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de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès, Spain

Abstract

Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although
human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of
the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms’
trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case
for polybromodiphenyl ethers (PBDE), a group of flame-retardants of widespread use in the recent years, in aquatic food
webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A
large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of
the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores) showed a low proportion
of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47). Secondary consumers (predators)
showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total
PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed
higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary
consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions,
some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine
isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other
process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems
even at low concentrations, since the species lacking or having scarce biotransformation capability may be selectively more
exposed to these halogenated hydrophobic semi-volatile organic pollutants due to their high bioaccumulation potential.
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Introduction

Prosperity in our civilization is partly supported by the

continuous discovery of new chemicals. Some of them were

developed with intentional toxicity (e.g., pesticides) but for others

this quality is an undesired by-product. Whatever the original

purpose, the persistence of toxic compounds in the environment

may become a large-scale problem and the ecological and

evolutionary consequences for the biosphere are largely unknown

[1]. Insights into these consequences require a better understand-

ing of the ecological and evolutionary constraints that modulate

the accumulation, transformation and eventual fate in food webs

of potentially toxic compounds.

A large proportion of persistent pollutants are synthetic

organohalogen compounds. Although these molecules are new

in nature, they are not completely alien to life. In fact, many

marine organisms express biotransformation capabilities that

utilize components of seawater, such as sulfate and halogens, to

produce a variety of chemicals that may be useful either as

consumption deterrents or as allelochemicals against other species

[2]. There are more than 4,000 organohalogen compounds known

to occur naturally and more than half of them contain bromine

[3]. These secondary metabolites have been isolated from many

organisms [4], particularly from algae [4,5,6,7,8,9], sponges [10],

marine worms [11,12,13,14] and sea hares [15,16]. The topic has

been less studied in freshwater systems, although haloperoxidases

have also been described in green algae (i.e., Cladophora glomerata)

[17]. One may ask to what extent this previous ecological and

evolutionary history related to natural organohalogen compounds

may condition the response to current synthetic organohalogens.

Here we present a comparative study on aquatic food webs in

which we investigate the patterns of polybromodiphenyl ethers

(PBDEs) across organisms of different trophic position and

evolutionary history with the aim of bringing some light to this

question.
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Polybromodiphenyl ethers (PBDEs) are widely used as flame

retardants. Their transport, bioaccumulation, biotransformation

and fate in nature are matters of major interest due to their

potential toxicity [18]. BDE-209, the main component of the

decabromodiphenyl ether mixture (deca-BDE) currently in use,

has been found in remote areas but little is known about its

behavior in food webs [19]. PBDEs have been produced

commercially in the form of diphenyl ether mixtures with three

degrees of bromination: nominally penta-, octa- and deca-

bromodiphenyl ether (BDE). However, the production of the

former two formulations has been banned in the European Union

[20] and Japan and voluntary withdrawn from the U.S. market

due to growing environmental and human health concerns, such

as the potential for nervous system damage, endocrine disruption

and cancer [18], and the increasing concentrations of these

compounds everywhere [19,21,22,23,24]. Deca-BDE mixture is

mostly composed of BDE-209 (.97%), a molecule of extremely

low volatility and, as a consequence, of expected scarce or null

long-range atmospheric transport [25]. However, there is current

evidence showing transport to remote areas [26,27,28,29,30].

Consequently, understanding PBDE bioaccumulation in food

webs and its eventual fate is attracting an increasing amount of

attention, particularly because the amounts produced are over-

taking those of polychlorinated biphenyls (PCBs). PCBs are

a paradigm of a global pollution legacy by persistent artificial

substances [31]; they are distributed worldwide [32] despite being

banned in the 1970 s, and still bioaccumulate in food webs [33].

We studied the patterns of PBDE distribution throughout the

food webs of four high mountain lakes in the Pyrenees (Spain).

Remoteness and altitudinal isolation of these lakes assure exclusive

PBDE pollution via atmospheric transport. Relatively simple food

webs allowed for a comprehensive approach from basal resources

to top predators (Table 1). Our findings reveal an enhanced

biotransformation capability of brominated flame-retardants

(PBDE) in primary consumers compared to higher trophic levels.

Given the short period for which these compounds exist in nature,

this suggests a case of pre-adaptation built on previous evolution-

ary history related to chemical ecological interactions.

Materials and Methods

Study Site and Sampling
Samples were collected in four high mountain lakes from the

Pyrenees (Catalonia, Spain): Llebreta (42.55uN 0.89uE, 1620 m

a.s.l.), Llong (42.57uN 0.95uE, 2000 m), Xic de Colomina

(42.52uN 0.99uE, 2425 m) and Vidal d’Amunt (42.53uN 0.99uE,

2688 m). They are softwater oligotrophic lakes, with long ice cover

periods (from ca. 4 to 7 months) and cold-water temperature

during ice-free periods. These conditions involve relatively simple

food webs, scarce biomass and relatively slow development of

aquatic insects.

The lakes are located in the Aigüestortes i Estany de Sant

Maurici National Park, all necessary permits were obtained for the

described field studies. Sampling was performed in July 2004. We

attempted to cover all main trophic compartments and organisms:

from basal resources to fish (Table 1). Basal resources included

some macroscopic algae (i.e., Nostoc), epilithon (rock biofilms with

diatoms, cyanobacteria and green algae), epipelon (biofilms on

littoral sediments similar in composition to rock biofilms but with

a higher proportion of heterotrophic prokaryotes) and top

sediment (deep bacterial biofilms with some microalgae). Phyto-

plankton could not be measured due to the difficulty for obtaining

enough material in these highly oligotrophic lakes. However, we

were able to collect sufficient amount of zooplankton for analysis.

All sort of habitats were examined for macroinvertebrates. Brown

trout (Salmo trutta) was sampled using gill nets and results were

already included in a previous publication [34].

