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Abstract
Objective—Recent methods for imaging microvascular structures provide geometrical data on
networks containing thousands of segments. Prediction of functional properties, such as solute
transport, requires information on blood flow rates also, but experimental measurement of many
individual flows is difficult. Here, a method is presented for estimating flow rates in a
microvascular network based on incomplete information on the flows in the boundary segments
that feed and drain the network.

Methods—With incomplete boundary data, the equations governing blood flow form an
underdetermined linear system. An algorithm was developed that uses independent information
about the distribution of wall shear stresses and pressures in microvessels to resolve this
indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target
values.

Results—The algorithm was tested using previously obtained experimental flow data from four
microvascular networks in the rat mesentery. With two or three prescribed boundary conditions,
predicted flows showed relatively small errors in most segments and fewer than 10% incorrect
flow directions on average.

Conclusions—The proposed method can be used to estimate flow rates in microvascular
networks, based on incomplete boundary data and provides a basis for deducing functional
properties of microvessel networks.
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INTRODUCTION
Methods for structural imaging of microvascular networks have developed rapidly in recent
years and can provide detailed information on three-dimensional networks containing
thousands of segments. Available methods include confocal imaging [2], reconstruction
from serial sections [4, 6, 11, 25] and micro-CT imaging [1, 3, 5]. These methods can be
used to visualize and quantify the complete vascular structure within tissue volumes of
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several cubic millimeters. When combined with appropriate automated image processing
algorithms [8, 13], such data can be used to derive quantitative structural information in
terms of the positions, lengths, diameters and connectivity of the vessel segments forming
the network.

The distribution of blood flow rates in microvascular networks fundamentally influences
perfusion, solute transport, flow regulation, and growth and adaptation in the vascular
system. However, available methods for direct observation of blood flow within individual
vessels, such as intravital microscopy or endocardial probes, are largely limited to sheet-like
or surface vascular networks. Approaches that can be used to measure microvascular flow in
thicker tissues, such as laser-Doppler flowmetry, Doppler optical coherence tomography or
magnetic resonance perfusion imaging, do not resolve individual microvessels, and yield
spatially averaged measurements. The ability to analyze and predict the functional properties
of observed microvascular network structures is thus hindered by the lack of
correspondingly detailed flow information.

Previous studies have provided a basis for predicting the distribution of blood flow in
microvascular networks [9, 20], taking into account effects resulting from the particulate
nature of blood. In these studies, the apparent viscosity of blood has typically been
characterized as a function of microvessel diameter and hematocrit using an empirical model
[17, 23]. At diverging bifurcations, red blood cells are generally distributed such that
daughter vessels at diverging vessel bifurcations receive different hematocrits. Typically, the
daughter vessel with the higher flow rate has a larger discharge hematocrit. This unequal
distribution of hematocrit has been described by empirical models that depend on the
diameters and flow rates in the parent and daughter vessels and the hematocrit in the parent
vessel [16, 17]. These relationships are key components of models to predict the distribution
of flows and hematocrits in a network, given information on the diameters, lengths and
topological arrangement of all segments [10, 22].

However, simulations of blood flow in a network also require boundary conditions, in the
form of flow or pressure values at all boundary nodes of the network and hematocrit values
at all nodes receiving inflows to the network. The large network structures that have been
experimentally observed typically have many boundary nodes. This is because the
boundaries of the region of observation do not coincide with tissue boundaries, meaning that
they intersect with a large number of vessel segments. The flows in the major feeding and
draining vessels can potentially be measured directly or deduced from measured or typical
values of tissue perfusion, but the flows in the numerous smaller microvessels forming the
network boundary are generally unknown, and must be estimated by some means. One
approach is to assign pressure or flow values to boundary vessels, based on typical values
for vessels with similar diameters or types [12, 14]. This approach inevitably involves some
arbitrary assumptions, and may result in unrealistic uniformity in parameter values, for
instance if all boundary capillaries are assigned equivalent flows or pressures. Therefore, an
alternative approach is proposed here. This approach involves minimizing the sum, over all
segments in the network, of the squared deviations of wall shear stresses and pressures from
target values derived from independent information about typical network hemodynamic
properties. The goal of the present study is to develop and test a new mathematical and
computational algorithm based on this approach.

