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Abstract
Toll-like receptor 5 (TLR5) binding to bacterial flagellin activates NF-κB signaling and triggers
an innate immune response to the invading pathogen. To elucidate the structural basis and
mechanistic implications of TLR5-flagellin recognition, we determined the crystal structure of
zebrafish TLR5, as a VLR-hybrid protein, in complex with the D1/D2 fragment of Salmonella
flagellin, FliC, at 2.47 Å resolution. TLR5 interacts primarily with the three helices of the FliC D1
domain using its lateral side. Two TLR5-FliC 1:1 heterodimers assemble into a 2:2 tail-to-tail
signaling complex that is stabilized by quaternary contacts of the FliC D1 domain with the convex
surface of the opposing TLR5. The proposed signaling mechanism is supported by structure-
guided mutagenesis and deletion analysis on CBLB502, a therapeutic protein derived from FliC.

Toll-like receptors (TLRs) play a key role in innate immunity by eliciting the first line of
defense against invading pathogens (1). TLRs are membrane-bound antigen-recognition
receptors (2) that directly recognize highly conserved molecular structures in pathogens
using their horseshoe-shaped, leucine-rich repeat (LRR) ectodomains. Each TLR recognizes
a different set or subset of antigens with a distinct ligand-binding mechanism (fig. S1).
Nonetheless, all known agonist-activated TLR structures form a similar dimer organization,
which brings their C-terminal regions into juxtaposition so that their intracellular TIR
domains can initiate the signaling cascades (3-6). To date, structural studies on TLR-ligand
recognition have been limited to non-protein antigens, and the structural basis for protein-
antigen recognition by a TLR has not been addressed.

TLR5 is the only protein-binding TLR that is conserved in vertebrates from fish to mammals
(7-9). TLR5 responds to a monomeric form of flagellin from β- and γ-proteobacteria that
constitutes the whip-like flagellar filament responsible for locomotion (8, 10-11). Flagellin
(hereafter, termed ‘FliC’ corresponding to the main flagellin gene product in Salmonella)
binding to TLR5 induces MyD88-dependent signaling and activates the proinflammatory
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transcription factor, NF-κB, in epithelial cells, monocytes, and dendritic cells, which results
in activation of innate immune responses against flagellated bacteria (8, 12-16).

The key roadblock against TLR5-FliC interaction studies has been the formidable technical
challenge in expression of the mammalian TLR5 ectodomain (ECD) in a functionally active,
soluble form. We overcame this challenge by testing expression of a number of TLR5
orthologs (17-18). Only the zebrafish, Danio rerio ortholog (drTLR5-ECD) could be
successfully expressed in a secreted soluble form in the baculovirus system, but with a low
purification yield (< 50 μg from 1 liter culture) (19). To improve the yield, we engineered a
series of drTLR5-ECD C-terminal deletion variants as chimeric proteins with the C-terminal
fragment of hagfish variable lymphocyte receptor (VLR) B.61 using a strategy successfully
used for crystallization of other TLRs (4, 20). Three chimeric proteins containing 6, 12 and
14 N-terminal LRR modules (TLR5-N6VLR, TLR5-N12VLR, and TLR5-N14VLR,
respectively) (fig. S2A) were expressed, purified to homogeneity, and tested for their
interaction with CBLB502 (21) (fig. S2B), a pharmacologically optimized derivative of FliC
from Salmonella enterica subspecies enterica serovar Dublin (sdFliC), by size-exclusion
chromatography and native electromobility shift assay (EMSA) (Fig. 1A). Stable 1:1
complexes with CBLB502 were obtained for TLR5-N12VLR and TLR5-N14VLR (but not
TLR5-N6VLR) and used for structural studies.

