV infec-

tion, a pseudorecombinant virus that consists of RNA com-

ponents derived from different CMV strains were used to

establish symptomless infection of the virus (Nagamatsu et

al. 2007). Moreover, VIGS that accompanies neither severe

viral symptoms nor outward phenotypic changes has been

achieved by targeting the F3′H gene in soybean, while the

flavonoid content was successfully modified by the VIGS

(Nagamatsu et al. 2007).

For infection of soybean plants with RNA viruses, tissues

of young plants are inoculated with in-vitro-generated tran-

scripts of the viral genome or with the sap or RNA extracted

from an infected leaf of other plants. Infection of soybean

plants with ALSV was done by the following method.

Plasmids containing ALSV cDNA were inoculated onto

Chenopodium quinoa leaves. RNA extracted from the leaves

was then introduced into cotyledons of soybean seedlings

through particle bombardment-mediated delivery

(Yamagishi and Yoshikawa 2009). For infection of soybean

plants with CMV, the virus was first propagated in

Nicotiana benthamiana plants: leaves of N. benthamiana

were rub-inoculated with the in-vitro-generated transcripts

of viral cDNA. Then, the primary leaves of soybean plants

were inoculated with the sap from an infected leaf of the

N. benthamiana plant (Nagamatsu et al. 2007). Infection of

soybean plants with in-vitro-generated transcripts was also

possible (Kanazawa et al., unpublished data). A similar

method was also used for infection of BPMV (Zhang and

Ghabrial 2006). The method of infection of soybean plants

with BPMV has been modified as follows. Zhang et al.

(2009) made DNA constructs in which the cDNA of the

BPMV RNAs is transcribed under the control of the CaMV

35S promoter. They achieved infection of soybean plants

with the virus through particle bombardment-mediated de-

livery of these DNA constructs to facilitate VIGS experi-

ments. Zhang et al. (2010) also modified the BPMV vector

and overcame its constraint that target sequences must be

expressed as fusion proteins with a viral polypeptide.

Use of viral infection as a tool to “diagnose” an RNA-

silencing-induced phenotype

Another interesting aspect of the use of viruses for the study

of RNA silencing in plants is the function of a virus-encoded

suppressor protein of RNA silencing. These suppressor pro-

teins affect viral accumulation in plants. The ability of the

suppressor protein to allow viral accumulation is due to its

inhibition of RNA silencing by preventing the incorporation

of siRNAs into RISCs or by interfering with RISCs (re-

viewed by Silhavy and Burgyan 2004). It has been known

that the lack of brown pigmentation in the seed coat of soy-

bean is caused by naturally occurring CHS RNA silencing

(Senda et al. 2004, reviewed by Senda et al. 2012). When a

soybean plant that has a yellow seed coat is infected with

CMV, the seed coat restores pigmentation (Senda et al.

2004). This phenomenon is due to the activity of gene si-

lencing suppressor protein called 2b encoded by the CMV.

This example typically indicates that, using the function of

viral suppressor protein, we can “diagnose” whether an ob-

served phenotypic change in a plant is caused by RNA si-

lencing. A similar phenomenon has also been detected in

maize (Della Vedova et al. 2005) and petunia (Koseki et al.

2005), both of which have phenotypic changes through nat-

urally occurring RNA silencing of an endogenous gene.

RNA silencing as a tool to understand regulatory

mechanisms of biological phenomenon associated

with mRNA level of a gene

RNA silencing of a particular gene is also useful for analyz-

ing biological phenomena, in particular those involving the

effect of a difference in the mRNA level of the gene. For ex-

ample, the regulatory mechanisms of pigmentation in soy-

bean pubescence was analyzed using VIGS of the F3′H

gene, whose function is necessary for pigmentation of soy-

bean pubescence. Silencing did not result in lack of pig-

mentation when plants were grown in normal greenhouse

conditions, but plants lacked pigmentation when grown in

controlled conditions; the steady-state mRNA level of the

F3′H gene was reduced to ca. 5% of that of greenhouse-

grown plants (Nagamatsu et al. 2009). VIGS in the con-

trolled conditions resulted in a further decrease in the

mRNA level, which led to the discovery that a threshold

mRNA level of the F3′H gene was associated with the pig-

mented pubescence (Nagamatsu et al. 2009).
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Future prospects of the use of RNA silencing in soy-

bean

1. Stability and heritability of RNA silencing

Induction of transgene-mediated RNA silencing can be af-

fected by various factors such as structure, copy number, or

expression level of the transgene, environmental conditions

or developmental stages of the plant (Majewski et al. 2009,

and references therein). In addition, induction of transgene-

mediated RNA silencing can be destabilized during cell

proliferation and appears to be re-initiated in each genera-

tion (Furutani et al. 2007, Mitsuhara et al. 2002). However,

transgene-mediated RNA silencing can induce a strong,

tissue-specific or ubiquitous silencing and is suitable for

producing plants in which one or more genes are stably si-

lenced in the presence of the transgene as far as the trans-

gene is capable of inducing the silencing. On the other hand,

because of elimination of viruses during meiosis, VIGS is

basically transient and is confined to the plants in which the

virus is inoculated. An exceptional VIGS vector applicable

to soybean is ALSV: it can transmit to the next generation

and induce silencing across generations (Yamagishi and

Yoshikawa 2009).

Heritable silencing can be induced in plants via induction

of epigenetic changes by CMV, although the virus does not

transmit to the subsequent generation (Kanazawa et al.