METHODS
Network hemodynamics

The flow rate Qj in segment j of the network is assumed to be governed by Poiseuille’s law
with an effective viscosity μj. For each segment, a positive flow direction is defined, from
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start node to end node. The relationship between the nodal pressures pk and the segment
flows can be expressed in matrix form as

(1)

where N is the set of all nodes (junctions) in the network and

(2)

where rj, ℓj and μj denote the radius, length and effective viscosity of segment j. By
conservation of mass, the sum of the flows at each interior node is zero. This condition can
be combined with the conditions on the boundary nodes to give

(3)

where S denotes all segments in the network, and

(4)

If node i is a boundary node, then Q0i is the inflow (or outflow, if negative). At interior
nodes, Q0i = 0. Combining (1) and (3) yields

(5)

where

(6)

A pressure boundary condition can be imposed at node i by replacing the i-th row of the
matrix K with a single diagonal entry of 1 and replacing −Q0i by the prescribed pressure. If
the pressure or flow is known at every boundary node (Figure 1A), then the system (5) is
fully determined and can be solved by standard methods [10, 22].

The effective viscosity μj in segment j is determined as a function of the radius rj and the
hematocrit HDj of each segment, using an empirical in-vivo viscosity relationship [23]. The
hematocrits can be computed from the flow rates Qj, using empirical relationships for
hematocrit partition at diverging bifurcations [16, 17]. In order to satisfy these relationships,
an iterative procedure is required to solve for the flows, hematocrits, and effective
viscosities in each vessel. Specifically, the flow in each vessel is calculated with initial
values for discharge hematocrit. These flow values are then used to update HDj in each
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vessel. Effective viscosity is then recalculated using the new hematocrits. These steps are
repeated until convergence is reached for Qj, HDj, and μj in each vessel.

Estimation of flows with incomplete boundary conditions
We now address cases for which boundary conditions, in the form of specified flow or
pressure at each boundary node, are known only at a subset of the boundary nodes (Figure
1B). If the boundary conditions are not all known, the system (5) becomes

(7)

where I is the set of interior nodes and B is the set of boundary nodes with known boundary
conditions. This system is underdetermined and has multiple solutions. In order to obtain a
unique solution, additional assumptions are required. In the present model, it is assumed that
information is available about the typical distributions of pressure and wall shear stress in
the network, such that a target pressure and wall shear stress can be defined for each
segment. The specification of these target values is discussed further below. Using these
distributions, a solution is sought that minimizes the total squared deviation D from the
target values of pressures and wall shear stresses:

(8)

Here, τj is the wall shear stress in segment j, τ0j is the corresponding target shear stress, p0k
is the target pressure at node k, kp and kτ are weighting factors associated with the pressure
and shear deviations from the target values, and wk is the vessel length associated with node
k, defined as

where the sum is over the segments j connected to node k. This constrained optimization
problem can be formulated in terms of a Lagrangian objective function

(9)

where λi are Lagrange multipliers. At the solution, L is stationary with respect to the
unknowns pi and λi. In each segment, the shear stress is proportional to the flow rate:

(10)

where cj = 4μ/(πrj
3) is held constant in the optimization. Setting ∂L/∂pi = 0 gives
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(11)

where

(12)

Setting ∂L/∂λi = 0 recovers equation (7). Equations (7) and (11) form a square linear system
with unknowns pi and λi, which can be solved using standard methods.

Target pressures and shear stresses
In this approach, the target pressures at each node and target shear stresses in each segment
are assumed to be constants or functions of other variables in the computation. The assumed
values may be obtained from observations of hemodynamic characteristics in sub-regions of
the experimental preparation accessible to direct measurement, e.g. by intravital microscopy,
or derived from experimental estimates and/or empirical correlations in similar experimental
systems. Prior information about values of pressures and shear stresses in the specific
network under consideration is not required.

In the simulations presented here, networks derived from morphological data from the rat
mesentery are considered [19]. Two approaches for setting the magnitudes of the target wall
shear stresses in these networks are examined. The first approach is to use a fixed value for
all segments. In this tissue, the frequency distribution of segment pressures, considering all
vessel types (arterioles, venules and capillaries), has a maximum at ~ 21 mmHg (see Figure
1A of [19], relative pressure ~ 0.1). The average wall shear stress for segments with this
pressure is ~ 15 dyn/cm2 [18]. Therefore, a target value |τ0j| = 15 dyn/cm2 was used. For one
network, further simulations were carried out to test the sensitivity of the results to this
value.