The largest chimeric protein TLR5-N14VLR inhibited CBLB502-induced signaling as
efficiently as full-length drTLR5-ECD in a competitive assay using NF-κB-luciferase
reporter HEK293 cells stably expressing human TLR5 (hsTLR5) (Fig. 1B). Importantly, the
observed IC50 values for both derivatives of drTLR5 (67 and 139 pM; Fig. 1B) are in the
same range as the EC50 of CBLB502-hsTLR5 signaling efficiency (77 pM) measured in the
same reporter system (Fig. 1, C and D). Although none of these values can be interpreted as
a true dissociation constant, this observation supports the relevance of drTLR5 as a model
for hsTLR5 interactions with FliC.

To provide the structural basis for TLR5-FliC interaction, crystal structures of TLR5-
N12VLR and a complex of TLR5-N14VLR with a D0 deletion variant of sdFliC (sdFliC-
ΔD0; fig. S2B) were determined at 2.83 Å and 2.47 Å resolutions, respectively (22) (Fig.
2A and table S1). In the TLR5-FliC complex, the FliC D1 domain is located on the lateral
side of TLR5 forming an extensive primary binding interface that defines a 1:1 heterodimer.
Two heterodimers further oligomerize to a symmetric 2:2 complex where TLR5 from the
first heterodimer makes additional, weaker, interactions with both FliC’ and TLR5’ from the
second heterodimer, forming a secondary dimerization interface. This TLR5-FliC interaction
mode is completely different from other TLR interactions with non-protein ligands including
the stoichiometry, ligand arrangement, and binding interfaces (23). Nonetheless, flagellin
binding results in assembly of two TLR5s in a tail-to-tail organization, which juxtaposes the
C-terminal tail regions of TLR5-ECD for signaling by analogy with other agonist-bound
TLRs (fig. S1). Thus, the TLR5-N14VLR/FliC-ΔD0 structure illustrates distinct, as well as
conserved, features compared to other TLRs for receptor activation.

TLR5 adopts a single domain LRR structure that consists of an N-terminal β-hairpin
capping motif (LRRNT), 13 complete LRR modules (LRR1-13), and two residues from
LRR14 (24) (Fig. 2B and fig. S3). The concave surface displays a smooth, curved β-sheet
structure that is formed from 2 antiparallel β-strands of LRRNT and 13 parallel β-strands of
LRR modules. However, the convex surface is less regular with an assortment of helices and
extended structures. Comparison of TLR5 with other known TLR structures indicates that
TLR5 can be categorized more as a TLR3-like LRR structure than TLR4- or TLR2-like,
consistent with the evolutionary closeness of TLR3 and TLR5 (25) (fig. S4).
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Two (D1 and D2) of the three FliC-ΔD0 domains could be modeled in the complex
structure (26) (fig. S5), but only D1 is involved in direct interaction with TLR5 (Fig. 2C).
The D1 domain consists of four elongated segments that vertically assemble into a long,
largely helical rod. The four segments correspond to two N-terminal α-helices (αND1a and
αND1b), one C-terminal α-helix (αCD1), and a segment of β-hairpin/extended structure
that connects αND1b to the D2 domain (Fig. 2C and fig S6).

The extensive primary binding interface responsible for the specific recognition of FliC by
TLR5 is formed between the ascending lateral surface of TLR5 LRRNT-LRR10 and one
side of the three long α-helices of FliC D1 with ~1320 Å2 of buried accessible surface area
(b.s.a.) on each side (Fig. 3A). This interface can be described as two adjacent, but spatially
separated surfaces, interfaces-A and -B, and includes residues previously proposed as TLR5
binding sites by a mutational study (11) (fig. S7). Moreover, the FliC interface coincides
with residues involved in FliC oligomerization in the flagellar filament structure and, thus, is
well conserved across species of β- and γ-proteobacteria (figs. S6 and S8). These
observations support the hypothesis that TLR5 evolved to target a common molecular
pattern of FliC that is functionally crucial for flagellar assembly and, hence, evolutionarily
constrained (11).