Epilithon was scraped from ten stones distributed throughout

the whole littoral shore of each lake. A metallic ultra–cleaned

brush was used. Large colonies of the cyanobacteria Nostoc were

collected manually with metal tweezers. Surface sediment was

sampled with a plastic cylindrical tube in the littoral depths

(epilithon) and a Kajak gravity core in the deep parts (top

sediment). Top layers of 1–2 cm thickness were sliced from the

sediment cores. Zooplankton was sampled by vertical tows using

a 160 mm mesh zooplankton net near the maximum depth point.

The littoral macroinvertebrates were collected in each lake by

extensive kick sampling throughout the perimeter during several

hours. Macroinvertebrates from the maximum depths of the lakes

were collected using an Ekman sampler. Samples were kept frozen

(220uC) until examination. The taxonomic resolution in which

the results are reported has been a compromise between achieving

as much taxonomic detail as possible and having enough material

for PBDE composition analysis.

Chemicals and Standards
N-Hexane, dichloromethane, isooctane, concentrated sulfuric

acid and acetone were purchased from Merck (Darmstadt,

Germany). PCB#142, PCB#200 and PCB#209 were purchased

from Dr. Ehrenstoffer (Augsburg, Germany). Standards of

fourteen polybrominated diphenyl ethers (BDE-17, BDE-28,

BDE-47, BDE-66, BDE-71, BDE-85, BDE-99, BDE-100, BDE-

138, BDE-153, BDE-154, BDE-183, BDE-190 and BDE-209) in

isooctane were purchased from Cambridge Isotope Laboratories

(Andover, MA, USA). There are no standards for BDE-35, BDE-

77, and BDE-156. The peaks of these compounds were identified

using relative retention time predicted from a model developed to

estimate retention times of the 209 individual PBDE congeners

[35] and the mass spectrum. Their behavior in gas chromatog-

raphy was assumed similar to those chemically closer for which we

had standards.

PBDE Analysis
The extraction and clean-up procedure is described in detail

elsewhere [36]. Samples were spiked with PCB#209 standards

and extracted by sonication with hexane-dichloroethane (4:1) in

four successive steps of 15 min. Clean-up was performed by

sulfuric acid oxidation (4 times). The solutions were concentrated

to near dryness under a gentle flow of nitrogen and redissolved in

50 ml of isooctane. Before chromatographic analysis, internal

standards of PCB#142 and PCB#200 were added.

Samples were analyzed by gas chromatography coupled to

negative ion chemical ionization mass spectrometry (GC-NICI-

MS) in a TRACE GC ULTRA (Thermo Electron, Milan, Italy)

coupled to a MS DSQ (Thermo Electron, Austin, Texas, USA)

[37]. The system was equipped with a DB-5MS capillary column

(15 m60.25 mm60.1 mm film thickness) coated with phenyl

arylene polymer that is virtually equivalent to 5% phenyl 95%

methylpolysiloxane stationary phase. The oven temperature

program was from 140uC (held for 1 min) to 325uC at

10uC?min21 (held for 10 min). Helium was used as a carrier gas

(1 mL?min21) and ammonia as an ionization gas (2.4?1024 Pa).

Transfer line temperature was 300uC. Quantification was

performed from the intensities of the m/z 79 ion [Br]2.

Confirmation ions were m/z 81 [Br]2, 161 [HBr2]2 and 327,

405, 483, 563 and 643, corresponding to either [M]2 or [M-

HBr2]2. BDE-209 was measured from the intensities of the m/z

487 ion [Br]2 and the confirmation ion was m/z 489 [Br]2.

PBDE Dehalogenation in Freshwater Food Webs
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Bromine Stable Isotope Ratios
We use an innovative application of Br stable isotopes (Br79 and

Br81) for evaluating biotransformation and constrained transport.

Br79 and Br81 occur in similar amounts in nature [38] and PBDEs

in industrial products and standards show also Br79:Br81 ratios

close to 1 [39]. This means that, for instance, in the case of BDE-

209, the most likely combination in a molecule is 5 and 5 atoms of

each isotope. However, in the mixture there are molecules with all

combinations 4:6, 6:4, 3:7, 7:3, …, with a decreasing probability,

respectively. We hypothesized that, when enzymatic debromina-

tion occurs, the smaller the molecules, the easier will be attacked

by enzymes. Therefore, the Br79:Br81 ratio will progressively

decline in the remaining pool of the molecule (e.g. BDE-209) and

will increase in the pool of the resulting less brominated molecules.

Furthermore, the pools of the derived molecules will experience

the same phenomenon. In summary, the larger the enzymatic

biotransformation action over a certain BDE initial pool, the lower

the Br79:Br81 ratio of the pool. Consequently, we could expect

declining ratios throughout the food web if feeding is the main

pathway of PBDE consumer bioaccumulation, as at each trophic

level they will be processing a pool of substances that already have

suffered discrimination in the previous trophic level. The more

intense the enzymatic debromination at certain trophic level, the

larger the decline of the Br79:Br81 ratio between this trophic level

and the previous one. Other processes may also cause discrimi-

nation between PBDE molecules of different Br isotopic compo-

sition during transport within or between organisms. In particular,

facilitated transport across membranes or slow diffusion may favor

lighter molecules, thus increasing the Br79: Br81 ratio. We

estimated the Br79: Br81 ratio for BDE-209 and BDE-47 pools,

using the fragments m/z 79 and 81, respectively, in the NICI-MS

spectra.

Quality Assurance
Procedural blanks were analyzed for every set of six samples,

which corresponded to periods between twelve hours and two days

of sample handling, depending on the matrix. The recoveries of

the surrogate standard, PCB-209, were calculated for each sample,

Table 1. Organisms and assemblages analyzed in this study.

