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Abstract
The representations of animate and inanimate objects appear to be anatomically and functionally
dissociated in the primate brain. How much of the variation in object-category tuning across
cortical locations can be explained in terms of the animate/inanimate distinction? How is the
distinction between animate and inanimate reflected in the arrangement of object representations
along the cortical surface? To investigate these issues we recorded BOLD activity in visual cortex
while subjects viewed streams of natural scenes. We then constructed an explicit model of object-
category tuning for each voxel along the cortical surface. We verified that these models accurately
predict responses to novel scenes for voxels located in anterior visual areas, and that they can be
used to accurately decode multiple objects simultaneously from novel scenes. Finally, we used
principal components analysis to characterize the variation in object-category tuning across
voxels. Remarkably, we find that the first principal component reflects the distinction between
animate and inanimate objects. This dimension accounts for between 50 and 60 percent of the total
variation in object-category tuning across voxels in anterior visual areas. The importance of the
animate-inanimate distinction is further reflected in the arrangement of voxels on the cortical
surface: voxels that prefer animate objects tend to be located anterior to retinotopic visual areas
and are flanked by voxels that prefer inanimate objects. Our explicit model of object-category
tuning thus explains the anatomical and functional dissociation of animate and inanimate objects.
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1. Introduction
There is considerable evidence that the representations of animate (i.e., humans and animals)
and inanimate (i.e., everything else) objects are dissociated in the human brain. Anatomical
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dissociation is supported by evidence that damage to anterior visual areas can selectively
impair processing of either animate or inanimate objects, while having no effect on
processing of objects from the other category (Caramazza and Shelton, 1998; Hillis and
Caramazza, 1991; Warrington and Shallice, 1984). Functional dissociation is supported by a
recent study of Kiani et al. (2007) who examined the responses of ~600 neurons in monkey
inferior temporal (IT) cortex to images of ~1,000 objects. They reported evidence for a
hierarchical clustering of population responses according to animate and inanimate object
categories. A subsequent fMRI study of human IT found voxel population vectors that
clustered according to animate and inanimate object categories as well (Kriegeskorte et al.,
2009).

These results raise several interesting questions about the organization of object
representations in visual cortex. First, how much of the variation in object-category tuning
across cortical locations can be explained in terms of the animate/inanimate distinction? The
results discussed above suggest that the animate/inanimate distinction is important relative
to other categorical distinctions, but they do not specify how much of the variation in object-
category tuning it accounts for. Second, how is the distinction between animate and
inanimate objects reflected in object-category tuning of individual cortical locations? An
analysis of the behavioral deficits in patients with brain damage or post hoc inspection of the
object categories underlying voxel response clusters (Kiani et al. 2007; Kriegeskorte et al.,
2009) can provide only partial answers. The most straightforward way to answer this
question is to construct explicit and accurate models of object-category tuning for individual
cortical locations. Third, how is the representation of animate and inanimate object
categories arranged on the surface of the visual cortex? The results discussed above suggest
that cortical locations strongly excited (or suppressed) by objects from either category are
near one another, but they do not provide a map that reveals how these locations are
arranged along the cortical surface. Finally, does the dissociation between animate and
inanimate object categories persist when subjects view multiple objects embedded in a
complex natural scene? The visual system evolved to process complex natural scenes with
multiple objects, but most studies have used decontextualized objects presented in isolation.
It is therefore important to confirm that the animate/inanimate distinction is relevant in
naturalistic viewing contexts.

We addressed each of these questions by analyzing data acquired in a single fMRI
experiment. BOLD activity was recorded in visual cortex while subjects viewed a large
series of complex natural scenes. For each recorded voxel that intersected with the cortical
surface, we fit a predictive encoding model (Naselaris et al., 2009) that related the objects in
the viewed scenes to evoked responses. The model for each voxel consisted of a set of
weights that describe how different object categories affect responses. We refer to the
weights estimated for each voxel as an object-category tuning function. We confirmed the
accuracy of the object-category model fit to each voxel in two ways. First, we used it to to
predict the activity elicited by a separate set of images (the validation set) that were not used
to fit the model. Second, we used it to decode multiple object categories simultaneously
from the activity of those voxels whose responses were predicted accurately. To describe
how object-category tuning varies across the visual cortex we applied principal component
analysis to the object-category tuning functions of these voxels. We found that the first
principal component (PC) described variation in the preference of voxels for animate versus
inanimate object categories, and that this PC accounted for 50–60 percent of the total
variation in object-category tuning across voxels. We then constructed a cortical surface
map of the projection of each voxel’s object-category tuning function onto the first PC. This
map revealed that voxels with projections onto the animate end of the PC are located
predominantly anterior to retinotopic areas, and are flanked by voxels with projections onto
the inanimate end of the PC. These findings provide an explanation for the functional and
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anatomical dissociation between animate and inanimate objects in terms of an explicit model
of object-category tuning.

