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This study applied multiscale entropy analysis to investigate the correlation between the complexity of intracranial pressure

waveform and outcome after traumatic brain injury. Intracranial pressure and arterial blood pressure waveforms were low-pass

filtered to remove the respiratory and pulse components and then processed using a multiscale entropy algorithm to produce a

complexity index. We identified significant differences across groups classified by the Glasgow Outcome Scale in intracranial

pressure, pressure-reactivity index and complexity index of intracranial pressure (P5 0.0001; P = 0.001; P5 0.0001, respect-

ively). Outcome was dichotomized as survival/death and also as favourable/unfavourable. The complexity index of intracranial

pressure achieved the strongest statistical significance (F = 28.7; P50.0001 and F = 17.21; P50.0001, respectively) and was

identified as a significant independent predictor of mortality and favourable outcome in a multivariable logistic regression model

(P5 0.0001). The results of this study suggest that complexity of intracranial pressure assessed by multiscale entropy was

significantly associated with outcome in patients with brain injury.
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Introduction
A complex system is defined as one that is composed of many

parts that interact in a non-linear fashion and give rise to emer-

gent behaviour that cannot be understood through the analysis of

its constituents. In the realm of physiology, we can define a com-

plex biological system as one that is very sensitive to initial

conditions and reacts adaptively to minute changes in its environ-

ment. Therefore, the complexity of such a system can be directly

correlated to its ability to react to change and hence logically,

when this ability is lost, we can postulate that the complexity of

the system is also adversely affected.

Loss of complexity, or decomplexification, occurs during ageing

or disease and may also be associated with poor outcome
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(Goldstein et al., 1998; Norris et al., 2008; Riordan et al., 2009). It

has been shown, for example, that decomplexification of heart

rate variability is statistically associated with the worse outcome

of critically ill children and adults (Goldstein et al., 1998; Norris

et al., 2008; Riordan et al., 2009). Recently, several studies have

demonstrated that reduced complexity of intracranial pressure

waveform occurs during intracranial hypertension in paediatric pa-

tients after head injury and during infusion study in patients with

hydrocephalus (Hornero et al., 2006, 2007; Santamarta et al.,

2010). However, the relationship between the decomplexification

of intracranial pressure waveform and the outcome of these pa-

tients has not been determined.

Traditionally, linear methods have been adopted for analysis of

physiological signals. However, despite their relative success, these

methods suffer from inaccuracies due to the non-linear and

non-stationary nature of biological systems. Therefore, new meth-

ods have been introduced to explore their non-linear dynamics.

One of the widely explored methods, attractive due to its simpli-

city, is the analysis of entropy. It is a concept used to describe

system randomness or unpredictability. Pincus (1991) proposed

‘approximate entropy’ as a measure of irregularity of time series

of various origins. It quantifies the predictability of subsequent

amplitude values of data series based on the knowledge of the

previous ones; the less the predictability the larger the approxi-

mate entropy. However, these calculations classically require very

long data sets and a bias may exist leading to overestimation of

the time series regularity. Sample entropy addresses this problem

to an extent (Richman and Moorman, 2000). We must keep in

mind, however, that a higher entropy value only reflects an in-

crease in the degree of randomness and not necessarily an in-

crease in the complexity of the time series (white noise series,

for example, have high entropy but in fact low complexity). In

order to provide a more meaningful measure of complexity, a

multiscale entropy analysis that calculates entropy over multiple

time scales was proposed by Costa et al. (2002). Multiscale en-

tropy has been successfully utilized to analyse several biosignals

and to distinguish healthy status from pathological conditions.

When applied to the EEG, multiscale entropy helps to characterize

patients with a variety of neuropathological conditions including

Alzheimer’s disease, schizophrenia, autism and medial temporal

lobe epilepsy (Mizuno et al., 2010; Protzner et al., 2010;

Takahashi et al., 2010; Catarino et al., 2011). Recently, multiscale

entropy has also been used to analyse arterial blood pressure to

detect dynamics of the autonomic nervous system’s reaction to

postural change (Turianikova et al., 2011) and for abnormalities

in patients with type I diabetes mellitus (Trunkvalterova et al.,

2008).

