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Abstract
Adult skeletal muscle stem cells are a heterogeneous cell population characterized by a small
subset of undifferentiated cells that express at high level the paired/homeodomain gene Pax7. This
category of satellite cells divides predominantly by asymmetric chromatid segregation generating
a daughter cell that carries the mother DNA and retains stem cell property, and a daughter cell that
inherits the newly-synthesized DNA and acquires the myocyte lineage.1

Recently, the established modalities of stem cell self-renewal, i.e., generation of a daughter
stem cell and a daughter committed cell, have been questioned and an old theory that may
have important implications in stem cell function and senescence has been reconsidered. The
possibility that non-random chromatid segregation regulates stem cell division has gained
interest, promoting intense discussion in the field.2-6 The immortal DNA strand hypothesis
advanced by John Cairns in 19752 suggests that stem cell division is characterized by
asymmetric segregation of chromatids so that one daughter cell contains only the old intact
DNA and the other carries chromatids composed exclusively of the newly synthesized DNA
(Figure 1). This process would attenuate the accumulation of replication errors in the
parental DNA strand.2,7 In the event that deleterious mutations are acquired during DNA
replication, they would be transmitted to daughter cells, which may undergo senescence and
apoptosis,8-11 having a reduced capacity to repair DNA damage.2,12,13 Moreover, telomeric
shortening dictated by DNA synthesis would affect only partly the actual stem cells
retaining the old DNA, and telomere attrition would be largely restricted to the newly
synthesized strands when become templates in subsequent descendants.6,14

For historical accuracy, experimental evidence of non-random segregation of sister
chromatids during cell division was obtained in the 1960s, shortly after the discovery of the
double helix structure of the DNA.15 These pioneering studies were performed in mouse
fibroblasts and human HeLa cells,16 and in plants, such as beans, Vicia faba, and wheat,
Triticum boeoticum.17 However, no emphasis on stem cells was placed at this early time,
even though the importance of the problem at hand was apparent.

Unquestionably, the immortal DNA strand theory5-7,14,18-20 has added a level of difficulty
to the recognition and understanding of stem cell growth and lineage specification. Although
Cairns’ theory is fascinating and potentially very important, the actual behavior of stem cells
in self-renewing organs is significantly more complex. According to the immortal DNA
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strand hypothesis, cells carrying the old DNA maintain their undifferentiated state and
preserve the stem cell compartment within the organ, while cells containing the new DNA
acquire specialized functions; chromosomes are segregated asymmetrically in stem cells
which represent the most primitive pool that controls cell turnover in organs in a steady
state. Whether these cells are involved in the expansion of the stem cell population during
rapid physiological organ growth and the formation of a large committed progeny required
for tissue repair following injury is uncertain. Based on Cairns’ principle, asymmetric
segregation of chromatids would be equivalent to asymmetric stem cell division, challenging
the ability of stem cells to undergo symmetric division with the formation of two
indistinguishable sibling cells. Theoretically, these cells cannot divide and form two
daughter stem cells, or two daughter parenchymal cells.

Asymmetric and symmetric chromatid segregation of replicating satellite cells has been
convincingly documented by clonal assay in vitro, as the recognition of the daughter stem
cell by the expression of the endocytic protein Numb.20 For example, in the heart, the
presence of Numb is associated with degradation of the Notch receptor and preservation of
cell stemness.21 However, an opposite effect is observed in the brain.22 The uneven
distribution of the thymidine analog, an indicator of the newly-synthesized DNA, together
with the presence of the intermediate filament desmin, has led to the identification of the
daughter cell committed to the myocyte phenotype in vitro.7 Based on this approach,
Rocheteau and collaborators have provided strong evidence in favor of the notion that a
class of satellite cells in the skeletal muscle divides by template DNA strand segregation, a
pattern of stem cell growth apparently restricted to highly primitive cells. Two thymidine
analogs were delivered sequentially in vivo, a protocol that allows the temporal
identification of DNA strands being formed.1 The biased partitioning of these two types of
DNA labeling suggests that the newly-synthesized DNA was limited to one set of duplicated
chromosomes, leaving the mother DNA unlabeled. Chromosome orientation-fluorescence in
situ hybridization (CO-FISH) of metaphase spreads, or tissue sections led to the
discrimination of the pattern of DNA segregation at the single chromatid level,1,23 but the
presence or absence of markers of stemness and commitment remained to be defined.
Importantly, all chromosomes were found to be involved in the process, excluding that sister
chromatid exchange occurred, or that only a unique subset of chromosomes divided by non-
random chromatid segregation. These mechanisms have repeatedly been raised as
alternatives to the immortal DNA strand hypothesis.4

