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Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in
regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone
centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution
that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was
developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues (‘‘the energy
levels’’) follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these
laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from
the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present
them separately with their own introductory remarks.

Sphere Packings

Oranges are commonly stacked in a pyramid arrangement at
fruit stands. Cannonballs stacked at war memorials often

appear in this same arrangement. This arrangement of balls is
known as the face-centered cubic packing. It is a nearly universal
belief among scientists that this arrangement is the best possible,
in the sense that, in this arrangement, the largest possible
fraction of space is filled by the balls. (There are other closely
related arrangements such as the hexagonal-close packing that
fill the same fraction of space.)

This optimal property of the face-centered cubic packing was
first observed nearly 400 years ago by Johannes Kepler. Kepler’s
observation is known to mathematicians as the Kepler conjec-
ture. Mathematicians have tried for many years to give a rigorous
mathematical proof of Kepler’s observation. The proof that the
face-centered cubic packing is indeed the densest possible
packing was finally completed in August 1998 (1, 2). The proof
relies on long computer-assisted calculations.

The face-centered cubic packing fills just over 74% of space
(more precisely, py=18'0.74048), with the gaps between the
balls filling the remaining fraction. Past mathematical research
has obtained upper bounds on the fraction of space that can be
occupied by the balls in a packing. Between 1919 and 1958, this
upper bound improved from 88% to 77.9% (3). But, after 1958,
further progress came more slowly, and, by 1993, the upper
bound was still only at 77.3% (4).

The two main developments that have led to the solution of the
Kepler conjecture have been (i) the exploration of new decom-
positions of space that are adapted to packings, and (ii) the
introduction of computer-based nonlinear optimization.

Research on the Kepler conjecture before 1990 was primarily
based on a particular decomposition of space, known as the
Voronoi decomposition. In this decomposition, each ball is
contained in a cell, known as the Voronoi cell. By definition, a
point in the Voronoi cell around a given ball is one that lies closer
to the center of that ball than to any other center. In the
face-centered cubic packing, the Voronoi cells are all identical,
and the density of the packing is equal to the ratio of the volume
of a ball to the volume of the Voronoi cell that contains it.

There are Voronoi cells for which the ball to cell volume ratio
is greater than that of the face-centered cubic packing. This
means that there are packings that have local densities greater
than the face-centered cubic packing (although it is impossible

to extend these local packings in an efficient way to fill all of
space).

Various suggestions have been made to remedy this trouble.
The earliest such proposal was made in the fifties by L. Fejes
Tóth (5). A second proposal is based on a dual decomposition
of space called the Delaunay decomposition. Both approaches
face seemingly insurmountable computational difficulties. The
proof of the Kepler conjecture was finally obtained by interlacing
the Voronoi cells with the Delaunay decomposition to form a
new, hybrid decomposition of space.

Through this hybrid, the Kepler conjecture can be expressed
as a precise optimization problem in a finite number of variables.
The optimization problem has a large-scale linear structure that
rests on small-scale nonlinearities. The large-scale linear struc-
tures permit the application of linear programming algorithms.
Interval arithmetic, a mathematically rigorous model of com-
puter computation, is used to analyze the small scale nonlin-
earities.

There are about 5000 local arrangements, each involving up to
16 balls, that exhibit the local properties of a potential counter-
example to the Kepler conjecture. The proof of the Kepler
conjecture proceeds by a process of elimination. In each case, the
upper bounds on the density that are obtained from linear
programming methods show that the potential counterexample
is in fact a less dense packing than face-centered cubic packing.
This completes the proof of Kepler’s observation.

It should not be presumed that intuitive geometrical state-
ments will always be resolved as expected. The closely related
Kelvin conjecture asserts that a particular partition of space into
equal volumes is the most efficient possible. The Kelvin conjec-
ture was widely accepted as fact until two physicists, R. Phelan
and D. Weaire, found a counterexample in 1994 (6). The
two-dimensional version of the problem, known as the honey-
comb conjecture, has been completely resolved in the affirma-
tive: the hexagonal tiling is the most efficient partition of the
plane into equal areas (7). The Kelvin problem remains open.
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Random Matrix Theory and Zeta Functions
Recently, random matrix theory has emerged as a basic tool for
understanding diverse mathematical problems. For example,
random matrix integrals enter in enumeration problems in
geometry (8, 9), whereas other aspects of random matrix theory
are closely connected to questions of the statistical f luctuations
of the longest increasing subsequence of a random permutation
(10). Here, we describe its appearance in number theory, in
particular in the theory of zeta functions.