As widely demonstrated in the literature, the intracranial pres-

sure signal carries substantially more information in its waveforms

than can be summarized by the mean intracranial pressure value

(Czosnyka et al., 2007). Pressure reactivity index, a running cor-

relation coefficient between slow fluctuations in arterial blood

pressure and intracranial pressure, has been accepted by many

clinical practitioners as reflecting cerebrovascular reactivity, a sur-

rogate for cerebral blood flow autoregulation. The reason that

such information can be extracted from intracranial pressure is

ascribed to the complex interplay of two dynamic systems: CSF

and cerebral blood circulation embedded in an elastic brain tissue

encompassed by a rigid skull (Czosnyka et al., 1997a; Ursino and

Lodi, 1997). These interacting systems dynamically regulate the

homeostasis of intracranial pressure (Rosner and Becker, 1984).

Therefore, alterations in intracranial pressure waveform character-

istics may reflect the dysfunction of the regulatory systems and

may be associated with a bad outcome (Balestreri et al., 2006;

Hiler et al., 2006). Similarly, an increase in pressure reactivity

index signifies impaired cerebrovascular pressure reactivity and

has been shown to be associated with poor outcome in patients

after traumatic brain injury (Czosnyka et al., 1997b; Hiler et al.,

2006).

To date, however, no study has applied multiscale entropy to

the analysis of intracranial pressure. Considering the non-linear

character of mechanisms contributing to observed dynamics of

the intracranial pressure signal (Marmarou et al., 1978; Hu

et al., 2006) and the reported reduced entropy of intracranial

pressure caused by intracranial hypertension (Hornero et al.,

2006, 2007; Santamarta et al., 2010), we decided to apply multi-

scale entropy to study the complexity of intracranial pressure and

its relationship to outcome in a large cohort of patients with trau-

matic brain injury.

Materials and methods

Patient eligibility
We retrospectively examined digital recordings from 325 prospective

patients after severe head injury admitted to the Neurosciences Critical

Care Unit, Addenbrooke’s Hospital, Cambridge, between 2002 and

2010. Patients with available recordings of intracranial pressure, arter-

ial blood pressure, Glasgow Coma Scale and Glasgow Outcome Scale

were eligible for analysis. All patients were sedated, mechanically ven-

tilated and managed according to cerebral perfusion pressure oriented

protocol during their stay in the Neurosciences Critical Care Unit

(Menon, 1999). Therapeutic options including head elevation, sed-

ation, hyperosmolar therapy, moderate hyperventilation, inotropics,

CSF drainage (insertion of a catheter through a ventriculostomy into

the anterior horn of one of the ventricles) and even decompressive

craniectomy were adopted to keep cerebral perfusion pressure above

60–70 mm Hg and intracranial pressure below 20 mm Hg. Patients after

craniectomy were not excluded from this study since even in those

patients, despite lower mean intracranial pressure values, the wave-

forms’ make-up contributing to widely understood intracranial pres-

sure dynamics still reflects their clinical course and correlates with

outcome. It has been shown, for example, that after craniectomy,

fast increases of intracranial pressure to moderately elevated values

(15–20 mm Hg) are associated with worse outcome (Li et al., 2010).

In general, physiological phenomena affecting intracranial pressure

waveforms after craniectomy remain qualitatively unchanged.

Therefore, excluding these patients from the analysis seemed unjusti-

fiable, at least at this exploratory stage. Data collection and analysis

were approved by the Neurocritical Care Users’ Committee and the

Research Ethics Committee. The same database has been used for

other studies from this research group (Sorrentino et al., 2011; Aries

et al., 2012). However, assessment of the complexity of intracranial

pressure as presented here has never been investigated in this data set.
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Data acquisition and analysis
Arterial blood pressure was monitored predominantly from a radial

artery using a standard pressure monitoring kit (Baxter Healthcare

Corp.). Intracranial pressure was monitored using an intraparenchymal

probe (Codman & Shurtleff, Inc.) in all patients, including those with

an external drainage device. All signals were continuously sampled at a

frequency from 30 to 200 Hz using ICM + software (http://www

.neurosurg.cam.ac.uk/icmplus). Time trends of mean intracranial pres-

sure and other derived parameters were constructed with a rate of one

sample every 10 s, thus suppressing pulse and respiratory waves and

focusing entirely on the slow fluctuations of intracranial pressure. For

calculation of pressure reactivity index, a moving Pearson correlation

coefficient was obtained from changes of arterial blood pressure and

intracranial pressure in a window of 30 consecutive 10-s time aver-

ages. Only segments of intracranial pressure, when cerebral perfusion

pressure was 530 mm Hg, were included in order to avoid analysing

data from dead brain.

