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Background: A shedding product of PTK7 was detected in the culture media from colon cancer cells.
Results: PTK7 is sequentially processed by ADAM17 and �-secretase, and its cytosolic domain enhances oncogenic properties
of colon cancer cells.
Conclusion: The cytosolic domain of PTK7 generated by sequential cleavage of ADAM17 and �-secretase promotes
tumorigenesis.
Significance:We provide a novel oncogenic mechanism of PTK7 upon its processing.

Protein-tyrosine kinase 7 (PTK7) is amember of the defective
receptor protein-tyrosine kinases and is known to function as a
regulator of planar cell polarity during development. Its expres-
sion is up-regulated in some cancers including colon carcino-
mas. A 100-kDa fragment of PTK7 was detected in the culture
media from colon cancer cells andHEK293 cells. The shed frag-
ment was named sPTK7-Ig1–7 because its molecular mass was
very similar to that of the entire extracellular domain of PTK7
that contains immunoglobulin-like loops 1 to 7 (Ig1–7). The
shedding of sPTK7-Ig1–7 was enhanced by treatment with
phorbol 12-myristate 13-acetate. In addition to the sPTK7-
Ig1–7 found in the culture medium, two C-terminal fragments
of PTK7 were detected in the cell lysates: PTK7-CTF1, which
includes a transmembrane segment and a cytoplasmic domain,
and PTK7-CTF2, which lacks most of the transmembrane seg-
ment from PTK7-CTF1. Analysis of PTK7 processing in the
presence of various protease inhibitors or after knockdown of
potential proteases suggests that shedding of PTK7 into sPTK7-
Ig1–7 and PTK7-CTF1 is catalyzed by ADAM17, and further
cleavage of PTK7-CTF1 into PTK7-CTF2 is mediated by the
�-secretase complex. PTK7-CTF2 localizes to the nucleus and
enhances proliferation, migration, and anchorage-independent
colony formation. Our findings demonstrate a novel role for
PTK7 in the tumorigenesis via generation of PTK7-CTF2 by
sequential cleavage of ADAM17 and �-secretase.

Protein-tyrosine kinase 7 (PTK7)4 (also known as colon car-
cinoma kinase-4, CCK-4) is a receptor tyrosine kinase-likemol-
ecule containing an extracellular domain with seven immuno-
globulin-like (Ig) loops, a transmembrane domain, and a
catalytic domain lacking kinase activity (1–4). PTK7 is con-
served across phylogenetically diverse groups from Hydra to
human (5). Off-track (Dtrk/OTK), PTK7 ortholog in Drosoph-
ila was reported to be a hemophilic, Ca2�-independent cell
adhesion molecule in the developing nervous system that reg-
ulates neuronal recognition and axon guidance (6). Later it was
shown that Dtrk/OTK contributes to repulsive axon guidance
signaling by associating with Plexins in response to semaphorin
binding (7). In chickens, formation of a complex composed of
Plexin-A1, KLG (PTK7 ortholog) and Sema6D is important for
cardiac morphogenesis, especially the formation of the ventri-
cle segment (8). InXenopus, interaction between Plexin-A1 and
PTK7 is required for neural crest migration (9).
A role of PTK7 as a regulator of planar cell polarity and non-

canonical Wnt signaling was first identified in mice expressing
a truncated form of PTK7. The mutation resulted in perinatal
lethality, and themice exhibited characteristic defects of planar
cell polarity, such as open neural tubes and disorganized stereo-
ciliary bundle orientation (10). PTK7 regulates neural crest
migration by recruiting Dishevelled to the membrane (11).
PTK7 must interact with RACK1 to recruit Dishevelled for
proper neural tube closure in Xenopus (12). Although a role for
PTK7 in the canonical Wnt pathway has not been well defined,
we have shown that Wnt3a-stimulated �-catenin/T cell factor
transcriptional activity is weakened in PTK7-deficient cells
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(13). In contrast, Peradziryi et al. (14) reported that PTK7/Otk
inhibits canonical Wnt signaling but activates noncanonical
Wnt signaling by acting as a Frizzled co-receptor.
Up-regulation of PTK7 is observed in various cancers includ-