Classical random matrix theory is concerned with statistical
questions about the eigenvalues of large matrices in various
ensembles. The standard ensembles are the circular unitary,
orthogonal, and symplectic ensembles (CUE, COE, and CSE).
They consist of symmetric spaces of unitary matrices; for exam-
ple, CUE is the ensemble (in this case a group as well) of N 3
N unitary matrices A, with probability measure (Haar measure)
dA. For many systems, these three ensembles suffice to describe
the statistical f luctuations of their spectra [the ‘‘three-fold way’’
(11)]. However, recently it has been noted by Altland and
Zirnbauer (12) for certain physical problems and by Katz and
Sarnak (13) in the theory of zeta functions that some of the other
eleven irreducible symmetric spaces (14) are needed. An exam-
ple of one of these eleven ensembles is the symplectic subgroup
Sp of the 2N 3 2N unitary matrices. The techniques of random
matrix theory (15) yield laws for the scaled spacings between the
eigenvalues of matrices in the corresponding ensembles as N3
`. We now introduce the Riemann zeta function z(s), defined for
s . 1 by the series

z~s! 5 O
n 5 1

`

n2s 5 P
p

~1 2 p 2 s! 2 1,

the product being over all prime numbers p. One can make sense
of z(s) for all complex numbers s, and the value of zeta at s can
be simply related to its value at 1 2 s (16). One of the major
unsolved problems in mathematics is the Riemann Hypothesis
(RH), which asserts that all of the nontrivial zeros (i.e., ones with
positive real part) of z(s) are of the form 1

2
1 ig, with g real. The

first few zeros are g1 ' 14.1347, g2 ' 21.0220, and g3 ' 25.0108
(16). In fact, it has been verified computationally (17) that the
first 1.5 3 109 zeros all satisfy RH. Inspired by Montgomery (18),
extensive calculations of the local spacings (scaled to mean
density one) between the seventy million zeros beyond the 1020th
zero were carried out by Odlyzko (19). These are found to follow
the CUE eigenvalue spacing laws. This is certainly convincing
evidence that the zeros are spectral in nature.

The phenomenon concerning the statistics of local f luctua-
tions of the zeros is apparently universal (20) applying to the
general ‘‘automorphic zeta functions’’ L(s). These take the form
¥ann2s, where the coefficients an are determined from the
corresponding automorphic form. An example is

L~s! 5 O
n 5 1

`
t~n!

n1/2 n2s 5 P
p

S1 2
t~p!

p1/2 p2s 1 p22sD21

where t(n) is defined from the relation

q P
n 5 1

`

~1 2 qn!24 :5 O
m 5 1

`

t~m!qm.

In fact, it is the RH for these more general zeta functions that
is fundamental, in part because of its far-reaching implications
and applications. For example, the general RH implies that there
is an explicit polynomial time (in the number of digits of n)
algorithm to test whether a given large number n is prime (21).

There have been some recent advances connecting random
matrix theory and zeta functions. The first concerns not the
above zeta functions z(s) and L(s), but rather their geometric
analogue, known as ‘‘zeta functions of varieties over finite
fields’’ (22). Whereas these are more difficult to define (and
we don’t attempt to do so here), one knows much more about
them. In particular, the analogue of RH for these is known (23,
24). Moreover, the proof makes use of a spectral interpretation
of the zeros, as well as certain symmetry groups that one can
associate with families of such zeta functions (24). In ref. 13,
an analogue of the above phenomenon about local spacing
statistics of the zeros of such zeta functions is proven. That is,
the local f luctuations of their zeros are shown to follow the
CUE laws. The proof makes direct use of random matrix
theory. It also yields that, for families of such zeta functions,
the low-lying zeros (i.e., zeros r 5 1

2
1 ig with g small) when

properly scaled follow the laws of the distribution of eigen-
values near 1 of an ensemble corresponding to the symmetry
of the family.

Based on the insights of the connections to random matrix
theory in the geometric setting, there have been developments
concerning families of (automorphic) zeta functions (e.g., fam-
ilies containing z(s) or L(s) above). The numerical (25) and
analytic (26) results all indicate that the low-lying zeros of a
family of such zeta functions follow the laws of a random matrix
ensemble associated with the family. (For eigenvalues near 1,
these laws are different for each of the 11 ensembles.) There are
numerous applications of this philosophy (13, 27), and it indi-
cates that not only should there be a natural spectral interpre-
tation of the zeros of zeta functions such as z(s) and L(s), but also
there should be a symmetry group associated with families
thereof (as in the geometric setting). For example, z(s) itself can
be put in a family for which the low-lying zeros follow the Sp
laws (13).

In conclusion, random matrix theory gives strong evidence for
the existence of certain structures that we expect will be central
in the deeper understanding of zeta functions.
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