Patient demographics
Seven patients in a low awareness state (vegetative or minimally con-

scious) were excluded from analysis because of the small number and

greater heterogeneity compared with other outcome groups. A total of

290 patients were enrolled for analysis and the baseline characteristics

divided into different Glasgow Outcome Scale groups are shown in

Table 1. The average age was 38 years [standard deviation (SD) 16.5

years] with 78% male and 22% female. Moderate disability was

observed in the youngest group (32.8 � 13.9 years; 61.2% male)

while the oldest (45.1 � 17.2 years; 89% male) group tended more

towards fatal outcome. The median admission Glasgow Coma Scale

was 6 [interquartile range (IQR) 3–9], and unsurprisingly the group

with a fatal outcome had the lowest median Glasgow Coma Scale (5;

IQR 3–8) compared with the other groups. The proportion of patients

with a Glasgow Coma Scale of 48 was 73.5% versus 78.9% in sur-

vival versus death outcome group and 68% versus 80.5% in favour-

able versus unfavourable outcome group. The median data length for

analysis was 4 days (range 0.2–19.6 days) and there was no significant

difference between groups in this respect.

Multiscale entropy analysis
Multiscale entropy was calculated as described by Costa et al. (2002,

2005). Briefly, the multiscale entropy analysis constructs a set of

coarse-grained time series constructed by replacing a progressively

increasing number of data points in non-overlapping windows by

their mean values. This procedure starts with the original times

series, described as the Scale 1 series. The Scale 2 time series is

made up of averages of consecutive pairs of data points, and so it is

represented by half as many data points. Scale 3 uses averages of

three data points and its length decreases 3-fold, and so on

(Fig. 1A). In this study, we coarse-grained the original time series up

to scale factor 20.

Figure 1 The illustration of (A) the coarse graining procedure

and (B) sample entropy. For length m = 2, two sequences

(dotted circle) match the first two data points and one sequence

(circle) matches the first three data points (length m + 1). This

matching process is repeated for the next two data points and

then all sequences to determine the total number of matches of

length m and m + 1. Sample entropy is calculated as the nega-

tive natural logarithm of the ratio between the number of length

m + 1 matches and the number of length m matches.

Table 1 Demographic data of 290 subjects

Good outcome Moderate disability Severe disability Dead P-value

n 49 77 93 71

Age (years) 34.2 � 17.7 32.8 � 13.9 39.9 � 15.3 45.1 � 17.2 0.00001

Male (%) 61.2 84.4 75.3 85.9 0.005

GCS 7 (4–10) 8 (5–11) 6 (3–8) 5 (3–8) 0.015

Data length (days) 4.3 � 3.8 5.6 � 4.4 5.0 � 4.1 5.1 � 4.1 0.348

Numerical data are expressed as mean � SD and compared with one-way ANOVA. Categorical data are expressed as number (percentage) or median (IQR) and compared
with chi-square test. GCS = Glasgow Coma Scale.
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For each time series, a sample entropy analysis was performed as

described in detail elsewhere (Richman and Moorman, 2000). In brief,

sample entropy estimates the likelihood that two similar sequences of

m consecutive data points (m = 2 in this study) will remain similar

when the sequence length increases to m + 1 data points (Fig. 1B).