2. Methods
2.1 MRI parameters

All MRI data were collected at the Brain Imaging Center at UC Berkeley, using a Siemens
Tim Trio 3T whole-body MR scanner and a 32 channel phased-array coil. The slice
prescriptions varied slightly between subjects. The 32 channel Siemens head coil was used
to record data from subject 1. A gradient-echo echo planar imaging sequence, combined
with a custom water-specific excitation (fat-shunting) RF pulse, was used for functional data
collection. Thirty-one axial slices covered the entire brain. Each slice had a 224 × 224 mm2

field of view, 3.50 mm slice thickness, and 0.63 mm slice gap (matrix size 100 × 100;
2004.5 ms TR; 33 ms TE; 74° flip angle; voxel size of 2.24 × 2.24 × 4.13 mm3). The back
half of the Siemens 32 channel head coil was used for subject 2, so for this subject it
functioned as a 20 channel surface coil. A gradient-echo echo planar imaging sequence
combined with a custom fat-saturating RF pulse was used for functional data collection.
Twenty-five axial slices covered occipital, occipito-parietal, and occipito-temporal cortex
with greatest receiver coil sensitivity. Each slice had a 234 × 234 mm2 field of view, 2.59
mm slice thickness, and 0.39 mm slice gap (matrix size 104 × 104;TR = 2009.9 ms; TE = 35
ms;flip angle = 74°; voxel size = 2.25 × 2.25 × 2.99 mm3).

2.2 Stimuli
Stimuli were 1386 color natural scenes. Some scenes were taken from a collection available
for sale from the Lotus Hill Institute (Wuhan, China) and others were selected from Google
Images. All scenes were 20° × 20° (500 × 500 pixels). A central fixation square (0.2° × 0.2°;
5×5 pixels) switched color randomly (red, green, blue, yellow, white) at 3 Hz to ensure
continued visibility.

2.3 Experimental design
Data for model training and model validation were collected during each scan session. Scan
sessions consisted of separate training and validation runs. Training runs (a total of 36 across
5 sessions) lasted 5.23 minutes, and consisted of 36 distinct images presented 2 times each.
Validation runs (a total of 21 across 5 scan sessions) lasted 5.23 minutes, and consisted of 6
distinct images presented 12 times each. A total of 1260 distinct scenes were presented
across the training runs and a total of 126 distinct scenes were presented across the
validation runs. This experimental design is based upon previous research from our
laboratory showing that in order to construct optimal encoding models, the estimation data
should sample the stimulus space as widely as possible, but the validation data should
contain many repeats (David et al. 2005). Scenes were randomly selected for each run but
were not repeated across runs. Scenes were presented in successive 4 second periods. In
each period, a photo was flashed at 200 millisecond intervals (200 ON, 200 OFF) for 1
second, followed by 3 seconds of gray background. The fixation square was always present.

2.4 Data preprocessing
Functional brain volumes were reconstructed and then coregistered across scan sessions.
The time-series data were used to estimate the response timecourse for each voxel
separately. Deconvolving this timecourse from the data produced an estimate of the
amplitude of the response (a single value) to each scene for each voxel (see Kay et al., 2008
for details). Early and intermediate visual areas (V1–V4, V3a/b and LO) were identified
using retinotopic mapping data collected in separate scan sessions (Hansen et al., 2007). The
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fusiform face are (FFA; Kanwisher et al., 1997), parahippocampal place area (PPA; Epstein
and Kanwisher, 1998), retrosplenial cortex (RSC), extra-striate body area (EBA; Downing et
al., 2001), and occipital face area (OFA) were identified in a separate experiment using
standard functional localizers (Spiridon et al., 2006).

2.5 Scene labels
Prior to the experiment each of the natural scene stimuli were labeled by the authors. Labels
consisted of specific object names chosen to be consistent with conversational English (see
Figure 1 for examples). About half of the scenes used in the experiment were labeled
originally by the Lotus Hill Institute, and were checked and corrected by the authors as
necessary. The remaining scenes were labeled by the authors using a custom-made GUI. The
authors then used the labels to assign each object in every scene to one of 19 object
categories. The categories were selected based on previous experiments (Naselaris et al.,
2009) and on intuition. In particular, we distinguished between “crowd of humans” and
“several humans” because in scenes that depict crowds it is difficult to resolve specific
features of individual faces. The selection of categories ensured that all objects could be
assigned unambiguoulsy to one and only one category. Note that the labels were not present
during visual presentation of the stimuli.

2.6 The object-category model
The object-category model is the basis for all the analyses presented in this paper. To build
the object-category model, the 19 object categories discussed above were encoded using
indicator variables. For each natural scene, an object indicator vector oT = (o1, …, o19), oi ⋹
[0, 1] specifies which of the nineteen object categories listed in Figure 1 are present (oi=1)
or absent (oi=0) in the scene. The object-category model consists of a set of weights wT =
(w1, …, w19) applied to each of these object indicators. A unique set of weights is fit
(section 2.8) for each voxel and is referred to in the main text as the object-category tuning
function for the voxel. Once the weights are fit, the predicted response, r, of a voxel to a
natural scene with objects specified by o is given by r = wTo.

