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Malignant pheochromocytomas/paragangliomas are rare tumors with a poor prognosis. Malignancy is diagnosed by the devel-
opment of metastases as evidenced by recurrences in sites normally devoid of chromaffin tissue. Histopathological, biochemical,
molecular and genetic markers offer only information on potential risk of metastatic spread. Large size, extraadrenal location,
dopamine secretion, SDHB mutations, a PASS score higher than 6, a high Ki-67 index are indexes for potential malignancy.
Metastases can be present at first diagnosis or occur years after primary surgery. Measurement of plasma and/or urinary
metanephrine, normetanephrine and metoxytyramine are recommended for biochemical diagnosis. Anatomical and functional
imaging using different radionuclides are necessary for localization of tumor and metastases. Metastatic pheochromocy-
tomas/paragangliomas is incurable. When possible, surgical debulking of primary tumor is recommended as well as surgical
or radiosurgical removal of metastases. I-131-MIBG radiotherapy is the treatment of choice although results are limited.
Chemotherapy is reserved to more advanced disease stages. Recent genetic studies have highlighted the main pathways involved
in pheochromocytomas/paragangliomas pathogenesis thus suggesting the use of targeted therapy which, nevertheless, has still to
be validated. Large cooperative studies on tissue specimens and clinical trials in large cohorts of patients are necessary to achieve
better therapeutic tools and improve patient prognosis.

1. Introduction

Paragangliomas (PGLs) are rare neuroendocrine tumors that
arise in sympathetic and parasympathetic paraganglia and
derive from neural crest cells. Approximately 80–85% of
these tumour arise from the adrenal medulla and are named
pheochromocytomas (PCCs), whereas 15–20% are located
in extra-adrenal chromaffin tissue and are referred to as
secreting paragangliomas (sPGLs). The latter term is also
used to describe tumors derived from parasympathetic tissue
in the head and neck (HNPGLs).

PCCs and abdominal sPGLs are usually catecholamine-
producing tumours, whereas most of the HNPGLs are non-
functioning [1].

The majority of PGLs are sporadic, but recent data
have demonstrated a high prevalence of hereditary forms

(approximately 35%) [2]. Sporadic PGLs are usually diag-
nosed in patients older than 40–50 years, whereas hereditary
forms are diagnosed in younger patients.

Malignancy is defined by presence of metastases, tumor
spread in sites where chromaffin tissue is normally absent
such as lymph nodes, liver, lungs, and bones. Malignant PGLs
are extremely rare. An estimated incidence in USA in 2002
was 93 cases per 400 million persons [3].

Nearly 10% and 20% of PCCs and abdominal sPGLs,
respectively, are malignant [4], whereas HNPGLs are usually
benign [5].

2. Clinical Feature

The high variability in clinical presentation of PGLs is well
known [6]. It depends on the variability in the biology of

mailto:m.mannelli@dfc.unifi.it


2 Journal of Oncology

these tumours which can express different catecholamine
biosynthetic enzymes, secrete different vasoactive peptide
(i.e., neuropeptide Y, adrenomedullin, or atrial natriuretic
peptide) [7], present different symptoms related to tumour
mass or present symptoms related to other organs involve-
ment in syndromic forms.

Hypertension is the most common feature of PCCs and
sPGL: it can be continuous, intermittent, and often paroxys-
mal in nature. Hypertensive crises are frequently associated
with the classic triad of severe headache, palpitations, and
diaphoresis. Other signs or symptoms such as dyspnoea,
weakness, arrhythmias, visual disturbances and metabolic
effect such as glucose intolerance and weight loss are
reported [1]. The cardiovascular complications (sudden
death, myocardial infarction, hearth failure, and cerebrovas-
cular accidents) represent the most frequent causes of
morbidity and mortality in these patients.

HNPGLs are usually clinically silent, but they can deter-
mine manifestations related to mass effect or infiltration of
the adjacent structures. In such situations the presence of a
palpable neck mass as well as pain, dysphagia, tinnitus, or
cranial nerve palsies has been reported [8].