ing colon cancer (2, 15), gastric cancer (16), lung cancer (17),
acute myeloid leukemia (18), esophageal squamous cell carci-
noma (19), and liposarcoma (20). Ectopic expression of PTK7 in
leukemia cells promotes cell migration and survival, whereas
knockdown of PTK7 shows the opposite effects (21). Knock-
down of PTK7 in HCT-116 cells also inhibits cell proliferation
and induces apoptosis (22). Similarly, knockdown of PTK7 in
liposarcoma cells reduces cell proliferation and invasion and
induces apoptosis (20). Interestingly, PTK7 was detected in an
analysis of the secretome from pancreatic cancer cells (23) and
colon cancer cells (24), suggesting the shedding of PTK7.
Shedding is an important regulatory mechanism for cellular

signaling (25). Shedding of membrane proteins such as pro-
TNF-� and heparin-binding EGF can release ligands inducing
signal transduction (26). In contrast, shedding can down-regu-
late or terminate signaling by removing the signaling capability
of proteins on the cell surface, like Ephrins, or by producing
soluble decoy receptors that sequester cognate ligands, like
sVEGFR-1 (27, 28). Sheddases that cleave extracellular do-
mains are often members of a disintegrin and metalloprotease
(ADAM) family or matrix metalloproteinase (MMP) family,
which are Zn2�-dependent proteases. After cleavage of the
extracellular domain by a sheddase, some cell surface recep-
tors are further cleaved by intramembrane-cleaving proteases
(I-CliPs) within the transmembrane domain in a process
termed regulated intramembrane proteolysis. In some proteins
such as Notch (29) and erythroblastic leukemia viral oncogene
homolog 4 (ErbB4) (30), the cytosolic fragment generated by
regulated intramembrane proteolysis can translocate to the
nucleus and regulate transcription. In other proteins, the cyto-
solic fragments play various roles related to the function of the
complete protein. The cytosolic domain of Ephrin-B2 activates
Src by competing with Csk which phosphorylates and inhibits
Src (31). Cleavage of E-cadherin by an I-Clip down-regulates
cell adhesion and enhances Wnt signaling through the release
of �-catenin (32).

In an attempt to understand the role of PTK7, we generated
recombinant soluble PTK7 (sPTK7), which contains the entire
extracellular domain consisting of Ig1–7 and acts as a decoy
receptor to counteract PTK7 function. We previously demon-
strated that treatment with sPTK7 induces an effect similar to
PTK7 knockdown and inhibits VEGF-induced tube formation,
migration, invasion of HUVECs, and VEGF-induced angiogen-
esis in vivo (33). ADAMs or MMPs that act as sheddases are
often up-regulated during carcinogenesis. Thus, we hypothe-
sized that sPTK7 may be generated in cancers by shedding of
PTK7. In addition, MMP-14-dependent shedding of PTK7 was
observed in breast cancer cells, andMMP-14 overexpression in
fibrosarcoma HT-1080 cells induced the release of an extracel-
lular domain of PTK7 containing the first six Ig loops (sPTK7-
Ig1–6) (34). However, we found that, in colon cancer cells,
PTK7 is shed into a form containing seven Ig loops, sPTK7-
Ig1–7. Here, we report that in colon cancer cells PTK7 is
sequentially processed in an extracellular cleavage event fol-

lowed by intramembrane cleavage. We further demonstrate
that the resulting cytosolic fragment of PTK7 has oncogenic
properties.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents—Mouse anti-human PTK7 mono-
clonal antibody against human sPTK7-His was generated and
purified by Ab Frontier (Seoul, Korea). Anti-FLAGM2-agarose
and the anti-FLAG M2 antibody were obtained from Sigma-
Aldrich. Anti-GAPDH antibody was purchased from Ab Fron-
tier. Anti-lamin A/C antibody was purchased from Santa Cruz
Biotechnology (Santa Cruz, CA). Anti-TIMP-1 and anti-
TIMP-2were purchased fromCalbiochem. Anti-TIMP-3, anti-
TIMP-4, anti-ADAM10, and anti-ADAM17 antibodies were
obtained from Millipore. GM6001 was from Santa Cruz Bio-
technology and Chemicon. TAPI-1, pepstatin A, and E-64 were
obtained from Calbiochem. DAPT and L-685458 were pur-
chased from Sigma. Phorbol 12-myristate 13-acetate (PMA)
was from A. G. Scientific (San Diego, CA). The hydroxamate-
based ADAM inhibitors, GW280264X (selective for ADAM10
and ADAM17) and GI254023X (selective for ADAM10), were
described previously (35, 36). siRNA pools for ADAM10
(M-004503-02), ADAM17(L-003453–00), and negative control
(D-001810-10) were purchased fromDharmacon (Chicago, IL).
Constructs for Expression of PTK7 or Its Domains—