2.7 Gabor wavelet model
As a control, we compared the prediction accuracy of the object-category model to the
prediction accuracy of a purely structural model based on Gabor wavelets. The Gabor
wavelet model consists of a bank of 928 complex Gabor wavelets. The Gabor wavelets
occur at four spatial frequencies: 2, 3.6, 6.6, and 12 cycles per field of view (FOV = 20°;
images were presented at a resolution of 500×500 pixels, but were downsampled to 32×32
pixels for this analysis), and two orientations: 0° and 90° (we used only two orientations
because in preliminary modeling we found that orientation has a very weak effect on model
prediction accuracy). Each wavelet is multiplied with a Gaussian envelope where the ratio
between standard deviation and the wavelet spatial period is 0.55. Wavelets are positioned
on a fixed square grid that covers the field of view. Grid spacing is established such that
wavelets at each spatial frequency are separated by 2 standard deviations of their respective
Gaussian envelopes. As with the the object-category model, the Gabor wavelet model
includes a set of weights, w, that are applied to the outputs of the Gabor wavelets. A
separate set of weights is fit to each voxel. Once the weights are fit, the predicted response,
r, of a voxel to a natural scene s is r = wTf(s). Here, f(s) describes Gabor wavelet filtering
and an additional nonlinear transformation: f(s) = log(|Gs|), where G is a matrix with rows
that contain the complex Gabor wavelets. Phase-invariance is achieved by taking the
magnitude |.| of the filtered scenes. The log transform was applied because in other studies
we have found that compressive output nonlinearities can improve model accuracy
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(Nishimoto et al., 2011). Although the log transform is not completely optimal (Vu et al.,
2011) it was sufficient for the purposes of this study.

2.8 Fitting procedure for the object-category and Gabor wavelet models
For each model, coordinate descent with early stopping (Naselaris et al., 2009) was used to
find the set of weights w that minimized the sum-of-square-error between the actual and
predicted responses on the training set. We have found that this regression procedure is far
more robust than conventional linear regression, even when the observations outnumber the
model parameters (Naselaris et al., 2009). For each voxel, this minimization was performed
on three sets of M-l training samples (M=1260, l = M*0.1), selected randomly without
replacement. Weight estimates were updated until the error on the held-out samples (the
early-stopping set) began to increase consistently. Each set produced a separate estimate wj
(j=[1, 2, 3]). w was set equal to the arithmetic mean of (w1, w2, w3). This fitting procedure
was implemented using STRFlab (Naselaris et al., 2009) a free MATLAB (Mathworks.
Natick, MA) toolbox.

2.9 The object-category decoding algorithm
We also used the object-category model to decode multiple object categories from the voxel
responses. Let r denote the collected responses of N separate voxels in an Nx1 voxel
response vector. For each scene, we find the object indicator vector o* that maximizes the
multi-voxel likelihood (Naselaris et al, 2009) corresponding to the object-category encoding
model. Assuming that voxel responses are affected by Gaussian additive noise, the multi-
voxel likelihood is a multivariate Gaussian distribution:

p(r|o) ~ exp[(r-Wo)TS−1(r-Wo)]

where W (N × 19) is a matrix with rows specified by encoding model weights (i.e., the
object-category tuning functions) of the selected voxels, and S (N × N) is the noise
covariance matrix (section 2.10). This function specifies the likelihood that a natural scene
with object indicator vector o evoked the observed response r.

The object indicator vector o* that maximizes the multi-voxel likelihood was found by brute
search: all possible object indicator vectors (excluding the null vector with no objects; 219 -1
distinct binary vectors) were generated and evaluated under the multi-voxel likelihood
function, and the one with the highest likelihood was selected.

2.10 Estimating the noise covariance matrix
Decoding object categories requires evaluating the multi-voxel likelihood function specified
above (section 2.9). In order to evaluate the multi-voxel likelihood function we must first
estimate the noise covariance matrix S:

Sij = <(ri-wi To)(rj-wj
To)>

where <> denotes averaging across all samples in the training set. The inverse of S is
typically unstable. Therefore, we used Tikhonov regularization (or ridge regularization) to
regularize the inverse operation (Tikhonov and Arsenin, 1977). With this method, we
evaluate the multi-voxel likelihood by replacing S−1 with S+ =(S+αI)−1. Here I is the
identity matrix, and α is a regularization parameter that is optimized separately for each
individual decoding trial using a leave-one-out procedure. To decode the objects in the jth

scene, decoding accuracy was evaluated on the remaining 125 decoding trials using a range
of 8 different α values log-spaced between .01 and 100. The optimal α value was then used
for decoding on the left-out jth trial.
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2.11 Voxel selection procedure for object category decoding
In order to minimize potential selection bias, voxels used for object-category decoding were
selected using the training data only. The validation data were not used to select voxels. For
each voxel, prediction accuracy (i.e., correlation coefficient) was evaluated on each of the
early-stopping sets and averaged across sets. Voxels whose average prediction accuracy on
the early-stopping sets was significant (p < .01) were selected for use in object-category
decoding. For subject 1 the total number of selected voxels was 596. For subject 2 the total
number of selected voxels was 653. We emphasize that this selection procedure did not use
any of the data that was subsequently used for the decoding analysis.