In addition to the abovementioned symptoms and signs,
malignant PGLs may also present “systemic” symptoms
(anorexia, fatigue, and weight loss) or clinical manifestations
related to the metastatic disease such as pain in bones
affected by metastatic spread. Malignant PGLs, being less-
differentiated tumours with a less differentiated biosynthetic
pathway, generally secrete noradrenaline and/or dopamine
causing even milder cardiovascular symptoms and a subclin-
ical picture [9]. Metastatic spread may occur at presentation
or even after many years from primary surgery.

3. Diagnosis: Biochemistry

The recommended screening test for initial assessment of
PGLs is the measurement of plasma free-metanephrines
or urine-deconjugated differential metanephrines [10]. In
fact in comparison to plasma or urine catecohlamines and
vanilmandelic acid, metanephrines show higher sensitivity,
ranging around 98-99% [11, 12]. This is mainly related to
their longer half-life and to their continuous production
by the tumour where catecholamines are converted to me-
tanephrines by the high methyltransferase activity of the
chromaffin tissue [13].

The biochemical phenotype does not permit to differen-
tiate malignant from benign PGLs.

PGLs exhibit different biochemical properties as PCCs
mainly produce adrenaline, while sPGLs secrete noradrenal-
ine. Malignant PCCs secrete predominantly noradrenaline
[14], but due to an even less-differentiated catecholamine
biosynthetic pathway, they may often produce mainly
or exclusively dopamine [15]. Therefore, the presence of
large predominantly noradrenaline-producing PGLs and
increased levels of plasma dopamine or its metabolite me-
thoxytyramine may suggest malignancy [11, 16].

Plasma chromogranin A (CgA), a protein stored and co-
secreted with catecholamines, is often increased in function-
ing and nonfunctioning PGLs [17]. CgA shows a sensitivity

of 83–89% for identifying PGLs, but it often shows false
positive results because of liver or kidney failure or proton
pump inhibitor therapy [18].

Malignancy is generally associated to very high plasma
levels of CgA [11].

High plasma levels of neuron-specific enolase are some-
times found in patients with malignant PGLs [19, 20], while
overexpression of secretogranin II and prohormone conver-
tases I and II suggests a benign lesion [21].

4. Diagnosis: Anatomical and
Functional Imaging

Anatomical imaging such as computed tomography (CT)
or magnetic resonance imaging (MRI) is useful as the first
radiological approach in patients with PGLs. CT shows
a sensitivity of 77–98% and a specificity of 29–92% in
the localization of adrenal or extra-adrenal tumors. A
slightly better accuracy (sensitivity 90–100% and specificity
50–100%) has been reported for MRI, especially for the
detection of extra-adrenal disease [22].

PGLs are highly vascular tumors with a high intracellular
water content and frequent intratumoral cystic lesions,
which show a typical, but not diagnostic, high signal on T2-
weighted imaging, and strong enhancement after contrast-
agent administration. Nevertheless, in large tumors with
haemorrhagic and/or necrotic areas (features often detected
in malignant lesions), the signal intensity on T2-weighted
images may be low [23].

Ultrasound imaging is of limited diagnostic yield but can
be useful for the detection of HNPGLs [22, 24].

After “anatomical” imaging, a “functional” imaging is
generally recommended. 131I or 123I-metaiodobenzylguani-
dine (MIBG) scintigraphy has been used extensively as a first-
line nuclear medicine technique in evaluation of patients
with PGLs. MIBG has chemical similarities to nore-
pinephrine and is concentrated in chromaffin tissue, via
the human norepinephrine transporter (hNET), that is
expressed in most of chromaffin cells and it is normally
responsible for catecholamines uptake [25].

123I-MIBG is superior to 131I-MIBG in terms of physical
properties, quality of images, and sensitivity. 123I-MIBG
scanning shows a sensitivity of 83–100% and a specificity
of 95–100% [22]. The possibility to perform a whole-
body study, may permit a better evaluation of extra-adrenal
localization of the disease as well as of multiple tumors
and/or metastatic sites [25]. The sensitivity of this technique
in malignant PGLs may be lower as evidenced in situation
highly associated with malignancy as in SDHB mutation
carriers (see later) or patients with dopamine-secreting
tumours which usually do not uptake MIBG [26].