The second approach is based on experimental observations and simulations of blood flow
in microvascular networks that showed a systematic trend of increasing wall shear stress
with increasing intravascular pressure [18]. This trend was attributed to the structural
adaptation of microvessels in response to hemodynamic stimuli. Specifically, it has been
observed that increased wall shear stress results in active remodeling of the vessel wall to
increase vessel lumen diameter, whereas increased pressure causes inward remodeling of the
vessel wall and a reduction in lumen diameter. The combined effect of these two responses
is considered to underlie the observed correlation between pressure and shear stress [21].
The target shear stress was calculated as a function of the actual midpoint pressure pj in each
segment, using the empirical pressure-shear relationship observed in mesenteric
microvascular networks [18]:

(13)

where shear stress and pressure are expressed in units of dyn/cm2 and mmHg, respectively.
Because the target values |τ0j| depend on the current values of the segment midpoint
pressures pj, an iterative procedure was used in which segment pressures pj were estimated
based on a given set of |τ0j|, and then |τ0j| were updated according to equation (13).

The target pressure is set to a fixed value in all segments, p0k = p0 = 31 mmHg, which is the
average of the feeding and draining pressures of rat mesenteric networks [19]. The term
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proportional to kp in the objective function L biases the node pressures towards this value.
The results of the procedure depend on kp and kτ only through their ratio, and kp was
arbitrarily set to 0.1. In practice, kτ/kp > 1, and so the bias of node pressures towards p0 is
relatively small. Nonetheless, this term is necessary to constrain the nodal pressures to lie in
a realistic range. For one network, additional simulations were carried out to test the
sensitivity of the results to the target pressure.

Since the flow directions in the network are not known a priori, it is necessary also to
specify the direction (sign) of the target wall shear stress in each segment. In principle, this
could be done by performing the optimization over all possible choices of target directions,
but this is not feasible for networks with hundreds or thousands of segments. Therefore, the
following heuristic strategy was employed. Initial flow directions were chosen randomly,
and an optimization was performed with a very small value (10−4) of the weight kτ
associated with the shear stress term in the objective function, with |τ0j| set to a constant
value (5 dyn/cm2). The resulting set of pressures and flow directions was used to re-assign
τ0j in each segment, with the sign of τ0j corresponding to the last computed flow direction.
This process was then repeated until two consecutive iterations gave the same flow
directions in all segments. The value of kτ was then doubled, and the flow directions from
the previous iteration were used to determine τ0j for this new kτ value. The above process
was then carried out iteratively for a sequence of geometrically increasing values of kτ. The
final shear stress weight, kτ,final, was chosen to minimize the number of segments for which
predicted flow directions were opposite to observed flow directions.

The rationale for this procedure is that if kτ were set to kτ,final at the outset, without this
iterative procedure, the flow directions would be strongly biased to the initial, randomly
assumed directions and would not readjust to achieve a lower overall error, due to the large
weight of kτ relative to kp. However, when kτ is set initially to a small value, the bias
towards the initially assigned flow directions is small, allowing changes in flow directions
(Figure 2). With increasing kτ, flow directions eventually stabilize, having achieved better
estimates (i.e., lower values of L) than would be achieved by simply fixing a kτ value. This
process is analogous to the well-known optimization technique of simulated annealing [7].

RESULTS
Identification of flow directions, estimation of kτ,final

The model was tested using experimental data from four networks of the rat mesentery, for
which flow rates were previously measured in all segments [22]. In these networks, the
number of segments ranged from 383 to 547, and the number of boundary conditions ranged
from 22 to 40. In the initial testing of the method, two boundary conditions were prescribed
in network I, for the main feeding arteriole and the main draining venule. In networks II, III
and IV, two main venules drained the network and three boundary conditions were therefore
prescribed, for the main arteriole and the two main venules. In each case, the remaining
boundary conditions were left unknown. In networks I and II, the number of reversed
segments reached a minimum near kτ = 0.4096, while in the other two networks, no clear
minimum was reached (Figure 3). These results were obtained using a fixed target wall
shear stress, 15 dyn/cm2. Based on these results, the final shear stress weight was set to
kτ,final = 0.4096 in all four networks. With this value, the algorithm gave an average of 9.2%
of the segments with predicted flow directions reversed (incorrect) relative to the flow
directions obtained when the correct boundary conditions were applied to all boundary
nodes. These results are summarized in Table 1. For one of the networks (number I), the
segments with reversed flows are identified in Figure 4. In this network containing 547
segments, with 2 of 36 boundary conditions specified, the algorithm resulted in incorrect
flow directions in a total of 28 segments, including only 5 of the remaining 34 boundary
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segments. Many of the segments with reversed flow lie near the boundaries of the network.
This is to be expected, because the flow in a segment near the boundaries is sensitive to a
few unknown boundary conditions. Flow in a segment far from the boundaries depends on
many boundary conditions, and is therefore not as sensitive to errors in individual boundary
conditions.