2.12 Decoding performance as a function of the number of object categories
To determine whether decoding performance was affected by the number of object
categories in the scenes, we compared the multi-voxel likelihood (see 2.9 above) of the true
object indicator vector for each scene with the multi-voxel likelihood of every other possible
object indicator. Thus, we determined the fraction of instances in which p(r|o′) > p(r|o),
where o′ is the true object indicator vector for a scene, and o is one of the other possible
object indicator vectors. This fraction can be interpreted as the probability that the decoder
will correctly discriminate between the true object indicator vector and the object indicator
vector for another randomly selected scene. This fraction is plotted as a function of the
number of object categories (i.e., the sum of the elements of o′) in Figure 6.

2.13 ROC analysis of object category decoding
The accuracy of object category decoding (Figure 6) was quantified by receiver operating
characteristic (ROC) analysis (see Fawcett, 2006 for an introduction). For each object
category, the true positive rate (TPR) was defined as the fraction of times the object
category was correctly decoded as present in the scene. The false positive rate (FPR) was
defined as the fraction of times the object category was incorrectly decoded as present.
TPR's and FPR's were calculated separately for each object category. Note that if all object
categories occurred with equal probability and object categories were selected randomly, the
TPR would equal the FPR for each object category. Therefore objectcategory decoding
accuracy was defined as the distance of the point (x,y)=(FPR,TPR) from the line at unity.
Here we call this the average discriminability distance.

To control for the fact that object categories had unequal probabilities of occurrence,
significance of decoding accuracy for each object category was determined using a
permutation test. The decoded object categories and the true object categories were
permuted across validation trials and the discriminability distance for each of the 19 object
categories was re-calculated. This permutation procedure was repeated 1000 times to create
a distribution of discriminability distances consistent with the null model. Accuracy for each
specific object category was considered significant if the average discriminability distance
was greater than or equal to 95% of the values in this distribution.

2.14 Principal component analysis
Principal components analysis (PCA; see Figures 7, 8 and 9) was first applied to the object-
category tuning functions of the same voxels selected for the decoding analysis (section
2.11). Let P1 (19 × 1) be the first principal component. The projection of the object-category
tuning function for each voxel onto the first principal component presented in Figure 7 is p
= WP1. Here, W (N × 19) is the matrix of object-category tuning functions for all N voxels
on the cortical surface (not just those selected for the decoding analysis).
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Significance of the principal components was determined using a permutation test. The
weights of the object-category tuning functions were permuted independently for each voxel
and PCA was then re-applied. This permutation procedure was repeated 10,000 times to
create a null distribution of variation explained by each PC. A PC was considered significant
if the variation it explained in the actual data was greater than 99% of the values in the null
distribution for the corresponding PC. The fist PC was considered significantly greater than
the second PC if the difference in variation explained by each was greater than 99% of the
values in the null distribution for the corresponding differences.

3 Results
3.1 The object-category model

BOLD signals (hereafter referred to as voxel responses) were measured in visually
responsive cortex of two subjects (section 2.1). During the scans each subject viewed a total
of 1386 unique color natural scenes (~20 deg. field of view). Each scan produced
continuously varying BOLD time-series for each voxel. A parametric model of the
haemodynamic response function was fit separately to the BOLD time-series data recorded
from each voxel. This was used in turn to extract the response of each voxel to each natural
scene (for complete details see Kay et al., 2008, supplementary materials). The stimulus/
response pairs were then split into separate model training and model validation sets. The
training set was used to estimate the weights of the encoding model for each voxel and to
select voxels for subsequent decoding analysis; the validation set was used to measure the
prediction accuracy of the fit models, and to measure decoding accuracy.

Typical natural scene stimuli are shown at right in Figure 1. The objects in each scene were
labeled by the authors and then assigned to one of 19 object categories (section 2.5). These
categories were based on a model developed in our previous work (Naselaris et al., 2009).
For example, the objects “bear”, “salmon” and “stream” in the top left scene were assigned
to the categories “land mammal”, “fish” and “water” respectively. The object categories in
each scene were represented by a vector of 19 indicator variables. In the case of the top left
scene, the indicator variables for “land mammal”, “fish” and “water” were set to 1. The
indicator variables for the remaining 16 object categories were set to 0. Regularized
regression (section 2.8) was then used to estimate a separate encoding model for each voxel,
using the indicator variables and responses obtained in the model training set (Figure 2A).
The resulting object category model for each voxel consisted of a set of 19 weights that
reflect how each specific category affects voxel responses. We refer to the set of weights
estimated for a single voxel as its object-category tuning function (see Figure 2B for
examples).