In patients with negative MIBG scintigraphy, other trac-
ers may be used. The expression of somatostatin receptors
(SSTRs), especially SSTR 2, 3, and 5 on chromaffin cells, rep-
resents the rationale for the use of radiolabelled somatostatin
analogues in localization of these tumors. Indium-11-DTPA-
octreotide (111In-penteotride) is the tracer most commonly
used; it is of limited value in benign PCCs, but it may be
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useful in detecting extra-adrenal disease as well as MIBG-
negative metastases. In fact a sensitivity near to 90% has been
reported for localizing sPGLs, HNPGLs, or malignant PCCs
[22, 27].

Somatostatin analogues labelled with gallium-68 can be
used in PET imaging; 68Ga-DOTATOC (DOTA0-D-Phe1-
Tyr3-octreotide) has shown a better sensitivity than 111In-
penteotride in the detection of neuroendocrine tumors
especially in detecting small lesions or neoplasms bearing
only a low density of SSTR. Moreover, it permits a better
identification of metastases located in the lung or in the
skeleton. In relation to PGLs, this tracer seems superior
to 18F-labelled fluoro-deoxy-glucose (18F-FDG) in detecting
malignant PCCs and sPGLs [28–30].

Radiolabelled dopamine (DA) or dihydroxypheylalanine
(DOPA) which are transported in to chromaffin cells by
hNET, may be used as tracers in positron emission tomogra-
phy (PET) imaging. PET with 6-[18F]-fluoro-DA can detect
metastatic PCCs with better sensitivity than 131I-MIBG
[31], whereas PET with 6-[18F]-fluoroDOPA is superior in
imaging sPGLs and HNPGLs [32]. However, as for MIBG,
these tracers show a relative low sensitivity (70–88%) in PGLs
associated with SDHB gene mutations. In such conditions
PET with 18F-FDG shows a higher sensitivity (97–100%)
[33]; this PET scanning is useful in identifying glucose-avid
metastatic lesions, particularly if they are MIBG-negative
[34].

Finally PET imaging with 11C-hydroxyephedrine has
provided high sensitivity and specificity (92 and 100%, resp.)
in the detection of PGLs, but the small number of patients
studied makes not possible to draw conclusions on its utility
[35].

5. Diagnosis: Histopathologic and
Molecular Markers

Despite the increasing availability of molecular diagnostic
and prognostic markers, it remains difficult to predict, on
the basis of histological findings, whether an apparently
benign PGL will develop in a malignant tumor. From a
prognostic point of view, only relative risk factors can be
taken into account. In general PGLs larger than 5 cm with
necrotic areas as well as extra-adrenal tumors carry a higher
risk of malignancy than neoplasms that are small or
located in the adrenal. Several scoring systems considering
invasion, histologic growth patterns, cytologic features, or
mitotic activity have been proposed to calculate the risk
of malignancy [36–38]. One of the most utilized score is
“Pheochromocytoma of the Adrenal gland Scales Score
(PASS),” proposed by Thompson on 2002. Table 1 reports
the items and their values which are necessary to calculate the
PASS. A PASS score ≥4 was at first considered suggestive for
a biological aggressive behaviour, but a later study revealed
that all malignant PCCs had a PASS >6 [39]. On the basis
of these results a PASS score <4 or >6 suggest benign
and malignant lesions respectively, whereas a value between
4 and 6 suggests an intermediate risk. In any event, as
none of the available scores predicts malignant development

Table 1: Pheochromocytoma of the adrenal gland scoring scale
(PASS) [38].

Items Value

Nuclear hyperchromasia 1

Profound nuclear pleomorphism 1

Capsular invasion 1

Vascular invasion 1

Extension into adipose tissue 2

Atypical mitotic figures 2

Greater than 3 of 10 mitotic figures high-power field 2

Tumor cell spindling 2

Cellular monotony 2

High cellularity 2

Central or confluent tumor necrosis 2

Large nests or diffuse growth (>10% of tumor volume) 2

Total 20

unequivocally, after the removal of an isolated primary PGL,
a followup of the patient is recommended in order to reveal
early disease recurrence. Between histological features, high
cellularity and particularly the presence of tumor necrosis are
considered potential indicators of malignancy.