Organism or assemblage Lineage Trophic level Lake

Nostoc Cyanobacteria BR (only PP) C, V

Epilithon (mainly diatoms and cyanobacteria) – BR (mostly PP) Le, Lo, C, V

Epipelon (diatoms, cyanobacteria and heterotrophic bacteria) – BR (PP+D) Le, Lo, C, V

Top sediment (bacterial biofilm with some microalgae) – BR (mostly D) Le, Lo, C, V

Nematoda Nematoda SC (mostly) Le

Oligochaeta (bottom) Annelida, Oligochaeta PC Le, Lo, V

Oligochaeta (littoral) Annelida, Oligochaeta PC Le, Lo, C, V

Pisidium (bottom) Mollusca, Bivalvia, Veneroida PC Lo, V

Pisidium (littoral) Mollusca, Bivalvia, Veneroida PC Le, Lo, C

Ancylus fluviatilis Müller, 1774 Mollusca, Gastropoda, Pulmonata PC Lo, C

Radix peregra (Müller, 1774) Mollusca, Gastropoda, Pulmonata PC Lo, C, V

Planktonic crustaceans (Daphnia longispina (Müller, 1785),
Eudiaptomus vulgaris (Schmeil, 1896), Cyclops abyssorum Sars,
1863)

Arthropoda, Crustacea SC + PC Le, Lo, C, V

Aeschna Insecta, Odonota, Anisoptera SC Le

Zygoptera Insecta, Odonota, Zygoptera SC Le

Sialis lutaria (Linnaeus, 1758) Insecta, Megaloptera SC Le, Lo, C, V

Limnephilidae (Annitella, Potamophylax, Limnephilus) Insecta, Trichoptera, Integripalpia PC Le, Lo, C, V

Mystacides azurea (Linnaeus, 1761) Insecta, Trichoptera, Integripalpia PC Lo

Polycentropus flavomaculatus (Pictet, 1834) Insecta, Trichoptera, Annulipalpia SC Le, Lo, C, V

Boreonectes (adult) (formerly Stictotarsus) Insecta, Coleoptera, Dytiscidae SC V

Haliplus (adult) Insecta, Coleoptera, Haliplidae PC V

Chironomidae (other than Tanypodinae) (bottom) Insecta, Diptera, Chironomidae PC Le, Lo, V

Chironomidae (other than Tanypodinae) (littoral) Insecta, Diptera, Chironomidae PC Le, C, V

Tanypodinae Insecta, Diptera, Chironomidae SC Le, Lo, C, V

Ceratopogonidae Insecta, Diptera, Ceratopogonidae SC Le

Hydracarina Arachnida SC V

Phoxinus sp. Chordata, Actinopterygii, Cypriniformes, SC Le, Lo

Salmo trutta Linnaeus, 1758 Chordata, Actinopterygii, Salmoniformes SC Le, Lo, C, V

The evolutionary lineage and trophic information is provided. Primary consumers (PC) include herbivores and detritivores feeding on basal resources (BR), which in
these lakes are mostly biofilms of varying degree of autotrophic primary producers (PP) and heterotrophic decomposers (D). Secondary consumers (SC) include
organisms predating upon primary or other secondary consumers. In a few cases, we have distinguished between assemblages in different parts of the lake (e.g., littoral
or bottom) or contrasting microhabitats (e.g., epilithon, epipelon). Lake occurrence is indicated by: Le, Llebreta; Lo, Llong, C, Colomina and V, Vidal.
doi:10.1371/journal.pone.0041829.t001
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being 69622% (average 6 standard deviation). The recovery of

this surrogate was used for correction of the concentrations of

PBDE congeners in each sample. Identification and quantification

of PBDE congeners was performed by injection of external

standards at different concentrations. Relative responses to PCB-

200 were used in order to correct for instrumental variability and

this value was corrected by the recovery of the surrogate standard

(PCB-209). Limits of detection and quantification were calculated

from real samples, as the mean of the noise signal plus 3 and 5

standard deviations, respectively. They ranged between 0.1–0.8

and 0.2–1.3 pg g21, respectively. Final validation was made by

analysis of reference material obtained from the Arctic Monitoring

and Assessment Program (AMAP). We participate regularly in the

AMAP Ring Test Proficiency Program for POPs (Centre de

Toxicologie, Institut National de Santé Publique du Québec,

Québec, Canada) and the laboratory results usually were within

20% of the consensus values, including BDE-209 concentrations.

Numerical Methods
To compare the PBDE composition between trophic levels or

samples grouped in different ways, because of the skewed

distribution of the values, we applied PERMANOVA, a non-

parametric method for multivariate analysis of variance using

Bray-Curtis distance [40]. The analysis was performed in R

version 2.14.1, using Vegan package. To test whether BDE-209

high (low) values distribute randomly between primary, and

secondary consumers we used Fisher exact test performed in S-

PLUS 6.1 package. To compare Br79: Br81 ratios between trophic

levels we performed a One-way ANOVA followed by the Tukey’s

method for multiple paired comparisons in S-PLUS 6.1 package.

Finally, we performed principal component analysis (PCA) to

ordinate the variability observed among basal resources and

invertebrate consumers into a few main components. The analysis

was performed using CANOCO 4.5 and biplots using CanoDraw

4.0.