2011a, 2011b). Gene silencing through transcriptional re-

pression can be induced by dsRNA targeted to a gene pro-

moter (reviewed by Matzke et al. 2004). However, until

recently, no plant has been produced that harbors an

endogenous gene that remains silenced in the absence of

promoter-targeting dsRNA. We have reported for the first

time that TGS can be induced by targeting dsRNA to the en-

dogenous gene promoters in petunia and tomato plants, us-

ing a CMV-based vector and that the induced gene silencing

is heritable (Kanazawa et al. 2011a). Efficient silencing de-

pended on the function of the 2b protein encoded in the vec-

tor, which facilitates epigenetic modifications through the

transport of siRNA to the nucleus (Kanazawa et al. 2011a).

The efficiency of promoter-targeted silencing also depends

on features of promoter RNA segments (e.g., length and nu-

cleotide composition) (Otagaki et al. 2011). An advantage of

the RNA-mediated TGS using the CMV vector is that the

progeny plants do not have any transgene because the virus

is eliminated during meiosis. Plants that are produced by this

system have altered traits but do not carry a transgene, thus

constituting a novel class of modified plants (Kanazawa et

al. 2011b). Because of the availability of the vector in soy-

bean, VIGS can potentially be used for producing such novel

class of plants in soybean as well.

2. RNA silencing as a tool to analyze duplicated genes

One feature of the soybean genome is the presence of a

large number of duplicated genes. Soybean is thought to be

derived from an ancestral plant(s) with a tetraploid genome,

and as a consequence, large portions of the soybean genome

are duplicated (Shoemaker et al. 1996), with nearly 75% of

the genes present in multiple copies (Schmutz et al. 2010).

In addition, genes in the soybean genome are sometimes du-

plicated in tandem (e.g., Kong et al. 2010, Matsumura et al.

2005, Schlueter et al. 2008, Yoshino et al. 2002). Our recent

studies have indeed shown functional redundancy of dupli-

cated genes in soybean (Kanazawa et al. 2009, Liu et al.

2008). Such gene duplication can be an obstacle to produc-

ing mutants by conventional methods of mutagenesis. In this

regard, the gene silencing technique is particularly useful be-

cause it allows silencing of multiple cognate genes having

nucleotide sequence identity.

In addition, it is of interest to understand whether dupli-

cated genes have identical or diversified functions, which

may depend on the time after duplication event and/or the

selection pressure on the genes. To analyze the functions of

each copy of the duplicated genes, we need to silence a spe-

cific copy of the duplicated genes. In plants, siRNAs pro-

mote production of secondary siRNAs from 5′ and/or 3′ of

the initially targeted region via production of dsRNA by

RdRP. These secondary siRNAs can lead to silencing of a

secondary target that is not directly targeted by the primary

silencing trigger (reviewed by Voinnet 2008). Studies so far

have indicated that such a spread of RNA silencing, called

transitive RNA silencing, does not occur with the majority

of endogenous genes, although it can happen to a transgene

(Vermeersch et al. 2010, and references therein). Assuming

the lack of transitive RNA silencing, it is possible to induce

silencing of a specific copy of a duplicated gene. Targeting a

region specific for each copy, e.g., the 3′ UTR, can induce

silencing of the gene copy only, whereas targeting a region

conserved in duplicated gene copies can induce silencing of

the multiple gene copies simultaneously. Such selective

RNA silencing was successful in a gene family of rice (Miki

et al. 2005) and this strategy may work for analyzing func-

tional diversification of duplicated genes in any plant spe-

cies. Considering the presence of a large number of gene-

level duplication and/or chromosomal segmental duplica-

tion, it should also be noted that naturally occurring gene

silencing may be discovered in soybean in the future in

addition to CHS silencing, which is manifested as a visibly

altered phenotype (Senda et al. 2004, 2011).

3. Potential targets and methods

Tolerance to abiotic stress and fertility control through

RNA silencing have been reported for various plants

(Mansoor et al. 2006). These traits can be a future target of

RNA silencing in soybean. Attempts to induce RNA silenc-

ing only in seeds will increase because genes responsible for

the synthesis of seed components are sometimes essential for

normal vegetative growth, whose downregulation in nonseed

tissues might have deleterious effects on plant growth. A typ-

ical example is the embryo-specific silencing of a transporter

gene, which results in reduction of phytic acid content in soy-

bean seeds without inducing undesirable agronomic charac-

ters associated with phytic acid reduction (Shi et al. 2007).
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A recently introduced approach to suppress gene expres-

sion in plants is the use of artificial miRNAs (amiRNAs;

also called synthetic miRNAs; reviewed by Frizzi and

Huang 2010, Ossowski et al. 2008). This approach involves

modification of plant miRNA sequence to target specific

transcripts, originally not under miRNA control, and down-

regulation of gene expression via specific cleavage of the

target RNA. This method has been applied to target viral

RNA (Niu et al. 2006) and transcripts of endogenous genes

in plants (Alvarez et al. 2006, Schwab et al. 2006). In soy-

bean, Melito et al. (2010) have used amiRNA to downregu-

late the leucine-rich repeat transmembrane receptor-kinase

gene. Considering that miRNA has been extensively studied

in soybean (e.g., Song et al. 2011), amiRNA can be the

method of choice for RNA silencing in soybean. Because of

its specificity, this method will be useful for silencing a lim-

ited copy of duplicated genes.

Such a reverse genetic approach may also be supplement-

ed by forward genetic approaches already done in soybean

such as high linear energy transfer radiation-based muta-

genesis, e.g., irradiation of ion beam (Arase et al. 2011) and

fast neutron (Bolon et al. 2011), which potentially bring

about a large deletion in the genome. Similarly, a gene tag-

ging system using the Ds transposon (Mathieu et al. 2009)

has also been developed in soybean. A combination with

these different approaches will increase the applicability of

RNA silencing.
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