Further information can derive from the evaluation
of specific molecular markers. Several malignancy tissue
markers such as cyclooxygenase-2, secretogranin II-derived
peptide, N-cadherin, vascular endothelial growth factor
(VEGF), endothelin receptor type A (ETA), and type B
(ETB) and telomerase have been identified. In particular
telomerase, which is a ribonucleoprotein complex that
includes the telomerase RNA component, the telomerase-
associated protein (TP1), the telomerase catalytic subunit
(hTERT), and the heat shock protein 90 (HSP90) seem to be
closely related to the malignant potential of PGLs. In fact an
upregulation of hTERT, HSP90, and telomerase activity has
been evidenced in malignant cells of PCCs [40].

The Ki-67 nuclear antigen represents another potential
molecular marker which has been associated with more
aggressive cancers. A Ki-67 index >3% is considered a useful
parameter predicting malignant potential [41].

Another promising marker predicting metastatic poten-
tial seems the transcription factor SNAIL. Positive immunos-
taining has been found significantly higher in metastatic than
benign PGLs [42, 43].

Novel biomarkers are recently being identified by micro-
RNA expression profiling studies. Micro-RNA is small
single-strand (∼22 bp), nonprotein coding RNA fragments,
which are able to negatively regulate protein expression by
either cleavage or translational repression of mRNA [44].
Recently, Meyer-Rochow, and colleagues [45] investigated 12
malignant, 12 benign tumors, and 5 healthy adrenal medulla
samples. They found that miR-483-5p was overexpressed,
while miR15a and miR-16, which are involved in prolif-
eration and apoptosis, were downregulated in malignant
compared to benign tumors. MicroRNA expression is tissue
specific, and it has been demonstrated to be altered in several
other human tumors, For these reasons, they can be of great
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Table 2: Correlations between gene mutations and clinical phenotype.

Syndrome Gene
PCCs
(%)

Sympathetic
PGL

Parasympathetic
PGL

Bilateral/multifocal
neoplasia

Malignancy
(%)

MEN 2A RET ∼50 Very rare Extremely rare + <3

MEN 2B RET ∼50 Very rare Extremely rare + <3

VHL VHL 10–20 + Rare + 5

NF1 NF1 5 − − − 11

PGL1 SDHD + + + + ∼5

PGL2 SDHAF2 − − + + Not known

PGL3 SDHC − Rare + − Not known

PGL4 SDHB Rare + Rare + ∼40

PGL5 SDHA − + − Not known Not known

TMEM127 mutation carriers TMEM127 100 − − + ∼5

MAX mutation carriers MAX 100 + Extremely rare + ∼10

PCCs: pheochromocytomas; PGL: paragangliomas; +: present; −: absent.

relevance for the establishment of malignancy, but further
investigations in larger cohorts of patients are necessary to
confirm these encouraging results.

6. Diagnosis: Genetic Aspects

Until 2000, only 10% of PGLs were considered of genetic ori-
gin and linked to hereditary syndromes: von Hippel Lindau
disease (VHL), multiple endocrine neoplasia type 2 (MEN2)
and neurofibromatosis type 1 (NF1), due respectively to a
germ line mutation in tumor-suppressor gene VHL [46, 47],
protooncogene RET [48–52] and tumor-suppressor gene
NF1 [53].

In the last years it has been demonstrated that about
30% of the apparently sporadic PGLs are due to a germ-line
mutation in one of the susceptibility genes [54]. This group
of genes includes those encoding the four subunits (A, B, C,
and D) of the succinate dehydrogenase (SDH) [55–58], the
recently identified gene SDHAF2, which is responsible for the
flavination of the SDHA subunit [59], and the very recently
discovered TMEM127 [60] and MAX [61], both mainly
related to bilateral PCCs. Germ line mutations in SDHA,
SDHB, SDHC, SDHD, and SDHAF2 genes are responsible
for the occurrence of syndromes named PGL5, PGL4, PGL3,
PGL1, and PGL2, respectively; to note, SDHB-mutations are
generally associated with higher morbidity and mortality
than mutations in the other SDHx genes [62]. A recent meta-
analisis of some studies involving SDHB mutated patients has
highlighted that 31% of their tumors were malignant [3].