Results and Discussion

Trophic Level and PBDE Content
PBDEs were found at all the trophic levels analyzed, from basal

resources to secondary consumers and fish (Table 2). Total PBDE

average concentration differ between trophic levels (basal

resources, 0.2 ng g21dw; primary consumers, 18; secondary

consumers, 12; and fish 2.3, respectively). However, mean values

are largely influenced by the skewed distribution of concentrations

(Table 2). The general bioaccumulation pattern is better illustrated

by the median of total PBDEs (basal resources, 0.08 ng g21dw;

primary consumers, 1.01; secondary consumers, 2.84; and fish,

0.59, respectively) and of individual congeners (Table 2). The

increase is about one order of magnitude between basal resources

and primary consumers, and nearly triplicates between the latter

and secondary consumers. However, fish show lower concentra-

tions that their food items indicating that other processes are

involved. In fact, not all congeners show individually a character-

istic bioaccumulation increase. The dominant congeners vary

between trophic levels (Fig. 1) and a large standard deviation

around the mean (Table 2) reflects the high variability among taxa

of the same trophic level (Fig. 2). Particularly striking is the

variability of PBE-209 between trophic levels. The PERMA-

NOVA indicated significant differences among trophic levels in

PBDE profiles (p,0.001), subsequent pair comparisons showed

that basal resources composition differ from both primary

(p,0.003) and secondary (p,0.017) consumers and that the two

types of consumers differ significantly between them (p,0.011). In

contrast, fish PBDE composition was not significantly different

from any of the other three levels (basal resources, p,0.06;

primary consumers, p,0.23; secondary consumers, p,0.14). The

p-values reflect that fish PBDE composition was closer to primary

consumers than to secondary ones. The PBDE profiles of the two

fish species analyzed (Salmo trutta, Phoxinus sp.) were similar

(p..0.1) (Fig. 2).

Basal resources showed a large general dominance of BDE-209

(Fig. 1). This overwhelming dominance of BDE-209 in basal

resources indicates that this congener is largely the main

component of the PBDE atmospheric input at these sites, which

is in agreement with the deca-BDE industrial mixture currently in

use in Europe [20]. The occurrence of other congeners was mostly

related to the degree of autotrophy of the resource (Fig. 2). That is,

there were only traces of other congeners in the Nostoc colonies;

other congeners were largely a minority in the epilithon and

epipelon samples, and they were relatively abundant in top

sediment biofilms (Fig. 2). Top sediment biofilms are enriched in

less brominated congeners compare to the other biofilms, probably

because bacterial dehalogenation of PBDEs requires anaerobic

conditions [41,42]. These high altitude lakes are exposed to high

ultraviolet radiation (UV); however, UV cannot be responsible for

the enrichment in less brominated congeners in top sediments.

Top sediment biofilms were sampled from the deepest part of the

lake; therefore, UV reaching these biofilms was much less than

biofilm sampled at the littoral zone (i.e., epipelon and epilithon), in

which BDE-209 is largely the dominant congener (Fig. 2). In

a previous study, it was shown that there are no differences in

PBDE composition between rock biofilms exposed to full radiation

(extremely high UV) and biofilms from the same rocks located in

the shaded parts, which receives only diffuse radiation [29].

The proportion of less brominated congeners increased

markedly in all consumers compared to basal resources (Fig. 1).

However, the lower levels and proportion of BDE-209 in primary

consumers contrast with relatively high proportion in secondary

consumers (Table 2, Fig. 1). A Fisher’s exact test indicated that the

distribution of high values of BDE-209 between species of the two

consumer types was not random (p,0.15). No habitat effect can

be attributed to these patterns. Primary consumers living both in

littoral, and deep sediment habitats (i.e., Pisidium, Oligochaeta,

Chironomidae) showed similar PBDE profiles for both populations

(see Table S1), no significant differences existed in paired

comparisons (p..0.5). In addition, secondary consumers from

a given habitat (e.g., littoral) showed contrasting patterns with their

potential preys (p,0.006).

PBDE Biotransformation Capability
The pattern found in consumers is not the one we should

expect, assuming simple bioaccumulation from initial trophic

sources. The increase in less brominated congeners and decline in

BDE-209 suggest that debromination capability is common among

many food web components. The presence of some congeners

historically absent from industrial mixtures [39] supports this

interpretation (i.e., BDE-35, BDE-77 and BDE-156). Very low

levels of BDE-209 in primary consumers indicate that PBDE

biotransformation is enhanced at this trophic level (Fig. 1).

Bromine isotopic composition of PBDEs provides further

evidence that progressive dehalogenation occurs within the food

web, starting from BDE-209 (Fig. 3). Higher proportion of the

lighter isotope in BDE-47 than in BDE-209 at each trophic level

agrees with the interpretation that BDE-47 results from the

progressive biotransformation of the originally fully brominated

molecule (Fig. 3). Br79:Br81 ratio decreases in the BDE source pool

and, correspondingly, increases in the pool of the debrominated

PBDE Dehalogenation in Freshwater Food Webs
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form. On the other hand, for both BDE-29 and BDE-47, the ratio

decreases with increasing trophic level (Fig. 3), indicating that at

each higher level the PBDE pool had a longer biotransformation

trajectory. Therefore, the two isotopic features support that the

patterns observed along the food web are highly influenced by the

biotransformation capability of the organisms. If this were so, the

frequency of BDE congeners would reveal which bromine sites in

the BDE molecule are more liable to biotransformation (Fig. 4).

For primary consumers, bromines in the 2 (ortho) and 4 (para)

positions (e.g., penta BDE-99 and tetra BDE-47) are most

frequent, which in fact correspond to the positions that are

chemically more stable [43].

Interestingly, the ratio found in BDE-209 of microbial biofilms

is close to one (Fig. 3). As mentioned in material and methods,

PBDEs in industrial products and standards show ratios between

the two bromine stable isotopes (Br79 and Br81) close to this value.

This indicates that BDE-209 photodegradation during atmospher-

ic transport does not result in isotopic fractionation. The atomic

weight differences of the two isotopes are relatively small

(compared for instance to the stable isotopes of lighter elements,

e.g. C, N). This slight difference does not seem to produce any

significant fractionation during photodegradation according to our

results. However, the isotopic size difference, and most probably

the aggregate difference in a molecule rich in one of the isotopes,

does result in fractionation under enzymatic attack.