pcDNA3-hPTK7-FLAG, which expresses FLAG-tagged
human PTK7, and pcDNA3-hPTK7-Ext-His, which expresses
the His-tagged extracellular domain of PTK7, were described
previously (33). To construct pcDNA3.1-PTK7-Cyt-FLAG,
which expresses humanPTK7 cytosolic domain containing res-
idues 726–1070 of PTK7 and a C-terminal FLAG tag, the
cDNA was PCR-amplified using pcDNA3-hPTK7-FLAG as a
template and 5�-GTCGCTAGCATGTGCAAGAAGCGCTG-
CAAAGC-3�, including an NheI site (italicized), a start codon
(bold), and nucleotide positions of 2323–2342 of PTK7 cDNA
(GenBank accession number U40271), and 5�-TAGAA-
GGCACAGTCGAGG-3�, nucleotide positions 1036–1053 of
pcDNA3 vector (Invitrogen), as primer pairs. The amplified
fragments were digested with NheI and EcoRI and ligated into
pcDNA3.1. To generate pcDNA3.1-PTK7-CTF2-FLAGencod-
ing residues 722–1070 of PTK7 and the C-terminal FLAG tag,
nucleotides encoding residues 722–725 of PTK7 were inserted
into pcDNA3.1-PTK7-Cyt-FLAG by DpnI-mediated site-di-
rected mutagenesis method using a QuikChange kit (Strat-
agene) and 5�-GCAGTAGAACATGAGCATGGTGGCGCT-
AGCCAGCTTGGGTCTCCCTATAGTGA-3� and 5�-GCGC-
CACCATGCTCATGTTCTACTGCAAGAAGCGCTGCAA-
AGCCA-3�, including a Kozak’s consensus sequence
(underlined), a start codon (bold), and nucleotide positions
2311–2325 of PTK7 cDNA (GenBank accession number
U40271), as primers.
Cell Lines, Cell Culture, and Transfection—The colorectal

cancer cell lines (HCT-8, HCT-15, HCT-116, SW480, DLD-1,
LoVo, and HT-29) and HEK293 cells were cultured in DMEM
supplemented with 10% FBS, 100 units/ml penicillin, and 100
�g/ml streptomycin. For transfection with plasmid DNA, sub-
confluent cells were transfected by the calcium phosphate
method (37) followed by selectionwith 1.2mg/mlG418. After 2
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weeks, all colonies were cultured as amixed population or indi-
vidual clones. For transfection with siRNA (100 nM), subcon-
fluent cells were transfected using Lipofectamine 2000 (Invit-
rogen) according to the manufacturer’s instructions.
Immunoprecipitation and Western Blotting of Cell Lysates

and Media—Subconfluent cells were incubated in serum-free
medium either for 8 h without PMA or for 30 min with 100
ng/ml PMA. To collect proteins secreted into the medium, the
medium was spun down at 2,000 rpm for 5 min and then pre-
cipitated with cold TCA (Sigma). The cells were lysed with
RIPA lysis buffer (50 mM Tris-HCl, pH7.4, 150 mM NaCl, 1%
Triton X-100, 0.5% deoxycholate, 0.1% SDS). For immunopre-
cipitation, cell lysates were incubated with mouse anti-FLAG
M2-agarose and then washed in PBS three times. For Western
blot analysis, cell lysates, TCA-precipitated medium, or immu-
noprecipitated proteins were resuspended in SDS sample
buffer containing 100 mM �-mercaptoethanol and were
resolved by SDS-PAGE and transferred to a PVDF membrane.
N-terminal Sequencing—SW480 cells expressing PTK7-