Overall, to date, 10 susceptibility PGLs genes have been
identified, so that the initial 10% of cases classified as genet-
ically determined has increased to 30%. Nevertheless, the
number of the susceptibility genes is likely to increase. In fact,
many young PGL patients, where the mutation frequency is
higher, are still classified as sporadic, and some PGLs patients
with a positive family history do not show any mutation in
the so far known susceptibility genes.

Extensive genetic screening in PGLs has highlighted the
correlation between genotype and phenotype thus facilitat-
ing a genetic testing algorithm based on clinical features as

a guide for a more quick and cost-effective genetic screening
(Table 2) [63].

Genetic analysis has also permitted to predict the malig-
nancy risk which is higher for SDHB mutation carriers.

Furthermore, by studying tumor transcription profile,
sporadic as well as hereditary PGLs have been divided in
two main clusters linked to two different signalling pathways
[64]: the first cluster contains all VHL- and SDHx-mutated
tumors and is associated with angiogenesis, hipoxia, and
reduced oxidative response [65], while the second cluster
contains all RET- and NF1-mutated tumors and is associated
with abnormal activation of kinase-signaling pathways, such
as RAS/RAF/MAPK and PI3K/AKT/mTOR [66–69]; also
TMEM127 [60] and MAX [61] mutated tumors have been
associated to the activation of mTOR-signaling pathway.
These data have increased overall knowledge on molecular
defects in PGLs and could be used for development of new
effective molecular-targeted therapies.

7. Therapy: Surgery

The main goal of surgical treatment is represented by the
removal of primary tumor and, when possible, the resection
of local and distant metastases. The overall 5-year survival
rate of patients with malignant PGLs varies between 34% and
60%. The survival rate may depend upon sites of metastatic
lesions. In fact, patients with liver or lung metastases tend to
have a worse prognosis (<5 years) than patients with isolated
bone lesions [2].

The preoperative management with alpha blockade and
fluid administration, essential in order to avoid surgical
(i.e., hypertensive crisis arrhythmias) and/or postsurgical
complications (i.e., hypotension), has to be performed in all
patients [1].

Laparoscopic removal of intra-adrenal and extra-adrenal
PGLs is the preferred surgical technique, but, in case of large
tumors with a high risk of malignancy, a transabdominal
approach should be considered. In such circumstances total
adrenalectomy with resection of locoregional lymph nodes
or complete excision of PGLs together with the removal of
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distant metastases is recommended [70]. In case of malig-
nant disease surgery alone is seldom curative, but surgical
debulking of the tumors is regarded as a mainstay of palliative
therapy. In fact, it permits to reduce local or systemic
symptoms related to catecholamine secretion, it improves
response to other therapeutic approaches and it may prevent
further diffusion of the tumors. Pre-operative injection of
123I-MIBG and intraoperative application of a γ-probe may
permit the localization of lesions that are not evidenced by
other imaging techniques [71].

In the presence of liver metastases arterial embolisation
or chemoembolisation may provide transient response, but
in such circumstances radiofrequency ablation has become
the preferred choice [72]. In the next future, the rapidly
evolving stereotaxic radiotherapic techniques will probably
represent valid alternative tools for metastasis removal.

8. Therapy: Radiometabolic Treatment and
External Radiotherapy

Radionuclide treatment may be considered in patients with
metastatic disease and no resectable lesions. It can be
performed using beta-emitting isotopes coupled with MIBG
or somatostatine analogue.

131I-MIBG was used in the treatment of malignant PCC
for the first time in 1984 [73]. Patients are selected by the
evidence of significant radioisotope uptake on diagnostic
scintigraphy with 123I-MIBG or 131I-MIBG (>1% uptake of
the injected dose). Single or fractionated doses as well as
variable dosage (200–1400 mCi) have been proposed [74,
75]. About 60% of metastatic sites are 131I-MIBG avid
[76]. In general better responses are seen in patients with
limited disease and in patients with soft-tissue metastases
than in patients with bone metastases [77]. This treatment
is well tolerated, and the main side effects are represented by
transient leucopenia and thrombocytopenia, whereas severe
bone marrow toxicity (associated with high-dose regimen) is
rarely seen.