Interface-A is formed between the concave and ascending sides of TLR5 LRRNT-LRR6 and
the C-terminal half of FliC αCD1 with ~530 Å2 b.s.a. (Fig. 3A, bottom, and fig. S9).
Interface-A narrows from LRRNT toward LRR6 with LRRNT-LRR2 providing 3-4 residues
from both concave and ascending sides, and LRR3-LRR6 contributing 1-2 residues only
from the ascending side. Interaction in interface-A is mainly hydrophilic with 5 H-bonds and
3 salt bridges (table S2).

Interface-B is located on the ascending lateral surface of the central LRR modules (LRR7-
LRR10) of TLR5 and on the upper part of FliC αND1a and αND1b (Fig. 3A, right), and
constitutes ~60% (~790 Å2) of the primary interface (fig. S9, A and B). Interface-B is also
mainly hydrophilic with 12 H-bonds and primarily located at a protruding loop of LRR9 that
undergoes structural changes upon FliC binding (fig. S10, A and B). In the TLR5-N12VLR
structure, the LRR9 loop is highly flexible as indicated by high B-values and poor electron
density, but upon FliC binding, the loop undergoes structural rearrangement to form a well-
defined groove (Fig. 3B and fig. S10A) that accommodates absolutely conserved FliC
residues, Arg90 and Glu114 (fig. S6). The groove side and rim reinforce FliC binding
through diverse H-bonds and van der Waals interactions with 8 FliC residues at the C-
terminal end of αND1a and N-terminal half of αND1b. This groove is responsible for the
half of primary interface H-bonds and ~35% of b.s.a. The functional importance of the
LRR9 loop was further demonstrated by an LRR9-loop deletion that severely impaired FliC
binding in size-exclusion chromatography, a competitive FP assay (at least ~1000-fold), and
competitive cell-based signaling assays (130~490-fold) (fig. S10, C-F). This loop is highly
conserved in all species and likely forms the hot-spot in the TLR5-FliC interaction (27).

The secondary dimerization interface consists of three surfaces: interface-α (TLR5’-FliC),
its 2-fold symmetry related interface-α’ (TLR5-FliC’), and interface-β (TLR5-TLR5’); no
contacts are made between FliC molecules (28) (Fig. 4). Dimerization interface-α is located
on the convex side of TLR5’ LRR12/13 and on the FliC C-terminal αND1b region and
following loop at the bottom of the D1 domain (Fig. 4, left). Dimerization interface-β is
formed by TLR5 residues mainly on the ascending lateral side of LRR12/13 (Fig. 4, right).
The dimerization interface is relatively limited with a total of ~550 Å2 b.s.a. on each 1:1
complex (α, ~130Å 2; α’, ~130 A2; β, ~290 Å2), but may be greater in the full-length
TLR5-FliC interaction (29). This dimerization interface exhibits high sequence conservation
among both vertebrate TLR5 orthologs and FliC orthologs from diverse bacteria (figs. S3,
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S6 and S11), and high shape complementarity (Sc, 0.64-0.76), underscoring its functional
significance in the secondary dimerization of TLR5-FliC (30).