However, in vivo studies attempting to document the modality of chromosome segregation
by consecutive injections of distinct thymidine analogs pose questions on interpretation.
Activated cells may enter the S-phase of the cell cycle shortly after the first pulse of DNA
labeling, but traverse S-phase during the second administration of the halogenated
nucleotide. Adult stem cells, including hematopoietic stem cells and cardiac stem cells
(CSCs), are highly heterogeneous cell populations and the length of their telomeres and the
activity of telomerase vary dramatically in stem cell subsets,8,10,24 suggesting that the
telomere-telomerase axis and the length of the cell cycle are intimately linked.24 A similar
condition may be encountered in skeletal muscle satellite cells which exhibit a wide range of
Pax7 expression, possibly indicating several stem cell compartments with variable growth
characteristics. Slowly dividing stem cells may have a significantly longer G1-phase than
rapidly replicating cells, making the timing of delivery of different thymidine analogs an
impossible guess. The complexity in defining precisely the length of the cell cycle in
dividing stem cells in vivo has to be carefully considered in the analysis of asymmetric
chromatid segregation of any class of resident adult stem cells. This information is critical
for an accurate correlation between the distribution of DNA labeling and the fate of the
target cell.
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The possibility that symmetric and asymmetric chromatid segregation during cell division is
not restricted to the satellite cells of the skeletal muscle but applies to CSCs as well poses
some interesting questions concerning the organization of the cardiac niches and the role
that these two types of stem cells may have in niche homeostasis and cardiac cell turnover.
The long-term label-retaining assay has been employed for the identification of stem cells in
various organs including the heart.25-27 This protocol was established on the assumption that
stem cells divide rarely and have a very long cell cycle time. Therefore, the long-term label-
retaining property of a cell would document its stemness, while the progressive dilution of
the label would identify the generated progeny.

If the immortal DNA strand theory is correct, this view would not be valid. Stem cells which
incorporate BrdU lose the labeled DNA by the second division,2,3 challenging the
recognition and quantification of stem cells by this methodology. However, the
shortcomings of Cairns’ model of stem cell self-renewal suggest that each CSC niche is
composed of a dominant cell carrying the old DNA and a cluster of CSCs containing the
new DNA. The brightly BrdU-labeled CSC found within each niche structure25 most likely
corresponds to the BrdU-labeled parent CSC, which did not divide subsequently (Figure 2).
Only CSCs formed by random chromatid segregation may leave the niche area and
differentiate into specialized cardiomyocytes and vascular structures. This pattern of stem
cell growth would protect the pool size of CSCs harboring the old DNA within the niches.
Importantly, the presence of CSCs brightly labeled by the thymidine analog would allow the
recognition of cardiac niches which contain a true stem cell that controls the destiny of the
less commanding cells.

Antagonism between cells is not new. Competitive mechanisms are known to be critical for
the modulation of organ homeostasis and regeneration.28 c-myc has been linked to
competition of cells in multicellular structures where some cells survive while other cells
die.29 In physiological conditions, an upregulation of c-myc in a group of cells transform
these cells in “supercompetitors” capable of clonal expansion.28,29 The cluster of
supercompetitor cells influences the behavior of the more vulnerable surrounding cells,
which are at a growth disadvantage because of the low level of c-myc.28,29 In the mouse
heart, the expression of c-myc has been found in one or two CSCs within niches composed
of pockets of c-myc negative cells (Figure 3). Whether a similar mechanism is operative in
the human heart and defines a cross-talk between human CSCs carry the old or new DNA is
currently unknown and an important question. The presence of supercompetitor cells within
niches may regulate niche function, and the absence of supercompetitor cells may alter the
preservation of stem cell self-renewal, leading to the generation of old non-functional
niches.10