However treatment with 131I-MIBG is not curative in
most patients; therefore, other forms of therapy need to be
considered.

The presence of SSTR in PGLs has allowed treatment
with radiolabelled somatostatin analogues. The most com-
monly used are Yttrium-90-DOTATOC (90Y-DOTA-TOC)
and Lutetium-177-DOTA0-Tyr3-octreotate (177Lu-DOTA-
TATE) [75, 78, 79]. As for 131I-MIBG, patients are selected
by the demonstration of high tumor uptake at scintigraphy.
The latter is usually performed with 111In-pentetreotide, but
it seems that PET using 68Ga-DOTA-TOC provides higher
accuracy in selecting patients [34]. This kind of therapy has a
low toxicity, mainly leucopenia and thrombocytopenia, and
it can be effective in order to reduce hormone secretion and
determine tumor shrinkage. Therefore, even if its efficacy
seems lower in PGLs than in gastroenteropancreatic neu-
roendocrine tumors, it represents an alternative option for
the treatment of surgically incurable PGLs [80]. In the future,
the development of new somatostatine analogues with higher
affinity for the different SSTR subtypes will provide a further
possibility in the treatment of these neoplasms.

Finally a combined treatment with radiolabelled MIBG
and radiolabelled somatostatin analogues might have a syn-
ergistic effect, and therefore it might be considered. More-
over, the combination treatment could permit the use of
lower doses of both radionuclides, limiting side effects, par-
ticularly bone marrow toxicity.

External radiotherapy may be considered for treatment
of inoperable PGLs and especially for palliation of painful
bone metastases. During this procedure the patients need
to be monitored because the radio-induced inflammation of
the lesion can induce massive catecholamine secretion, thus
inducing hypertensive crises [81].

9. Therapy: Antineoplastic Agents

The aim of chemotherapy is tumor size reduction and con-
trol of symptoms due to catecholamine secretion; it is usually
reserved to patients with local advanced and/or metastatic
disease, with unresectable lesions, resistant to treatment
with radionuclide therapy [82]. Up to now, the most used
and effective chemotherapy regimen is a combination of
cyclophosphamide, vincristine, and daecarbazine (CVD),
chosen for its use in treating another neuroendocrine tumor,
neuroblastoma. It has been used for the first time in
1980s in a trial including 14 malignant PCCs cases [83],
updated recently by NIH [84] in a 22-year followup, with
demonstration of a tumor regression and symptom relief in
up to 50% of patients treated and no significant change of
survival. Once CVD is stopped, PCCs often recur, becoming
unresponsive to the same treatment. For these reasons, CVD
may have a role as a neoadjuvant therapy in few cases, to
make tumors surgically resectable and to control symptoms.
CVD plus anthracyclines has been tested in one case with
quite a good result [85]. Other chemotherapic regimens
have been tested in other trials, but currently none has
demonstrated effectiveness in malignant PCCs treatment
[86].

10. Therapy: Targeted Approach

Up to now, treatment options for malignant PGLs are limited
to chemotherapy and radionuclide therapy. These often
provide symptomatic and biochemical control but are less
effective in causing survival increase. Understanding specific
molecular pathways alteration responsible for malignant
PGLs development might hopefully in the future lead to
multiple molecular-targeted therapy for a successful treat-
ment. Effectiveness of these therapies is due to a cytostatic
effect, as they interfere with specific molecular targets found
along the oncogenic signaling pathways responsible for
carcinogenesis and tumor growth. As stated above, both
benign and malignant PGLs gene mutations are part of
two distinct molecular pathways leading to tumorigenesis:
cluster 1 includes mutations of VHL, SDHB, and SDHD
and is associated to pseudohypoxia and aberrant VEGF sig-
naling, leading to abnormal hypoxia inducible factor (HIF)
activation and overexpression of angiogenic factors, while
cluster 2 includes mutations of RET, NF1, TMEM127, and
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MAX and is associated with abnormal activation of kinase-
signaling pathways such as PI3kinase/AKT, RAS/RAF/ERK,
and mTOR1/p70s6K, leading to abnormal cell growth and
lack of apoptosis capacity. In addition, malignant PCCs seem
to overexpress HSP90, a molecular chaperone that assists in
folding proteins and stabilizes various oncoproteins that play
a role in malignant phenotype [87, 88].