We used structure-guided mutagenesis to assess whether the observed dimerization interface
contributes to TLR5 activation for downstream NF-κB signaling. A series of CBLB502
derivatives with the proposed dimerization surface disrupted by point mutations and/or
deletions were tested in two assays: (i) competitive FP assay to assess primary binding for
drTLR5 and (ii) NF-κB-luciferase reporter assay to assess signaling activity that results
from both primary binding and secondary dimerization. The latter assay with hsTLR5 in
HEK293 cells also provided an opportunity to further validate the drTLR5 structure as a
surrogate for hsTLR5. The binding and signaling data from the CBLB502 mutants (Fig. 1, C
and D, and table S3) support the proposed contribution of the dimerization interface to
signaling. Dimerization interface mutant 1 (DIM1; R124D/Q128A/Q130A/K135A in
αND1b at the dimerization interface-α, Fig. 4) shows a ~30-fold decrease in signaling, but
essentially no decrease (~3-fold) in binding. For the second mutant (DIM2; deletion of
residues 126-128 and T129G/Q130G/K135E mutations to disrupt αND1b and connecting
loop structures and introduce charge repulsion), the disruption in signaling efficiency is even
more pronounced (~800-fold decrease versus only 9-fold decrease in binding). In the control
mutant CBLB502-PIM (with Q89A/R90A/Q97A mutations in the primary interface),
comparable decreases in primary binding (450-fold) and signaling efficiency (~120-fold)
were observed (31). Decoupling of antigen binding and receptor signaling was also observed
for CBLB502-ΔD0, used as a control, where a minor (2-3 fold) change in binding affinity
both for TLR5-N14VLR and TLR5-ECD contrasts with an ~1,000-fold drop in signaling
efficiency (Fig 1, C and D, and fig. S12). Thus, both dimerization interface mutants
(CBLB502-DIM1 and -DIM2) clearly correlate in activity with the signaling-impaired
CBLB502-ΔD0 mutant than with the primary binding-impaired CBLB502-PIM mutant.