As emphasized by Lansdorp,4 several questions have to be raised concerning asymmetric
segregation of chromatids during stem cell division:30-32 they include the extremely high
number of DNA lesions occurring every day in both DNA strands which are successfully
repaired;33,34 the low rate of stem cell turnover in organs such as the bone marrow and the
gut;35,36 the non-primitive progenitor state of cells showing immortal strand segregation due
to their high rate of division;4 the presence of epigenetic marks promoting in one sister
chromatid and suppressing in the other the expression of selective genes; 4,37 the
impossibility to prevent telomeric shortening at the 5’ end of the immortal DNA
template;4,28 and the lack of estimates of the fraction of cells showing asymmetric versus
symmetric chromatid segregation.4,30-32 These variables impose a reevaluation of the
strategies required for the identification, characterization and quantification of satellite cells
or CSCs dividing by non-random or random chromatid segregation.39-45
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The immortal DNA strand theory, if valid, would have implications in understanding the
biology of myocardial aging and chronic heart failure. Whether the pattern of stem cell
division and lineage specification are causally related to organ and organism aging and
lifespan is presently unknown.4,24,46-50 The mystery of aging has not been resolved and the
etiology of the aging myopathy is unclear although defects in CSC function may condition
the senescent cardiac phenotype9,10,51-57 (Figure 4). Based on this premise, the role of
symmetric stem cell division and fate, i.e., random template segregation, and asymmetric
stem cell division and fate, i.e., non-random template segregation, will have to be
determined to define the contribution of CSC growth and differentiation to the development
of the old failing heart.

Whether these patterns of stem cell division are an all-or-none phenomenon that applies to
all organs and the heart in particular is unknown. This is biologically and clinically relevant
because the growth potential of stem cells possessing the old DNA is theoretically superior
to that of stem cells inheriting only the newly synthesized DNA. Throughout life, human
CSCs may consist of two distinct subsets and their relative contribution may change
dramatically in the developing, adult, and senescent failing heart.

In dividing stem cells, the asymmetric segregation of chromatids has been interpreted as a
general process of stem cell growth and differentiation,2,6,7,20 but this may not be the case.
Three patterns of stem cell division have to be considered. Non-random chromatid
segregation may not necessarily lead to the formation of a daughter stem cell and a daughter
committed cell (a); two daughter stem cells (b) or two daughter committed cells (c) may be
generated. According to the theory of non-random chromatid segregation, when two
daughter stem cells are created, one will carry the old DNA and the other the young DNA,
and when two daughter committed cells are formed, the pool size of stem cells with
immortal DNA will be reduced. Moreover, environmental factors and cardiac diseases,
which increase with age, decrease the number of functionally-competent CSCs,8,58,59

contributing to the onset of the aging myopathy and heart failure. However, a small number
of human CSCs harboring the immortal DNA or dividing by random segregation of
chromatids may be preserved and employed therapeutically to reverse the old cardiac
phenotype and chronic heart failure.
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Figure 1. Non-random and random chromatid segregation
With asymmetric chromatid segregation, a dividing mother stem cell synthesizes new DNA
during S-phase and generates two daughter stem cells, one carrying only the mother DNA,
which is the true stem cell, and the other only the newly-synthesized DNA. With symmetric
chromatid segregation, a dividing stem cell synthesizes new DNA and generates two
daughter stem cells, each carrying the mother DNA and the newly-synthesized DNA.
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Figure 2. Cardiac stem cell niche
Five c-kit positive cells (green) surrounded by cardiomyocytes (myosin and desmin, red).
One of the 5 c-kit-positive cells is brightly labeled by BrdU (yellow, arrow). A dimly
labeled cardiomyocyte nucleus (arrowhead) is also present. The brightly BrdU-labeled c-kit-
positive CSC may reflect a parent stem cell derived from a BrdU-negative grandparent stem
cell that incorporated the halogenated nucleotide during the first division. Subsequently, the
BrdU-labeled parent stem cell entered the G0/G1 phase. Adapted from reference 25.
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Figure 3. c-myc and CSCs
Cardiac stem cell niche in a young rat heart contains eight c-kit-positive CSCs (green); two
express c-myc (magenta, arrowheads). Nuclei are stained by DAPI. The attenuation in the
expression of c-myc in CSCs with age is apparent by Western blotting. m, months. Tubulin,
loading conditions.
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Figure 4. Senescent human heart
The myocardium of a 79 years old man is characterized by cardiomyocytes (α-sarcomeric
actin, α-SA, red) that express the senescence-associated protein p16INK4a (green, arrows).
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