Thus, HIF1a inihbitors are molecular targeted drugs
interfering with HIF hypoxia-driven transcription pathway,
decreasing HIF activity directly, PX-478 (S-2-amino-3-[4′-
N,N,-bis (2-chloroethyl)amino]-phenyl propionic acid N-
oxided ihydrochloride), and indirectly, PX-12 (1-methylpro-
pyl 2-imidazolyl disulfide). These agents have shown marked
antitumoral activity in human tumor xenografts in mice
and seem to be promising also for malignant PGLs, but
conclusive data are missing [89–91].

The mTOR inhibitor everolimus (RAD001) in combi-
nation with octreotide has been evaluated for low- and
intermediate-grade neuroendocrine tumors [92], with good
results. The efficacy of everolimus has been evaluated also
in malignant PGLs, but all patients experienced disease pro-
gression [4, 93]. Maybe the low efficacy is due to a compen-
satory PI3K/AKT and ERK activation in response to mTOR
inhibition, so a specific novel dual PI3k/mTOR inhibitor
(NVP-BEZ235) might offer a novel therapeutic approach
[94]. Further studies on the PI3K/AKT/mTOR pathway have
to be conducted to find a more specific molecular target in
its signalling.

Due to overexpression of HSP90 in malignant PCCs
[40, 95], inhibition of its pathway could represent a future
therapeutic challenge for the treatment of malignant PCCs,
but at present current specific drug trials are missing.

Several studies have demonstrated overexpression in
malignant PCCs of angiogenic molecules, such as VEGF, its
receptor, angiopoietin-2, and the endothelin receptors ETA
and ETB [96–100], leading a strong evidence that targeting
this pathway with antiangiogenic therapies could represent
a new promising treatment option. Accordingly, sunitinib, a
receptor tyrosine kinase inhibitor acting on several targets
(VEGF, PDGF, and c-KIT), with strong antiangiogenic
and antitumor activity, has been used in the treatment of
malignant PCCs, with promising results [101–104].

Imatinib, another tyrosine kinase inhibitor already used
for hematologic and gastrointestinal stromal tumors, has not
been found effective for malignant PCCs treatment [105].

Thalidomide, by targeting VEGF and basic fibroblast
growth factor, is an antiangiogenic agent evaluated for treat-
ment of metastatic renal cell cancer, multiple myeloma and
nonsmall cell lung cancer [106, 107]. It has been used in
combination with Temozolomide in neuroendocrine tumors
[108] obtaining an objective biochemical response rate in
about 40% and a radiologic response rate in 33% of malig-
nant PCCs, but lymphopenia occurred in about 70% of
treated patients.

Activators of prolyl hydroxylase (PHD) (such as ERBB2
inhibitors) are now on evaluation as promising antineo-
plastic therapies. These molecules decrease the expression
levels of some angiogenic factors, such as VEGF, acting on

HIF pathway, by activating the PHD, thus increasing HIF
hydroxylation, and promoting its degradation [109, 110].

Treatment of malignant PGLs is up to now basically pal-
liative. Molecular targeted therapies are promising strategies,
but, due to the complexity of these tumors pathogenesis,
further studies on tumor biology, discovery of novel targeted
drugs, and new trials are needed to achieve more effective
treatments.

11. Conclusions

Malignant PGLs, as defined by the presence of metastases,
are very rare and aggressive tumors. Their study is made
difficult by their rarity, and the consequent limited num-
ber of patients included in the series, by their biological
variability, by their variable genetic background, and by the
lack of specific and sensitive histopathological or biological
markers proving malignancy. Therefore, as benign tumors
are diagnosed by the lack of metastases, and as metastatic
spread can occur also several years after surgical removal
of primary tumor, studies comparing benign and malignant
PGLs need a long clinical followup of patients.

Large collaborative international studies, as those pres-
ently conducted on behalf of the European Network for the
Study of Adrenal Tumors (ENS@T), are needed to improve
our knowledge on the pathogenesis of these malignant
tumors and to achieve a satisfactory medical treatment for
affected patients.
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