Estimation of flows and pressures
The segment flows and nodal pressures predicted for network I with two specified boundary
conditions are compared in Figure 5 with the corresponding estimates with all boundary
conditions specified. The results for the two sets of estimates are strongly correlated,
although large discrepancies exist in a relatively small subset of the segments. These results
suggest that the flow distributions estimated by this technique would provide a good basis
for estimation of functional properties of the networks, such as parameters associated with
transport of oxygen and other solutes. Figure 6 shows the effect of increasing the number of
known boundary conditions on the normalized root mean square deviation (DNRMS)
between segment flows predicted with partial boundary information (Qj) and those predicted
when all boundary conditions are known (Qj0), defined as

(14)

Boundary conditions were successively imposed in order of decreasing magnitude of
observed flow. As would be expected, DNRMS approaches zero as more boundary conditions
are specified.

To test the dependence of the results on the randomly chosen initial flow directions, we
performed simulations with 6 different randomized starting conditions, for network I. The
results with zero boundary conditions specified showed large variations (Figure 6), but with
one or more boundary conditions specified, the results were essentially independent of the
assumed starting conditions. We also computed results corresponding to Figures 5A and 6
for red blood cell fluxes. The results (not shown) were essentially indistinguishable from
those for blood flow rate.

Sensitivity of results to assumed target values
The computations described above were repeated using a pressure-dependent target wall
shear stress |τ0j| in each segment, according to equation (13). The results (not shown) did not
differ significantly from those obtained using |τ0j| = 15 dyn/cm2 for all segments. Using a
fixed target |τ0j| is simpler and requires less detailed hemodynamic information, and is
therefore preferable. When the simulation was repeated for network I with |τ0j| = 30 dyn/
cm2, the number of incorrect flow directions and DNRMS with two boundary conditions
specified were almost doubled. This indicates that |τ0j| is an important parameter in the
method. Increasing the target pressure p0k from 31 to 41 mmHg did not significantly change
the number of incorrect flow directions or DNRMS. However, decreasing p0k to 21 mmHg
led to a large increase in both the number of incorrect flow directions and DNRMS.

DISCUSSION
Methods for imaging the three-dimensional structure of microvascular networks have
advanced in recent years. However, the interpretation of the results of such studies in terms
of the functional properties of the microvasculature remains a challenge to be addressed.
Basic morphological measures such as vascular length density, vascular volume fractions or
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vessel-vessel spacing provide very limited information about the ability of a network to
perfuse a tissue and to deliver an adequate supply of oxygen and other nutrients. Networks
with similar values of these parameters may nonetheless have entirely different functional
characteristics because of different connectivity or diameter distributions. For example, in
tumor networks, high levels of perfusion and vascular density may coexist with significant
tissue hypoxia because of functional shunting of blood flow through short pathways [15].
Ideally, assessment of microcirculatory function should thus be based on information on
both structure and flow distribution. However, detailed flow information is technically
difficult to obtain in many cases of interest.

The theoretical method presented in this study is intended to address this lack of
experimental information. In this method, the distribution of flows in a network is computed
based on (i) known physical principles governing blood flow in microvascular networks; (ii)
limited information about the flows or pressures at a few major vessels feeding and draining
the network; and (iii) independently derived empirical information about the distributions of
pressures and flows in the network. The algorithm uses a constrained optimization approach
to generate estimates of segment flows based on this incomplete information. These
estimates are shown to correlate well with the results obtained when full information on
boundary conditions is available. In some of the networks considered, blood flow velocities
were previously measured experimentally and flow rates were estimated [19, 23]. While
these estimates could in principle be used as an alternative standard for comparison with the
results of the present method, they are subject to experimental errors [23], leading to
significant violation of flow conservation at bifurcations. Consequently, the simulation
cannot possibly reproduce the experimentally observed flow rates. The goal of the algorithm
is to estimate segment flow rates in the absence of a full set of boundary conditions.
Therefore, the appropriate standard of comparison is the computed flow distribution with all
boundary conditions known.