3.2 Accuracy of the object-category model
In order to validate any conclusions drawn from the object-category model, we first
performed two independent tests to confirm its accuracy. First, we used the fit model for
each voxel to generate predicted responses to the natural scenes in the model validation set,
and we compared these predictions to the observed responses. We find that the object-
category model produces accurate predictions (p < 0.01, uncorrected; test of correlation
between predicted and measured responses) of voxel responses across a wide band of visual
cortex (see Figure 3A). The band extends from the parietal cortex to the ventral temporal
cortex and encompasses many category-selective functional ROIs (e.g, FFA and PPA).

The object-category model produces mostly poor predictions in more posterior, retinotopic
visual areas (i.e., V1, V2, V3 and V4). This suggests that the object-category model is not
simply capturing responses evoked by simple visual features that are correlated with object
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category. To confirm this, we compared prediction accuracy of the object-category model to
prediction accuracy of a Gabor wavelet model that describes how each voxel is tuned for
simple visual features (i.e., spatial frequency, orientation and retinotopic location). This
comparison (Figure 3B) shows that voxel responses accurately predicted by the object-
category model are often poorly predicted by the Gabor wavelet model. Thus, the object-
category model accurately predicts object-related responses that cannot be explained in
terms of simple visual features.

The fact that the object-category model accurately predicts responses of many voxels does
not necessarily imply that voxel responses encode information about all of the 19 categories
in the model. For example, significant prediction accuracy might be achieved if voxel
responses encoded information about humans and buildings but none of the other object
categories. Yet if this were the case it would not be possible to decode any information
about the other object categories from the voxel responses. To control for this case, we used
the object-category model to decode each of the 19 object categories from voxel population
responses. First, the object category model was used to predict the responses to every
possible combination of 19 object categories (excluding the null combination containing no
objects). To maximize decoding accuracy this analysis only included voxels for which the
object-category model produced accurate predictions (596 voxels for subject 1; 653 voxels
for subject 2; in this case prediction accuracy was measured using training data only, see
section 2.11). For each scene in the validation set, we then selected the object categories
whose predicted population response best matched the actual measured response (see
sections 2.9 and 2.10 for details; Kay et al., 2008, Naselaris et al., 2009).

The decoded object categories for two scenes are shown in Figure 4. These examples
suggest that most of the object categories present in each scene can be decoded correctly.
However, decoding performance could be achieved even by a trivial decoder that simply
guesses that all object categories are present in every scene. Thus, we compared the true
positive rate (TPR; the fraction of times an object category is correctly identified as present
in a scene) to the false positive rate (FPR; the fraction of times an object category is
incorrectly identified as present in a scene) for each of the decoded object categories. For
most animate and inanimate object categories the TPR is significantly greater than the FPR
(see Figure 5). Thus, most object categories can be accurately decoded using the object-
category model.

Accurate decoding might also be possible if the decoder accurately identified the object
categories in simple scenes but failed to identify the object categories in complex scenes.
Therefore, we analyzed decoding performance as a function of the number of object
categories present in a scene (Figure 6). We found that the decoder could accurately
discriminate between the true indicator variables for a scene and any other set of indicator
variables, regardless of the number of objects present in a scene (see section 2.12 for
details). Taken together with the results on prediction accuracy our decoding results verify
that the object-category model accurately describes how each object category increases or
decreases voxel responses.

3.3 Object-category tuning related to the animate/inanimate distinction
Having confirmed the accuracy of the object-category model we used it to examine how the
animate/inanimate distinction is reflected in the object-category tuning of voxels. We
applied principal components analysis (PCA) to the object-category tuning functions of all
voxels for which the object category model provided accurate predictions (i.e., the same
voxels selected for the decoding analysis discussed in section 3.2; see section 11 for details).
PCA decomposed the object-tuning functions in this population into a set of 19 principal
components (PCs). Each PC can be interpreted as an axis in the space of object-category
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tuning functions, and is ranked by the amount of variation in object-category tuning that it
explains. The first PC (PC 1) thus reflects the most important source of variation in object-
category tuning.

Remarkably, the animate/inanimate distinction was reflected by PC 1 (Figure 7): the
coefficients for the animate object categories all have the same sign (positive) but are
opposite in sign to most of the coefficients for inanimate objects (which are almost all
negative). This push-pull relationship between animate and inanimate objects indicates that
along the first PC, object-category tuning varies between a strong preference for animate
objects and a strong preference for inanimate objects. Voxels with object-category tuning
functions that have a large positive projection onto PC 1 will be excited by any kind of
animate object and suppressed by any kind of inanimate object. Voxels that have a large
negative projection will be excited by any kind of inanimate object and suppressed by any
kind of animate object. PC 1 explained 50% – 60% of the variation in object-category tuning
across voxels (p < .01, permutation test). PC 2 was also significant for both subjects, but it
only explained 8 – 10% of the total variation in category tuning across voxels (p < .01,
permutation test). PC 1 explained significantly more variation than PC 2 (p < .01,
permutation test) for both subjects. Thus, the functional dissociation between animate and
inanimate object categories is reflected in the primary source of variation in object-category
tuning.