It is computed as the negative natural logarithm of the ratio of number

of m + 1 length patterns to the number of corresponding m length

patterns. Therefore, higher sample entropy values signify higher ir-

regularity of the time series. A multiscale entropy curve was drawn

by plotting the sample entropy of each coarse-grained time series as a

function of time scale. A single value named complexity index was

obtained as the area under the multiscale entropy curve (Manor

et al., 2010). The calculations were performed on a complete

data set for each patient. In addition, episodes of plateau waves and

refractory intracranial hypertension were analysed separately, using a

complete intracranial pressure signal for multiscale entropy analysis. In

order to deal with the problem of different sampling frequencies of

recorded data, intracranial pressure signal was resampled to 100 Hz

using band-limited interpolation.

Statistical analysis
The calculated complexity index and the patient-averaged values of

derived parameters, including pressure reactivity index, obtained from

the whole recording periods were used for statistical analysis.

Outcome was assessed 6 months after head injury using the

Glasgow Outcome Scale (Jennett and Bond, 1975). Outcome groups

were further dichotomized into survival and death, as well as favour-

able and unfavourable outcome (good recovery and moderate disabil-

ity versus severe disability, persistent vegetative state and fatal

outcome). Statistical analysis was performed using SPSS 13.0 (IBM).

Interval data were expressed as mean � SD, or median (with IQR),

and compared with one-way ANOVA or Kruskal–Wallis

non-parametric test where appropriate. Categorical data were coded

and compared with chi-square test. One-way ANOVA was used to

compare the interval variables between the dichotomized outcome

groups. A multiple logistic regression model was used to identify the

independent predictors with the dichotomized outcome. Variables that

failed to pass the tests for normal distribution were normalized before

introduced into the logistic regression model. P5 0.05 was considered

to represent a significant difference. To enhance robustness of the

logistical regression model analysis, a 10-fold cross-validation approach

was used.

Results

Observation of the complexity during
increases in intracranial pressure
Figure 2 illustrates time course of intracranial pressure, arterial

blood pressure, cerebral perfusion pressure and pressure reactivity

index during an episode of a plateau wave of intracranial pressure

and during an uncontrolled development of intracranial hyperten-

sion. In both cases, an abrupt increase in pressure reactivity index

to values close to one associated with high level of intracranial

pressure signified maximal cerebral vasodilatation and exhaustion

of cerebrovascular reactivity. This was reflected in a decrease in

entropy of intracranial pressure signal across all measured scales

resulting in a decrease in overall complexity index during those

periods. Ten episodes of plateau waves and seven cases of refrac-

tory intracranial hypertension were analysed (Fig. 2C–E).

Correlation of the complexity of
intracranial pressure with outcome
Figure 3 summarizes the studied parameters across different out-

come groups. In a cohort analysis, intracranial pressure and pres-

sure reactivity index were significantly higher in the fatal group

(P5 0.0001 and P50.001, respectively) and there was no sig-

nificant difference in arterial blood pressure and cerebral perfusion

pressure between groups. When multiscale entropy was used to

assess the complexity of intracranial pressure, the complexity index

of intracranial pressure was the highest in the good recovery

group (P5 0.0001). Table 2 shows the results of different vari-

ables compared by dichotomized outcome group using one-way

ANOVA. A higher F-value indicates better differentiation of a vari-

able across different outcome groups. The F-value was the highest

for complexity index of intracranial pressure irrespective of the

division of the outcome groups into death/survival or unfavour-

able/favourable (F = 28.7; P5 0.0001 and F = 17.21; P50.0001,

respectively).

Our results showed that the complexity index of intracranial

pressure in patients with good outcome (11.9 � 4.4) was signifi-

cantly larger than those with moderate disability and severe dis-

ability (9.5 � 4.5, P = 0.02; 9.4 � 4.4, P = 0.008; one-way

ANOVA followed by Bonferroni post hoc analysis). This suggests

that patients with a higher complexity of intracranial pressure tend

to have a good outcome due to their better dynamics in response

to varying stimuli. The patients included in this study were

admitted between 2002 and 2010 and managed according to

the tiered head injury protocol (Menon, 1999). We did not see

any significant difference in association between the complexity

index and outcome in patients admitted during the early phases of

the study versus those admitted in the later years.