In this method, the role of the target shear stress and pressure is to ensure that these
parameters are in physiologically realistic ranges throughout the network, not to force shear
stresses and pressures in each vessel to match the target values. The computed flows imply
wide distributions of shear stress and pressure in the network.

It must be recognized that this method has significant limitations. It represents an attempt to
solve a system that is mathematically underdetermined when constrained by the available
data. Therefore, the results are inevitably approximate. Despite good overall agreement
between results from this approach and the ‘true’ values, significant errors are obtained for a
subset of segments in the network. These errors decline as the number of known boundary
conditions is increased. The method depends on the availability of independent information
on distributions of pressures and wall shear stresses in the type of network under
consideration. In the examples considered here, such information is available because of the
suitability of mesenteric networks for study by intravital microscopy. In other tissues, such
data are more difficult to obtain. While data from one tissue, such as mesentery, may be
applicable to other tissues, this approach may neglect systematic differences between the
microcirculation of different tissues. For example, tumors exhibit systematic differences
from normal tissues, as already mentioned. Finally, the algorithm is computationally
intensive: hundreds of solutions to the network flow problem must be computed as part of
the optimization procedure. When applied to networks containing hundreds of segments, the
algorithm takes a few minutes to run on a standard personal computer.

The algorithm does not require a priori information about whether vessels are arterioles,
capillaries or venules. If vessel types are known, such that flow directions can be specified
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in advance in some vessels, then the model can readily be modified to take this into account,
by fixing the sign of the target shear stress in such vessels.

In conclusion, the method presented here enables the estimation of blood flows in all
segments of a microvascular network, given incomplete information about flow or pressure
in the boundary segments, together with independent estimates or correlations describing
distributions of pressure and wall shear stress in the tissue under consideration. Structural
information in combination with flow information allows detailed simulations of transport of
oxygen and other solutes [24]. Therefore, we anticipate that this method will assist in the
interpretation of data obtained from three-dimensional imaging of microvascular networks
containing large numbers of segments, and will potentially lead to new insights into
functional properties of the microcirculation in various tissues under a range of conditions.
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Figure 1.
A. If boundary conditions (pressure or flow, including at least one pressure boundary
conditions) are specified at all boundary nodes of a network, and the flow resistances of all
segments are known, then the flow rates in all segments of the network are fully determined
(solid lines). B. With incomplete boundary data, the equations governing flow in the
network lead to an underdetermined linear system, and flows in some segments remain as
unknowns (dashed lines).
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Figure 2.
Schematic illustration of optimization algorithm. The two graphs represent the dependence
of the objective function on flow rate in one segment of the network. The objective function
consists of a component dependent on the flow direction and a component independent of
the flow direction but dependent on the deviation of the shear stress from the target value. A.
When kτ is small, the flow directions can change readily, such that the objective function
can approach the global minimum. B. As kτ increases, the flow directions become fixed
according to the result at preceding optimizations with smaller values of kτ, but the flow
rates are increasingly determined by the minimization of the deviation of shear stress from
the target value.
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Figure 3.
Dependence of the number of reversed flows on the weighting factor kτ for shear stress in
the optimization. A general trend towards reduction in number of reversed flows was found
as kτ was sequentially increased. However, this trend was reversed at large values of kτ in
two networks. The vertical dashed line corresponds to kτ = 0.4096, the value used in the
subsequent application of the method. A. Network I. B. Network II. C. Network III. D.
Network IV.
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Figure 4.
Computer-generated map of network I. Flow directions predicted with two known boundary
conditions are compared with flow directions with all boundary conditions known. Black:
correct flow direction. Red: reversed flow direction.
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Figure 5.
Node pressures and segment flows in each segment of network I. Values predicted with two
known boundary conditions are plotted against values with all boundary conditions known.
A. Log(flows). B. Node pressures.
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Figure 6.
Normalized root mean squared deviation in segment flows (DNRMS), plotted as a function of
the number of known boundary conditions for network I. In the case of one known boundary
condition, the pressure at the main venular outflow is imposed. Flow boundary conditions
are then successively added in order of decreasing flow magnitude. The error bars show the
standard deviation of 6 results with different randomized starting conditions. The starting
conditions had negligible effects if one or more boundary conditions were specified.
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