3.4 Arrangement of animate and inanimate object representations on the cortical surface
How is the variation in object-category tuning along PC 1 mapped on the cortical surface?
To answer this, we mapped the projection of the object-category tuning function for each
voxel onto PC 1 (see Figure 8). These maps revealed an interesting mirror-symmetric
arrangement. Voxels with the strongest preference for animate objects occupy a large
density anterior to retinotopic visual areas, and encompass much of EBA, OFA, FFA and the
surrounding territory. On the maps, voxels with the strongest preference for inanimate
objects are located either above or below the center of this density. Voxels below occupy
much of PPA; voxels above extend dorsally from anterior V3a/b to the region occupied by
RSC. This mirror-symmetric arrangement is consistent with suggestions from a previous
study (Hasson et al., 2003), and with the arrangement of known category-specific ROIs. For
example, PPA and RSC are strongly activated by landscapes and buildings. Our data show
that voxels within the PPA and RSC are strongly skewed toward a preference for inanimate
objects more generally (Figures 8 and 9). In contrast, FFA, OFA and EBA are strongly
activated by faces and bodies, respectively. On our maps, voxels within these areas are
skewed toward preference for animate objects more generally (Figures 8 and 9). Our maps
also reveal many voxels located beyond the borders of these three known category-specific
ROIs that strongly prefer either animate or inanimate objects. Thus, the variation in category
specificity across these three ROIs is part of a more general and spatially extensive pattern
of variation spanning the animate-inanimate distinction.

4. Discussion
We have shown that the most important source of variation in object-category tuning is the
variation in preference for animate vs. inanimate object categories. Voxels with a strong
preference for inanimate objects flank the superior and inferior aspects of a large density of
voxels with a strong preference for animate objects. The respective locations of these voxels
are consistent with the locations of known category-specific ROIs, but extend well beyond
their boundaries.
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4.1 Comparison to other data-driven approaches
Many previous experiments have used a targeted approach to investigate coding for specific
animate and inanimate categories (e.g. faces versus places). In contrast, our experiment was
very general and was not optimized to test any specific hypothesis about the representation
of animate and inanimate categories. The fundamental distinction between animate and
inanimate objects emerged from the data after appropriate analysis. Kiani et al (2007) and
Kriegeskorte et al. (2009) also used a data-driven approach and arrived at the same central
conclusion. However, those earlier studies used a multi-voxel pattern-analysis approach,
while we used an encoding model approach (Naselaris et al., 2011).

Our encoding model approach allowed us to estimate how much of the variation in object-
category tuning across voxels is accounted for by the animate/inanimate distinction. We find
that 50–60% of the total variation is accounted for by this distinction. That is, much of the
variation in object-category tuning of individual voxels is related to the degree of preference
for animate vs. inanimate objects. Given there is enough information in voxel responses to
accurately decode specific sub-categories of animate and inanimate objects (e.g., ‘human’,
‘animal’, ‘car’, ‘building’; see Figure 5), the remaining 50–40% of variation in object-
category tuning must be related to sub-categories of animate and inanimate objects. A full
understanding of how the tuning for specific sub-categories is organized could be obtained
by analyzing the PCs beyond first order (i.e., 2nd, 3rd, …). Our preliminary analysis of these
higher-order PCs suggests that they are not easily interpreted.

For the sake of simplicity in this manuscript we have referred to animate- or inanimate-
preferring voxels collectively, but these terms risk oversimplifying the complex spatial
arrangement apparent in the maps (Figure 8). In fact our results provide no explicit evidence
that voxels are organized into discrete animate and inanimate modules. The first PC is an
axis, not a categorical designation. For this reason, our results suggest that the strength of
preference for animate or inanimate object categories may vary continuously across the
cortical surface (see Figure 8). In fact, the maps appear to be perfectly consistent with a
spatially smooth variation of animate / inanimate object representations. Of course, lack of
evidence for modularity is not evidence of its absence, particularly when analyzing fMRI
data. Therefore, on the basis of our data we can only safely conclude that a spatially smooth
variation of object representation is a viable possibility.

4.2 The spatial arrangement of object representations
Hasson et al. (2003) reported a large-scale mirror symmetric organization of preferences for
buildings, faces, and artifacts in occipito-temporal cortex anterior to retintotopic visual
areas. Dorsally and ventrally they found patches of voxels that preferred buildings. Moving
toward the lateral surface from either extremity they found alternating patches of voxels that
preferred artifacts and faces. This map of object preference appeared to be registered to the
map of spatial eccentricity: voxels at more peripheral eccentricities tended to prefer
buildings, while voxels at peri-foveal eccentricities tended to prefer faces or artifacts.