The complexity of intracranial pressure
is an independent predictor of outcome
Multivariable logistic regression identified age, Glasgow Coma

Scale, intracranial pressure and pressure reactivity index to be sig-

nificantly associated with mortality (P5 0.0001; P = 0.01;

P50.0001; P = 0.006, respectively) when complexity index of

intracranial pressure was excluded from analysis (Table 3).

However, when complexity index of intracranial pressure was

included in the model, complexity index of intracranial pressure

was identified as a significant predictor (P50.0001), while pres-

sure reactivity index became statistically insignificant (P = 0.23)

and others remained significant independent predictors (Table 3).

Similarly, in the multivariable logistic regression to identify the

independent predictors of the favourable outcome (Table 4), the

inclusion of complexity index of intracranial pressure (P50.0001)

converted pressure reactivity index into an insignificant predictor

(P = 0.31).

Ten-fold cross-validation process confirmed the significance of

intracranial pressure and its complexity for prediction of outcome.
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Figure 2 Time-related changes of intracranial pressure (ICP), arterial blood pressure (ABP), cerebral perfusion pressure (CPP) and pressure

reactivity index (PRx) during (A) plateau wave and (B) refractory intracranial hypertension. Multiscale entropy (MSE) during baseline

(arrow) and increased intracranial pressure (arrowhead) in (C) 10 episodes of plateau wave and (D) seven episodes of refractory intra-

cranial hypertension. (E) Complexity index of intracranial pressure. Results are the mean � SEM. SE = sample entropy.
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When intracranial pressure was excluded and complexity index of

intracranial pressure was included in the model of predicting mor-

tality, the accuracy, sensitivity and specificity were 0.80 � 0.06,

0.33 � 0.18 and 0.95 � 0.07, respectively. When intracranial pres-

sure was included and the complexity index of intracranial pres-

sure was excluded from the model, the averaged accuracy,

sensitivity and specificity were 0.79 � 0.09, 0.24 � 0.20 and

0.96 � 0.05, respectively. When both intracranial pressure and

complexity index of intracranial pressure were included in the

model, the averaged accuracy, sensitivity and specificity were

0.82 � 0.07, 0.50 � 0.19 and 0.94 � 0.06, respectively. Analysis

based on favourable/unfavourable outcome dichotomy gave

Figure 3 Calculated parameters in different Glasgow Outcome Scale (GOS) groups. (A) Intracranial pressure (ICP), (B) arterial blood

pressure (ABP), (C) cerebral perfusion pressure (CPP), (D) pressure reactivity index (PRx) and (E) complexity index of intracranial pressure

(ICP-CI). Results represent the mean and 95% confidence intervals. Symbols express the difference between groups in one-way ANOVA

followed by Bonferroni post hoc analysis with a confidence level of P5 0.05. *Group differed from three other groups. †Dead differed

from good outcome and moderate disability.
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similar results, thus confirming the significance of our model

predictors.

Correlation of the complexity of
intracranial pressure with intracranial
pressure, cerebral perfusion pressure
and pressure reactivity index
When data from all patients were pooled, complexity index of

intracranial pressure showed an inverse relationship with intracra-

nial pressure (Fig. 4A). The relationship with cerebral perfusion

pressure was less apparent and showed a convex shape

(Fig. 4B) as opposed to the concave relationship between pressure

reactivity index and cerebral perfusion pressure (Fig. 4C). Overall,

the complexity index of intracranial pressure correlated weakly

with intracranial pressure and pressure reactivity index

(R = �0.13; P = 0.02 and R = �0.25; P50.0001, respectively)

indicating lower intracranial pressure complexity during intracranial

hypertension and disturbed vascular control.