The low BDE concentrations in both fish species (Phoxinus and

Salmo) compared to other organisms with much shorter life span,

and the higher PBDE compositional resemblance of fish with

primary consumers than with secondary ones, indicate that fish

merit further consideration. There are several causes that can

explain lower PBDE concentrations in fish, which are not mutually

exclusive: a larger biotransformation capability; a limited gut

uptake; and/or a preferential accumulation in some organ. Fish

show a completely different Br79:Br81 ratio than their prey and any

other animal in the food web, which contrasts with the scarce

PBDE compositional differentiation. The Br79:Br81 ratios are

much higher than in primary and secondary consumers (Fig. 3),

close to the values found in basal resources. This indicates that

there has been a strong fractionation in favor of the lighter isotope

during the food pathway, if PBDE uptake is largely by feeding,

which seems the most likely way according to the properties of

these compounds. The high fractionation may happen if BDE

transport in the fish gut is highly limited compared to inverte-

brates, which we suggest as a hypothesis for further investigation.

This will also explain a lower concentration. However, at the light

of our results, we cannot discard accumulation in some other

organ (e.g., liver as found for rats [44]), as we only measured

muscle; in that case, the isotopic fractionation may happen during

internal transport. In rats, the BDE-209 absorption efficiency has

been estimated as 20% [44], whether or not fish has a similar

value, and whether this is sufficient for such a high fractionation,

requires further investigation. The high Br79:Br81 ratio of BDE-47

in fish is compatible with both a high transport fractionation of the

congener or high rates of dehalogenation from BDE-209 and

other highly brominated congeners that suffered the fractionation.

Biological debromination reactions are still poorly understood.

At present, there are different non-exclusive hypotheses based on

cytochrome P450 (involved in the metabolism of lipophilic

xenobiotics and plant allelochemicals) [45], iodothyronine deiodi-

nase [46] (involved in the regulation of thyroid hormones) or

endobiont bacteria [47], as the main implicates. Debromination

capability has been reported in bacteria [48,49] and chordates

such as fish [46] and some mammals (rats [44,50,51], bottlenose

dolphins (Tursiops truncatus) [52], beluga whales (Delphinapterus leucas)

[51], polar bears (Ursus maritimus) [53,54] and lactating cows [55]).

Our results show that PBDE transformation also occurs in many

Table 2. PBDE concentration at different trophic levels.

Basal resources Primary consumers Secondary consumers Fish

ng g21 dw mean 6 SD median mean 6 SD median mean 6 SD median mean 6 SD median

BDE-209 0.160.17 0.04 0.8865.25 bdl 2.7467 0.63 0.0160.02 bdl

BDE-190 0.0260.04 0.01 0.6163.85 bdl 0.3360.56 0.05 0.0260.04 bdl

BDE-183 0.0360.04 0.01 0.4362.19 0.01 1.0162.01 0.14 bdl bdl

BDE-156 060.01 bdl 0.2761.63 bdl 0.761.71 0.18 0.0160.01 bdl

BDE-138 0.0160.01 bdl 0.0460.18 bdl 0.7762.17 bdl 0.0160.02 bdl

BDE-153 bdl bdl 1.6764.35 0.22 0.7761.28 0.15 0.1360.13 0.09

BDE-154 060.01 bdl 0.3461.88 bdl 1.4962.89 0.26 0.1960.26 0.09

BDE-85 060.01 bdl 0.4462.78 bdl 0.6362.06 bdl 0.0260.03 0.01

BDE-99 0.0160.03 0.01 1.464.37 0.19 1.162.06 0.40 0.4360.5 0.12

BDE-100 0.0160.02 bdl 6.4626.84 0.31 0.560.86 0.18 0.2260.32 0.07

BDE-77 0.0260.04 bdl 0.8462.91 0.04 0.1960.51 bd 0.0660.11 bdl

BDE-66 bdl bdl 0.2761.44 bdl 060.01 bdl bdl bdl

BDE-47 0.0360.04 0.01 1.5363.77 0.24 1.4162.03 0.76 0.8661.14 0.20

BDE-71 060.01 bdl 2.81616.83 bdl 0.1160.12 0.09 0.0660.17 bdl

BDE-35 bdl bdl 0.0860.33 bdl 0.1660.33 bdl 0.0860.21 0.01

BDE-28 bdl bdl 0.0160.03 bdl 0.0660.24 bdl 0.1460.37 bdl

BDE-17 bdl bdl bdl bdl bdl bdl 0.0260.06 bdl

Samples 18 55 18 23

bdl, below detection limit.
doi:10.1371/journal.pone.0041829.t002
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groups of invertebrates phylogenetically distant (i.e., mollusks,

oligochaetes, crustaceans, insects and water mites). A first

important conclusion from this study is that PBDE may be much

less persistent in nature than up to here assumed.

Trophic Evolutionary History
Our results show that high PBDE biotransformation capability

is not universal among organisms. It appears preferentially related

to primary consumers, yet not exclusively. Since it is unlikely that

PBDE biotransformation capability evolved in so many different

groups as a response to the recent anthropogenic release of

brominated organic compounds into the environment, we must

conclude that showing (or lacking) the capability is related to the

previous eco-evolutionary history of each organism.

The high capability for biotransforming PBDEs shown by some

organisms may be rooted in the structural similarity of these

compounds to natural bromohalogens [4], which are used as

feeding deterrents by some primary producers and microbes

within aquatic food webs [56]. We suggest that high PBDE

debromination capability in primary consumers can be seen as

a preadaptation case [57]. Response to a previous selection

pressure (halogenated feeding deterrents) would have unexpectedly

prepared them for biotransformation of human-made toxicants

(PBDEs). Correspondingly, secondary consumers would be less

capable of debrominating PBDEs and, therefore, they are more

susceptible to PBDE bioaccumulation, particularly of highly

hydrophobic compounds such as BDE-209.

An ordination of the PBDE values across all samples analyzed,

excluding fish, evidenced further details of the differences among

trophic levels (Fig. 5). BDE-47 and BDE-209 mostly define the

main two axes of variation and highly discriminate between

primary and secondary consumers, and show the degree of

variation within each trophic level (Fig. 5A). The third axis of

variation indicates that insects accumulate mainly BDE-47 and

BDE-99; whereas mollusks, oligochaetes and crustaceans, show

higher relative BDE-153 and BDE-100 content (Fig. 5B). This

may reflect different debromination enzymatic mechanisms.