The map of PC 1 shown in Figure 7 has a mirror-symmetric organization similar to that
reported in Hasson et al. The band of cortex that is best predicted by the object-category
model roughly matches the anterior portion of visual cortex analyzed by Hasson et al.
Voxels that prefer animate categories are located on the lateral portion of this band,
consistent with the face-preferring patches in Hasson et al. Voxels that prefer inanimate
categories are generally located on the dorsal and ventral extremities of this band, consistent
with the building-preferring patches in Hasson et al. Thus, our data suggest that the
arrangement of preferences for building and faces reported by Hasson et al. might apply
more broadly to other categories of inanimate and animate objects.
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4.3 Using natural scenes to study object representaiton
Most fMRI experiments on object representation have used decontextualized objects that are
presented in isolation (e.g. Downing et al., 2006) or in pairs (MacEvoy and Epstein, 2009)
on a neutral background. The use of natural scenes raises important conceptual and
methodological issues. For example, studies of object representation frequently contrast
responses to “faces” and “places”. Yet most natural scenes depict a place--including most
that depict faces. The use of natural scenes thus forces a consideration of “place areas” in
terms of the specific object categories they represent. Natural scenes are also more efficient
because they provide a natural way to probe multiple objects in a single trial. Finally, natural
scenes are clearly more ecologically valid than the simple stimuli typically used in
experiments. We have presented the first predictive encoding model that relates voxel
activity directly to multiple objects in natural scenes. The model also provides the first
means for simultaneously decoding multiple objects in natural scenes. Our results therefore
demonstrate the feasibility and power of using labeled natural scenes to study object
representations.

A model of object-category tuning predicts BOLD activity evoked by natural scenes.

The model is used to decode multiple objects in natural scenes.

The model reveals the sources of variation in object-category tuning across cortex.