Discussion
The results of the cohort analysis showed that a significant rela-

tionship exists between the complexity of mean intracranial pres-

sure fluctuations and outcome after severe head injury. The

complexity of mean intracranial pressure waveform was the high-

est in patients with good recovery and lowest in patients with fatal

outcomes. This finding supports the theory that critical illness can

Table 4 Multivariable logistic regression for factors associated with favourable outcome in patients after traumatic brain
injury

Without ICP-CI With ICP-CI

OR 95% CI P-value OR 95% CI P-value

Age 0.96 0.94–0.98 0.000002 0.95 0.94–0.97 0.0000006

GCS4 8 3.44 1.82–6.50 0.0002 3.85 2.00–7.39 0.00005

ICP 0.9 0.86–0.95 0.0003 0.91 0.86–0.93 0.001

PRxa 0.14 0.02–0.86 0.03 0.37 0.05–2.58 0.31

ICP-CIb NA NA NA 3.02 1.74–5.27 0.00009

GCS = Glasgow Coma Scale; ICP = intracranial pressure; ICP-CI = complexity index of ICP; NA = not applicable; OR = odds ratio; PRx = pressure reactivity index.

a Fisher transformation was used to normalize the distribution of PRx.
b Logarithmic transformation was used to normalize the distribution of ICP-CI.

Table 3 Multivariable logistic regression for factors associated with mortality in patients after traumatic brain injury

Without ICP-CI With ICP-CI

OR 95% CI P-value OR 95% CI P-value

Age 1.04 1.02–1.07 0.00002 1.06 1.03–1.08 0.000002

GCS4 8 0.37 0.17–0.80 0.01 0.37 0.17–0.83 0.02

ICP 1.18 1.10–1.25 0.0000006 1.18 1.10–1.27 0.000004

PRxa 17.58 2.28–135.82 0.006 4.07 0.41–44.04 0.23

ICP-CIb NA NA NA 0.16 0.08–0.32 0.0000003

GCS = Glasgow Coma Scale; ICP = intracranial pressure; ICP-CI = complexity index of ICP; NA = not applicable; OR = odds ratio; PRx = pressure reactivity index.
a Fisher transformation was used to normalize the distribution of PRx.
b Logarithmic transformation was used to normalize the distribution of ICP-CI.

Table 2 Differences in intracranial pressure, pressure reactivity index and complexity index related to outcome using
ANOVA

Survival versus death Favourable versus unfavourable

F P F P

ICP 28.31 0.0000002 7.89 0.005

PRx 14.72 0.0002 9.44 0.002

ICP-CI 28.7 0.0000002 17.21 0.00004

ICP = intracranial pressure; ICP-CI = complexity index of ICP; PRx = pressure reactivity index.
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lead to the decomplexification of dynamics of normal physiology

(Buchman, 2004). Using multiscale entropy analysis, we illustrated

that the complexity index of the intracranial pressure signal was

reduced during episodes of plateau waves and intracranial hyper-

tension and this is consistent with the findings of previous studies

(Hornero et al., 2005, 2006, 2007). However, entropy/complexity

analysis of the complete intracranial pressure signal mainly reflects

‘irregularity’ of the pulse morphology. It is not well suited to probe

slower process, originating in or modulated by the cerebrovascular

regulation system.

The frequency domain analysis (Lundberg, 1960) divides intra-

cranial pressure waveforms into three components: the first and

fastest component comes from cardiac pulse wave, the second

component is associated with respiration and the lowest frequency

component forms the so-called slow waves. The 10-s long moving

average filter used in this study effectively removed the effects of

cardiac and respiratory subsystems. As a result, the complexity

index was generated exclusively from the analysis of variations

within slow waves. These have a frequency range between 0.05

and 0.008 Hz and are less well understood, although a number of

underlying mechanisms have been suggested (Lundberg, 1960;

Auer and Sayama, 1983). The slow waves are often classified as

‘A’ waves (plateau waves), ‘B’ waves and ‘M’ waves (Mayer

waves). This classification is based on a visual description of

different morphological and temporal patterns of the slow

waves. These slow waves are thought to be vasogenic and largely

driven by cerebrovascular haemodynamic control systems. Their

presence may or may not be associated with pathological pro-

cesses. Plateau waves, and often B waves, for example, are asso-

ciated with depleted brain compliance. However, the occurrence

of plateau waves is not directly linked to poorer outcome in pa-

tients with head injury (Castellani et al., 2009) and B waves have

also been observed in healthy subjects (Lemaire et al., 1994). On

the other hand, reduced activity of slow waves has been shown to

be associated with poor prognosis after traumatic brain injury

(Balestreri et al., 2005). Our results showed decreased complexity

of intracranial pressure is associated with poorer outcome, thus it

is not the occurrence of slow waves that predicts worse outcome

but their increased regularity (which is not the same as increased

intensity).