Interestingly, crustaceans and insects do not show the same

congener profile, which suggests that the latter may have evolved

the capability de novo, at least partially. This may be important to

understand variability within insects, as we will comment below.

In the case of planktonic crustaceans, our samples were

a mixture of secondary consumers (Cyclops, predator) and primary

consumers (Eudiaptomus and Daphnia, grazers), with the former

predominating in biomass. BDE-209 was low comparing to other

congeners (see Table S1), which were very high (Fig. 2). Because of

the mixture of primary and secondary consumers in the samples,

no definitive judgment can be made about these results. However,

as predator copepods were the most abundant, we may tentatively

assume that debromination capability is also present in the

copepod predators. Copepods as a group have an epibenthic

herbivore origin [58] (Cambrian) and it may happen that all

genera (including predators such as Cyclops) might possess

debromination capability.

Insects analyzed mostly followed the general patterns expected

from their trophic position, but the ordination also indicated that

some of them showed PBDE profiles different to that expected

from the overall pattern (Fig. 5). Among secondary consumers,

ceratopogonids and tanypodine chironomids showed PBDE

profiles closer to primary consumers; whereas among primary

consumers some Trichoptera (Limnephilidae and Mystacides)

showed secondary consumer patterns. In contrast to crustaceans,

there is not an evolutionary history in insects linking marine

ancestors directly to freshwater aquatic forms. There was an early

transition of predatory organisms from sea to land and the insect

freshwater life histories of immature forms evolved later [59].

Therefore, the ecological trophic role of bromine compounds in

aquatic food webs was probably largely interrupted and the

chances of disappearance of debromination capability increased, if

it was ever present in the ancestor. Many aquatic insects are still

predators and, therefore, they have not been exposed to

brominated feeding deterrents, which could explain their low

(null?) debromination capability (Fig. 2, 5). Of the two coleopter-

ans analyzed, each showed the respectively expected PBDE

Figure 1. PBDE relative composition at different trophic levels
of the lake food webs studied. Bars indicate average percentages of
each PBDE in the lake food web components included in the respective
trophic category. Error bars indicate standard deviations. Different bar
colors are used to identify the trophic levels across figures. BDE-209 is
the current congener produced industrially in Europe. Congeners BDE-
35, BDE-77 and BDE-156 have never been present in any industrial
mixture.
doi:10.1371/journal.pone.0041829.g001
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pattern: Haliplus as primary consumer and Boreonectes as a predator.

This fact indicates that, at least in some cases, there has been time

enough to evolve debromination capability. Indeed, Haliplidae

and Dytiscidae common relative diverged at early Triassic.

Therefore, we hypothesize that the exceptions we find between

trophic mode and debromination capability correspond to insect

taxa that have evolved relatively recently from organisms with

a different feeding mode.

Do exceptions correspond to taxa with evolutionarily recent

trophic shifts? Among the primary consumers analyzed, only two

trichopteran taxa did not show biotransformation capability. The

species involved are mainly shredders of plant debris and belong to

the families Limnephilidae and Leptoceridae (Mystacides), which

are among the ones with the broadest ecological distribution

within the order. Only about 8% of the trichopteran families are

purely predators; however, they correspond to the oldest

evolutionary families [60]. Predation was probably the feeding

mode of the ancestor lineage of the order [59]. Currently,

periphyton scrapers comprise about 25% of the families in

Trichoptera, yet most of them are evolutionarily recent groups

[60]. Therefore, the bulk of the trichopteran families, which are

shredders of plant debris or omnivorous, probably has not had

a long enough evolutionary history that included interactions with

aquatic organisms producing brominated compounds. Further-

more, many of them are consumers of debris rather than fresh

material, thus no real prey-predator trophic interactions may be at

place. Concerning secondary consumers, we found exceptions

within the order of Diptera (i.e., Ceratopogonidae and Tanypo-

dinae). The Diptera order appeared during early Triassic period

and are characterized by being fluid feeders [59]. Some primitive

groups within the order are primary consumers (e.g., Ptychopter-

idae) and many species within the large families (e.g., Chirono-

midae) show aquatic larvae that are primary consumers. We

suggest that Ceratopogonidae and Tanypodinae (a subfamily of

Chironomidae) show debromination capability, despite being

predators, because they evolved from taxa with primary consumer

feeding modes possessing the capability [61].

The chordates examined to date in other studies (from fish to

cows) all show debromination capability [44,50,51,52,53,54,55].

Chordate early ancestors were primary consumers (herbivores or

Figure 2. PBDE content in individual taxa and assemblages of the lake food webs studied. Mean and standard deviation are indicated, if
more than one sample was available. The complete list of measured values is provided as Table S1. Bar colors correspond to basal resources (green),
primary consumers (yellow), secondary consumers (red), and fish (blue). Error bars correspond to standard deviation of the whole number of samples
analyzed for a given species or assemblage.
doi:10.1371/journal.pone.0041829.g002

Figure 3. PBDE isotopic bromine ratios (Br79:Br81) across
trophic levels. The ratio Br79:Br81 in nature and industrial PBDE
mixtures is close to one. Deviations from that ratio can be used as
indication of processes determining isotopic fractionation. Mean and
standard deviation for two BDE congeners are plotted for each trophic
level: BDE-209, for being the initial industrial source; and BDE-47,
because is the resulting most abundant congener in the food web. The
ratio differences between trophic levels for both compounds are
significantly different as a whole (p,0.001); paired comparisons are
indicated in the figure using lower case letters, only basal resources and
fish ratios do not differ for a 95% interval of confidence. Higher Br79:Br81

values in BDE-47 than in BDE-209 and declining values from basal
resources to secondary consumers are compatible with the existence of
accumulative effects of enzymatic debromination. High Br79:Br81 values
in fish indicate that some other additional process is taking place in
them that discriminates against the heavier isotope, differential
transport is suggested as a potential mechanisms, either at gut uptake
or during within body distribution.
doi:10.1371/journal.pone.0041829.g003