The primary source of variation is preference for animate or inanimate objects.
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Figure 1. Natural scene stimuli labeled with nineteen object categories
(left) A set of nineteen object categories was selected for our analysis of object
representation. (middle) A few example objects that are members of each object category.
Objects in colored font appear in the corresponding natural scene at far right. (right) All
natural scenes shown here were selected from the 1386 presented during the experiment.
Prior to the experiment, the objects in each natural scene were labeled and assigned to the
appropriate object category. The entire set of natural scenes contained many examples of
objects belonging to each category.
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Figure 2. An object-category encoding model based on nineteen object categories
(A) A separate object-category model was constructed for each voxel on the cortical surface.
The object category model provides a set of positive (excitatory) or negative (suppressive)
weights (plotted as shaded squares) that describe how the presence of each category affects
measured BOLD activity. Indicator variables pick out the object categories present in the
natural scene; the corresponding weights are summed to generate a predicted voxel
response. Voxel responses predicted on a separate data set not used to fit the model are used
to verify model accuracy. (B) We refer to the set of object-category weights for each voxel
as the object-category tuning function. Here the object-category tuning functions for two
voxels are plotted as bar charts. The voxel shown at top has the highest prediction accuracy
across all voxels for subject 1 (voxel # 21240, prediction accuracy r = 0.697). This voxel is
strongly excited by several humans, though land and water mammals also elicit substantial
responses. The voxel at bottom has the highest prediction accuracy across all voxels for
subject 2 (voxel # 39097, prediction accuracy r = 0.733). This voxel responds to a wide
variety of inanimate categories, including sky, water, manmade structures, and buildings. S1
= subject 1. S2 = subject 2.
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Figure 3. Prediction accuracy of the object category model
(A) Prediction accuracy of the object-category model was estimated separately for each
voxel, and these values were projected onto a cortical flat map (top, subject 1; bottom,
subject 2). On the map, white space separates the left and right hemispheres; gray indicates
locations outside the slice prescription; white lines demarcate functionally-defined ROIs:
V1-V4, primary visual cortical areas; LO, lateral occipical complex; OFA, occipital face
area; FFA, fuisform face area; PPA, perihippocampal place area; EBA, extrastriate body
area; RSC, retrosplenial cortex. Prediction accuracy is represented using a color scale where
black represents low accuracy and yellow represents high accuracy. Prediction accuracy is
highest for voxels in visual cortex anterior to highly retinotopic visual areas (i.e., V1-V4).
(B) Prediction accuracy for the object-category model compared to prediction accuracy for a
Gabor wavelet model. The Gabor wavelet model depends solely on simple visual features
(e.g., spatial frequency and orientation) and does not reference the nineteen object categories
included in the object-category model. For each voxel, predicted responses to the validation
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stimuli were generated separately using both the object-category and Gabor wavelet models.
Prediction accuracy of the object-category model is plotted on the y-axis, and accuracy of
the Gabor wavelet model is plotted on the x-axis. Many voxels (black dots) whose responses
are predicted accurately by the object-category model (black dots above the dashed
horizontal line) are predicted poorly by the Gabor wavelet model. Thus, the object-category
model accurately predicts object-related responses that cannot be explained by simple visual
features.
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Figure 4. Examples of multiple object categories decoded from complex natural scenes
Decoding can be used to confirm the accuracy of the object-category model. Here the
object-category model was used to decode object categories from the responses of voxels for
which the object category model provided good predictions (subject 1, n=596; subject 2,
n=653). (left) Two natural scene stimuli selected from the validation data set. (right) Object
categories that the decoder claims are present in each scene. Object-categories correctly
decoded as present (i.e., true positives) are listed in pink, while those incorrectly decoded as
present (i.e., false positives) are listed in gray. Decoding is accurate both in heterogeneous
scenes that feature objects from many categories (top, subject 1) and in homogeneous scenes
that feature objects from fewer categories (bottom, subject 2).
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Figure 5. Decoding accuracy for each object category
The object-category model was used to decode the object categories in each image in the
validation set, using responses of the same voxels selected in Figure 4. Decoding accuracy
for each of the nineteen object categories was analyzed independently. (left) Animate
categories. (right) Inanimate categories. (top) Subject 1. (bottom) Subject 2. The vertical
axis in each panel gives the true positive rate (TPR), the fraction of scenes in which an
object was correctly decoded as present. The horizontal axis in each panel gives the false
positive rate (FPR), the fraction incorrectly decoded as present. The solid line at unity
represents the TPR and FPR rates that would be expected if the voxel responses provided no
decodable information about object category. Object categories farthest from the line at
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unity are those that were decoded most accurately. Object categories in pink and in black
can be decoded significantly (p < 0.01 and p <=0.05 respectively, permutation test). Note
that the object categories have different probabilities of occurrence, so the significant
distance from line at unity (capped lines indicate significance at p < .05) varies across object
category. Most of the animate and inanimate object categories are accurately decoded.
Abbreviations: l. mam. = land mammal, w. mam. = water mammal, insct./rptl. = insect/
reptile, sev. hum. = several humans, crowd = crowd of humans, arfct. = artifact, furn. =
furniture, food = prepared food, vhcl. = vehicle, strct. = manmade structure, bldg. = (part of)
building, frt./veg. = fruit/vegetable.
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Figure 6. Decoding accuracy as a function of the number of object categories
The horizontal axis gives the number of object categories, and the vertical axis shows the
fraction of correct image identifications when the true scene is compared, one-at-a-time, to
all other possible scenes. The dashed grey lines indicate bootstrapped 95% confidence
intervals. Decoding accuracy shows no systematic relationship to the number of object
categories, and the lower bound of the confidence interval is typically above chance (.5) for
all numbers of object categories.
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Figure 7. Principal component analysis of object tuning functions
Results of principal component (PC) analysis applied to the object-category tuning functions
of the same voxels selected in Figures 4 and 5. (left) Coefficients of the first PC are given on
the horizontal axis. The coefficients of the first PC are all of the same sign (positive) for
animate categories, and are opposite in sign to the most of the coefficients for inanimate
categories. The first PC accounts for 50–60% of the variation (y-axis, right panels) in object-
tuning functions across voxels (p < .01, permutation test). The significance criterion for each
PC (dashed gray line) is the 99th percentile of the histogram of variation explained by the
corresponding PC across 10,000 permuted samples. These results suggest that variation in
object-category tuning primarily reflects differences in preference for animate and inanimate
objects.
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Figure 8. Arrangement of animate and inanimate object representations on the cortical surface
(left) A cortical flat map illustrating the projection of each voxel’s object-category tuning
function onto the first PC. Details of the maps are the same as in Figure 3. Yellow voxels
have large positive projections onto the first PC and generally prefer animate objects. Blue
voxels have negative projections onto the first PC and generally prefer inanimate objects.
Voxels that prefer animate objects tend to occupy a central density anterior to retinotopic
areas. This central density is flanked by voxels with a strong preference for inanimate
objects. The locations of these voxels are consistent with the arrangement of category-
specific areas (e.g., FFA and PPA), but they extend well beyond the borders of these
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classical ROIs. (right) Histogram of the projections of object-category tuning functions onto
the first PC (log scale). The color scale is matched to the flatmaps at right.
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Figure 9. Animate and inanimate object representations in functionally identified regions of
interest
(left) Histograms of the projection of the object-tuning functions onto the first PC, for voxels
in place-related areas (PPA and RSC) and face or body related areas (FFA, OFA, EBA).
(right) Skewness of the histograms with 95% confidence intervals (c.i.). The c.i.'s for
skewness were obtained by resampling with replacement the empirical histogram of
projection values 10,000 times. The c.i. bounds do not overlap, indicating that place-related
areas are skewed toward preference for inanimate categories, and face- and body-related
areas are skewed toward preference for animate categories.
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