In conclusion, the D1 domain makes substantial contributions to both high affinity binding
and TLR5 signaling (32), whereas D0 contributes to TLR5 activation, but has no or little
effect on binding. Furthermore, the TLR5-FliC structure and unique features of ligand
recognition and activation provide a template to enhance the therapeutic activity of the
radioprotective drug (CBLB502) or flu vaccine (VAX102) in clinical trials, as well as to
design new vaccine adjuvants or antagonistic therapeutics for hyper-inflammatory diseases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
TLR5-FliC interactions and mutational studies. (A) Native EMSA (upper part) and size-
exclusion chromatography (lower part) reveal formation of a 1:1 TLR5-N14VLR/CBLB502
heterodimer. (B) TLR5-ECD and TLR5-N14VLR display a comparable binding for
CBLB502 as revealed by a competition assay (IC50 values of 67±4 (standard deviation; SD)
pM and 139±28 (SD) pM, respectively, in the presence of 90 pM CBLB502) using NF-κB
luciferase HEK293 reporter cells that express hsTLR5. Data are expressed as mean ± SD (n
= 3). (C) Mutational studies, using dimerization interface-disruption mutants (CBLB502-
DIM1 and -DIM2) and D0-deletion mutant (CBLB502-ΔD0), demonstrate that both the
dimerization interface of the complex structure and FliC D0 domain contribute to formation
of an active signaling complex. TLR5 primary binding efficiency was analyzed by a
competitive FP assay where TLR5-N14VLR interaction with fluorescein-labeled CBLB502
was inhibited by unlabeled CBLB502 or its mutants. Relative primary binding efficiency
was derived from IC50 ratio of CBLB502 to mutants. TLR5 signaling was assessed in an
NF-κB-dependent luciferase reporter assay and relative signaling efficiency was presented
using EC50 ratio of CBLB502 to mutants. The smaller ratio corresponds to weaker (or less
efficient) binding or signaling. (D) A competitive FP assay (left) and an NF-κB-dependent
luciferase reporter cell assay (right) of CBLB502 and its mutants shown in Fig. 1C. FP assay
results are representative of two independent experiments (left) and cell assay data are
expressed as mean (n = 2) with SD below 2000 RLU (right).
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Fig. 2.
Overall structure of the 2:2 TLR5-N14VLR/FliC-ΔD0 complex. (A) TLR5-N14 interacts
with FliC-ΔD0 into a 2:2 quaternary complex structure that organizes two TLR5 molecules
in a tail-to-tail orientation where their C-terminal regions are disposed in the center of the
complex. The 2:2 complex consists of two copies of 1:1 complex, 1:1 TLR5-N14VLR/FliC-
ΔD0 (ribbons; yellow TLR5-N14, green VLR, and gray FliC D1-2) and 1:1 TLR5-
N14VLR′/FliC-ΔD0′ (ribbons with translucent surface; orange TLR5-N14′, brown VLR′,
magenta FliC′ D1-2). The prime denotes that the molecule or residue comes from the
second 1:1 complex in the 2:2 assembly. The 1:1 complex formation is mediated by the
primary binding interface (A, B, A′, and B′) and its homodimerization to the 2:2 complex is
mediated by the secondary dimerization interface (α, α′, and β). For clarity, only TLR5-
N14 and FliC D1 domain are shown in the lower panel. (B) The TLR5-N14 structure of the
complex. Interface residues are color-coded according to the color scheme indicated in the
figure. Two disulfide bonds and four N-linked glycans are represented by black and orange
sticks, respectively. Four N-linked glycans are scattered over the TLR5 surface, but not
involved in TLR5-FliC interfaces. LRR7 and LRR9 are atypically long with 32 and 36
residues, compared to other LRRs that contain 23-27 residues, and protrude as long loops
(fig. S3). The ascending lateral surface of the LRR domain refers to the region connecting
the C-terminal end of the concave surface to the N-terminal end of the convex surface in
each LRR module (39). (C) The FliC D1-2 structure observed in the complex. Each α-helix
is labeled according to previous nomenclature (40).
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Fig. 3.
The primary binding interface of the TLR5-FliC 1:1 complex. (A) Residues in primary
interfaces-A (left) and -B (right) are shown in sticks (TLR5, green; FliC, light blue) on the
1:1 TLR5/FliC complex (TLR5, yellow ribbon; FliC, gray ribbon). The protruding loop of
TLR5 LRR9 is highlighted in magenta. H-bonds and salt bridges are represented by dashed
lines. To discriminate from FliC residues, TLR5 residues are underlined throughout the rest
of figures. (B) The LRR9 loop forms a groove that provides the major FliC binding site.
FliC Arg90 is deeply inserted into the groove and makes four H-bonds with carbonyl
oxygens of TLR5 Tyr267, Gly270, and Ser271 (41). Glu114 buttresses and orients the Arg90
side chain toward the groove via H-bonds, and also H-bonds with TLR5 Asn277. The bottom
of the groove is constructed from the main chains of Gly270 and Ser271, and its surrounding
wall is decorated by 8 LRR9 residues (Tyr267, Asn268, Ser272, His275, Thr276, Asn277,
Phe278, and Lys279) and an LRR10 residue (Lys303). The LRR9 loop groove is shown in the
orange surface and interacting residues are labeled (green labels for residues that engage
only main chains in the interaction with FliC; white labels for residues that engage side
chains in the interaction). FliC residues that interact with the LRR9 loop groove are shown
in cyan sticks. Inter-molecular and intra-molecular H-bonds are represented by black and
cyan dashed lines, respectively.
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Fig. 4.
Secondary dimerization interface in the 2:2 TLR5-FliC assembly. Two of the 1:1 TLR5-FliC
complex homodimerize to the 2:2 complex using dimerization interfaces-α, α′, and β. The
overall 2:2 complex is shown in the middle, and enlarged dimerization interfaces-α and β
are shown in the left and right panels, respectively (TLR5 residues, brown sticks; TLR5
residues, green sticks; FliC residues, lilac sticks). In interface-α, TLR5′ Asp381′, which is
conserved as an acidic residue (Asp or Glu) in all TLR5 orthologs, forms three H-bonds
with FliC Gln128, Gln130, and Lys135. Interface-β is created by van der Waals interactions
among two sets of three equivalent aromatic residues (Phe273, Phe351, and His375 of TLR5
and TLR5′), which creates a largely hydrophobic core (red dotted circle) that is conserved
in all other TLR5 sequences (Phe at residue 273, Leu at residue 351, and His at residue 375;
see fig. S3), and by four H-bonds (Arg377-Asn350′, Arg377-Tyr373′, Arg377′-Asn350, and
Arg377′-Tyr373).
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