Figure 4. Frequency of bromine atoms at each potential site of
the BDE molecule. The larger the circle, the higher the frequency. The
frequency at which a potential site in the BDE molecule was occupied
by a bromine atom was estimated from the formula of the respective
PBDE congeners and their proportion in a trophic level. Basal resources
and primary consumers of the lake food web studied are compared.
Interestingly, the molecule sites with higher occupancy correspond to
those that are chemically more stable. The result is compatible with
a high enzymatic biotransformation capability in primary consumers.
doi:10.1371/journal.pone.0041829.g004
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detritivores) [62]. The debromination capability may have been

acquired early in this evolutionary lineage and has not been lost

later, even in groups of mostly secondary consumers, either

because some selection pressure is maintained (e.g., detoxification

of other substances) or because it is related to other functions (e.g.,

hormonal). However, our results on Br79:Br81 ratio introduce

a new point of view in the consideration of the low BDE-209 levels

found in fish as it is the limited transport from the gut to the inner

body or, alternatively, fractionation during differential accumula-

tion in certain organs [44].

BDE-209 Bioaccumulation in Secondary Consumers
The high proportion of BDE-209 in secondary consumers

evidence the difficulty for biotransformation in these organisms.

However, why do they show such high levels if they are feeding on

primary consumers that present very low BDE-209 levels? There

are at least two alternative hypotheses: (i) primary consumers are

the source and BDE-209 becomes highly biomagnified compared

to other congeners, because of its extreme hydrophobicity, or (ii)

secondary consumers take up BDE-209 directly from the

environment. At first, the former hypothesis appears more likely,

since direct uptake from water is doubtful because of the extremely

low water-particle partition of BDE-209 [25]. However, it may be

argued that even secondary consumers accidentally eat contam-

inating particles beyond their preferred preys. Bromine isotopic

composition of PBDEs sheds light onto the question (Fig. 3). The

Br79:Br81 ratio markedly declines from primary consumers to

secondary consumers, which indicates that BDE-209 in secondary

consumers is mostly coming from a pool that has been under

biotransformation pressure, the BDE-209 molecules with a higher

proportion of lighter Br isotopes being more affected. If this were

so, the high amount of BDE-209 in secondary consumers would

indicate a rather large biomagnification factor for this compound,

which agrees with the high hydrophobicity of the molecule.

Invertebrate secondary consumers play a key role in freshwater

food webs, if they are more affected by the toxic effects of PBDEs,

it may eventually result in unbalances and cascading effects in the

whole freshwater food web.

Perspectives
Our study raises many new questions for future research, which

cover from PBDE budget in the planet to topics on the molecular

mechanisms involved. How relevant is PBDE food web bio-

transformation in freshwater systems for a PBDE global balance?

How extended is the PBDE debromination capability throughout

other natural systems (e.g., marine vs. terrestrial)? What are the

molecular debromination mechanisms and to what extent may we

expect a rapid selective response from organisms not yet showing

the capability? Can similar patterns be found for other haloge-

nated contaminants currently assumed as not being biotrans-

formed? Generally, our study shows that the environmental

behavior of any new organic chemical is far from being easily

predictable. In addition to physico-chemical properties, ecological

and evolutionary aspects are involved and have to be considered.

Figure 5. Ordination of the PBDE profiles in basal sources and invertebrates of the lake food webs studied. The variation of the PBDE
composition was summarized by means of a principal component analysis (PCA) using the Hellinger distance [63]. Biplots of the first two principal
components (A) and the second and third (B) are shown. Symbols refer to each sample analyzed and vary to show the corresponding trophic level
(color) and taxonomic position (shape) as indicated in the legend. With a few exceptions primary and secondary consumers are discriminated
between them.
doi:10.1371/journal.pone.0041829.g005
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Supporting Information

Table S1 PBDE concentrations for each taxon or
assemblage (ng g21 dw), mean 6 standard deviation.
Number of samples analyzed follow the name. Most samples are

composites of a few to many individuals to fulfill analytical

requirements. Brown trout (Salmo trutta) results have been

published previously [34].
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operating space for humanity. Nature 461: 472–475.

2. Hay ME, Fenical W (1988) Marine plant-herbivore interactions - the ecology of

chemical defense. Annual Review of Ecology and Systematics 19: 111–145.

3. Gribble GW (2004) Natural organohalogens; Dartmouth C, editor. Hanover,

New Hapshire: Euro Chlor.

4. Gribble GW (1999) The diversity of naturally occurring organobromine
compounds. Chemical Society Reviews 28: 335–346.

5. Awad NE (2004) Bioactive brominated diterpenes from the marine red alga

Jania rubens (L.) lamx. Phytotherapy Research 18: 275–279.

6. de Carvalho LR, Roque NF (2000) Halogenated and/or sulfated phenols from

marine macroalgae. Quimica Nova 23: 757–764.

7. Kuniyoshi M, Yamada K, Higa T (1985) A biologically-active diphenyl ether

from the green-alga Cladophora fascicularis Experientia 41: 523–524.

8. Paul NA, de Nys R, Steinberg PD (2006) Seaweed-herbivore interactions at
a small scale: direct tests of feeding deterrence by filamentous algae. Marine

Ecology-Progress Series 323: 1–9.

9. Sun J, Shi DY, Ma M, Li SA, Wang SJ, et al. (2005) Sesquiterpenes from the red
alga Laurencia tristicha Journal of Natural Products 68: 915–919.

10. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary

metabolite synthesized by the cyanobacterial symbiont of a marine sponge
and accumulation of the crystalline metabolite in the sponge tissue. Marine

Biology 119: 1–11.

11. Cowart JD, Fielman KT, Woodin SA, Lincoln DE (2000) Halogenated

metabolites in two marine polychaetes and their planktotrophic and lecitho-

trophic larvae. Marine Biology 136: 993–1002.

12. Kicklighter CE, Hay ME (2006) Integrating prey defensive traits: Contrasts of

marine worms from temperate and tropical habitats. Ecological Monographs 76:
195–215.

13. Kicklighter CE, Hay ME (2007) To avoid or deter: interactions among defensive

and escape strategies in sabellid worms. Oecologia 151: 161–173.

14. Kicklighter CE, Kubanek J, Hay ME (2004) Do brominated natural products

defend marine worms from consumers? Some do, most don’t. Limnology and

Oceanography 49: 430–441.

15. Manzo E, Ciavatta ML, Gavagnin M, Puliti R, Mollo E, et al. (2005) Structure

and absolute stereochemistry of novel C-15-halogenated acetogenins from the
anaspidean mollusc Aplysia dactylomela Tetrahedron 61: 7456–7460.

16. Puyana M, Fenical W, Pawlik JR (2003) Are there activated chemical defenses in

sponges of the genus Aplysina from the Caribbean? Marine Ecology Progress
Series 246: 127–135.

17. Verdel EF, Kline PC, Wani S, Woods AE (2000) Purification and partial

characterization of haloperoxidase from fresh water algae Cladophora glomerata
Comparative Biochemistry and Physiology B Biochemistry & Molecular Biology

125: 179–187.

18. McDonald TA (2002) A perspective on the potential health risks of PBDEs.

Chemosphere 46: 745–755.

19. Webster P (2004) Toxicology - Exposure to flame retardants on the rise. Science
304: 1730–1730.

20. Cox P, Ethymiou P (2003) Directive 2003/11/EC of the European parliament

and of the council of February 6, 2003 amending for the 24th time Council
Directive 76/669/EEC relating to restrictions on the marketing and use of

certain dangerous substances and preparations (pentabromodiphenyl ether,
octabromodiphenyl ether). Official Journal of the European Union OJ L 42: 45–

46.

21. Hites RA (2004) Polybrominated diphenyl ethers in the environment and in
people: A meta-analysis of concentrations. Environmental Science and

Technology 38: 945–956.

22. Trudel D, Scheringer M, von Goetz N, Hungerbuehler K (2011) Total

Consumer Exposure to Polybrominated Diphenyl Ethers in North America and

Europe. Environmental Science & Technology 45: 2391–2397.

23. Aleksa K, Carnevale A, Goodyer C, Koren G (2012) Detection of

polybrominated biphenyl ethers (PBDEs) in pediatric hair as a tool for

determining in utero exposure. Forensic Science International 218: 37–43.

24. Rotander A, van Bavel B, Polder A, Riget F, Audunsson GA, et al. (2012)

Polybrominated diphenyl ethers (PBDEs) in marine mammals from Arctic and
North Atlantic regions, 1986–2009. Environment International 40: 102–109.

25. Wania F, Dugani CB (2003) Assessing the long-range transport potential of
polybrominated diphenyl ethers: A comparison of four multimedia models.

Environmental Toxicology and Chemistry 22: 1252–1261.

26. de Wit CA, Alaee M, Muir DCG (2006) Levels and trends of brominated flame
retardants in the Arctic. Chemosphere 64: 209–233.

27. Breivik K, Wania F, Muir DCG, Alaee M, Backus S, et al. (2006) Empirical and

modeling evidence of the long-range atmospheric transport of decabromodi-
phenyl ether. Environmental Science and Technology 40: 4612–4618.

28. Gouin T, Mackay D, Jones KC, Harner T, Meijer SN (2004) Evidence for the

‘‘grasshopper’’ effect and fractionation during long-range atmospheric transport
of organic contaminants. Environmental Pollution 128: 139–148.

29. Bartrons M, Grimalt JO, Catalan J (2011) Altitudinal distributions of BDE-209

and other polybromodiphenyl ethers in high mountain lakes. Environmental
Pollution 159: 1816–1822.

30. de Wit CA, Herzke D, Vorkamp K (2010) Brominated flame retardants in the

Arctic environment - trends and new candidates. Science of the Total
Environment 408: 2885–2918.

31. Safe SH (1994) Polychlorinated-biphenyls (PCBs) - Environmental-impact,

biochemical and toxic responses, and implications for risk assessment. Critical
Reviews in Toxicology 24: 87–149.

32. Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, et al. (2003)

Global distribution and budget of PCBs and HCB in background surface soils:
Implications for sources and environmental processes. Environmental Science

and Technology 37: 667–672.

33. Catalan J, Ventura M, Vives I, Grimalt JO (2004) The roles of food and water in
the bioaccumulation of organochlorine compounds in high mountain lake fish.

Environmental Science and Technology 38: 4269–4275.

34. Gallego E, Grimalt JO, Bartrons M, Lopez JF, Camarero L, et al. (2007)
Altitudinal gradients of PBDEs and PCBs in fish from European high mountain

lakes. Environmental Science and Technology 41: 2196–2202.

35. Rayne S, Ikonomou MG (2003) Predicting gas chromatographic retention times
for the 209 polybrominated diphenyl ether congeners. Journal of

Chromatography A 1016: 235–248.

36. Vives I, Grimalt JO (2002) Method for integrated analysis of polycyclic aromatic
hydrocarbons and organochlorine compounds in fish liver. Journal of

Chromatography B, 768: 247–254.

37. Eljarrat E, de la Cal A, Barcelo D (2004) Determination of decabromodiphenyl
ether in sediments using selective pressurized liquid extraction followed by GC-

NCI-MS. Analytical and Bioanalytical Chemistry 378: 610–614.
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