In concordance with previous research (Eide et al., 2007), the

pressure reactivity index was identified as an independent pre-

dictor of outcome. However, when the complexity index of intra-

cranial pressure was also included in the regression model,

pressure reactivity index became statistically insignificant. This sug-

gests that loss of autoregulation is partially responsible for decom-

plexification of intracranial pressure fluctuations. This is further

reflected in the weak but significant direct correlation between

Figure 4 Empirical regression plots for all patients. (A) Complexity index of intracranial pressure (ICP-CI) versus mean intracranial pressure

(ICP). (B) Complexity index of intracranial pressure versus cerebral perfusion pressure (CPP). (C) Pressure-reactivity index (PRx) versus

cerebral perfusion pressure. Results are mean � SEM.
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the complexity index of intracranial pressure and pressure reactiv-

ity index. Higher predictive power achieved by the complexity

index may suggest that it reflects development of other

patho-physiological processes in addition to those responsible for

failure of cerebrovascular reactivity.

Other studies have previously looked into the regularity/chaotic

nature of the intracranial pressure signal. A study by Burr et al.

(2008) in a group of 147 patients with traumatic brain injury

analysed intracranial pressure slow wave time series complexity

by looking at their fractal nature. Using detrended fluctuation ana-

lysis of intracranial pressure time series, they were able to dem-

onstrate, similar to this study, its significant predictive power for

outcome. However, the fractal nature of a time series can only be

studied when examining its fluctuations over several levels of

magnitude of time scale. In practice, this means that in order to

obtain meaningful results, data spans of up to several days should

be used for analysis. Furthermore, fractal methods such as

detrended fluctuation analysis require the underlying process to

possess a fractal nature and, more precisely, a mono-fractal char-

acteristic. If this assumption is not valid, the results could be un-

interpretable. The crux of the matter lies in the fact that the

nature of intracranial pressure slow waves is not known and there-

fore the above cannot be assumed. In contrast, the multiscale

entropy method should give reliable results from a span of several

hours and does not make any assumptions about the nature of the

time series analysed. Thus, the multiscale entropy-based complex-

ity index appears to be a practical and readily interpretable meas-

ure of irregularity of slow waves with a potential for clinical use.

Further cross-validation studies, however, are required for com-

plexity index of intracranial pressure. However, one potential

drawback of using the complexity index of intracranial pressure

in a clinical environment is the fact that the complexity index of

intracranial pressure does not have a direct physiological

interpretation.

Limitations of the study
Some limitations should be addressed in this study. First, in this

retrospective study we cannot investigate the influence of treat-

ments (including CSF drainage) or medications on the complexity

of intracranial pressure although therapeutic management was

standardized (Menon, 1999). Therefore, further prospective stu-

dies should be conducted to examine the individual impact of

different treatments on the complexity of intracranial pressure.

Second, the multiscale entropy technique requires substantially

more samples to provide a reliable estimate value than single scale

sample entropy. For analysis over 20 scales, it has been estimated

that at least 2000 data samples are required (Angelini et al.,

2007). As the analysed intracranial pressure time series were ul-

timately sampled at periods of 10 s, this means that nearly 6 h of

data are required to provide a meaningful value of the complexity

index; making clinical application of the technique more difficult.

In addition, multiscale entropy, as its building block is sample en-

tropy, assumes stationarity. If this assumption is invalid, which is

likely to be the case for prolonged time periods, the sample en-

tropy estimation becomes less reliable (its variance increases).

However, by taking into account more temporal scales, multiscale

entropy attenuates the effects of this problem. Perhaps an im-

proved multiscale entropy methodology using adaptive

approaches, similar to the one applied by Hu et al. (2008),

would help to reduce these effects even further.

Conclusion
We have demonstrated that reduced complexity of mean intracra-

nial pressure is associated with poor outcome in patients after

traumatic brain injury. A prospective study is necessary to verify

the role of complexity in the management of patients with trau-

matic brain injury.
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