FLAG were preincubated in serum-free medium with 10 �M

GM6001 or dimethyl sulfoxide for 30min and then treatedwith
100 ng/ml PMA for 30min. The cells were lysedwith RIPA lysis
buffer and immunoprecipitated with anti-FLAG M2-agarose.
The precipitated C-terminal fragments of PTK7 were resolved
by SDS-PAGE, transferred to a PVDF membrane, and stained
with Coomassie Brilliant Blue. N-terminal sequences of the
C-terminal fragmentswere analyzed by the Edman degradation
method at the Tufts Core Facility (Tufts University, Medford,
MA).
Fractionation of Cytosolic and Nuclear Proteins—SW480

cells expressing FLAG-PTK7 were pretreated with 10 �M

DAPT for 30 min and then treated with 100 ng/ml PMA for 30
min. The cells were collected by scraping in PBS, spun down at
2,000 rpm for 5 min, resuspended in a hypotonic buffer (10 mM

HEPES, pH 7.4, 10 mM KCl, 1.5 mM MgCl2), and incubated on
ice for 10 min. Nonidet P-40 was then added to a final concen-
tration of 0.625%, and the lysate was incubated on ice for 20
min. The lysate was centrifuged at 2,000 rpm for 5 min to sep-
arate the cytosolic fraction from the nuclear pellet. The nuclear
pellet was washed twice in hypotonic buffer, resuspended in
RIPA lysis buffer, and incubated for 20 min. The nuclear frac-
tion was obtained by centrifugation at 13,000 rpm for 15 min.
Immunofluorescence Staining and Confocal Microscopy—

SW480 cells expressing PTK7-CTF2-FLAG or transfected with
a control vector were grown on poly-L-lysine-coated coverslips.
Immunofluorescence staining was performed withmouse anti-
FLAG M2 antibody (1 �g/ml; Sigma), Alexa Fluor 488-conju-
gated goat anti-mouse IgG antibody (1 �g/ml; Invitrogen), and
DAPI (0.25 �g/ml; Invitrogen). Immunofluorescence was visu-
alized with a confocal microscope (Carl Zeiss).
Cell Proliferation Assay—Cell proliferation was assessed by

an MTT assay. Subconfluent cells were seeded at a density of
4� 103 cells in 96-well plates and incubated inDMEMcontain-
ing 5% FBS. After incubation for the indicated time intervals,
cells were stained with 0.5 mg/ml MTT in DMEM for 4 h and
then disrupted using dimethyl sulfoxide. Absorbance of the
extract at 565 nm was measured.

Cell Migration Assay—Cell migration was assayed using
modified Boyden chambers (8-�m pore size, Costar Transwell
filters; Corning-Costar, Lowell, MA) coated with 0.1% gelatin.
Subconfluent cells were incubated in serum-free medium for
24 h. The 1 � 105 cells in 100 �l of serum-free medium were
loaded on the upper chamber. DMEM (600 �l) containing 5%
FBS served as a chemoattractant in the lower chamber. After
24 h, cells in the upper surface of the upper chamber were
removed with cotton swabs. Cells that had migrated to the
lower surface of the upper chamber were stained with hema-
toxylin and eosin and counted under a light microscope.
Anchorage-independent Colony Formation Assay—Anchor-

age-independent colony formation was measured as described
previously (38). Cells (5� 104/well) were suspended inDMEM-
10%FBS containing 0.35%Bacto agar (Difco, Sparks,MD) incu-
bated at 42 °C and overlaid onto the solidified 0.5% agar layer
containing DMEM-10% FBS. After 3 weeks of incubation, the
number of colonies formed was counted with a microscope.

RESULTS

sPTK7-Ig1–7 Is Shed in Colon Cancer Cells—To examine
whether shedding of PTK7 occurs in colon cancer cell lines,
Western blot analysis with an antibody against the extracellular
domain of PTK7 in various colon cancer cell lines (HCT-8,
HCT-15, HCT-116, DLD-1, LoVo, HT-29, and SW480) and
HEK293 cells was performed. We detected a 100-kDa band in
the conditioned medium from colon cancer cells and HEK293
cells (Fig. 1A). A band of similar molecular mass was observed
inHEK293 cells ectopically expressing the sPTK7-His polypep-
tide. Considering that sPTK7-His contains all seven Ig loops in
the extracellular domain of PTK7 and a His tag (33), this result
indicates that the shed fragment of PTK7 in colon cancer cells
should also contain all seven Ig loops in the extracellular
domain. Thus, it was named sPTK7-Ig1–7.
Phorbol esters such as PMAare potent activators of PKC and

have been reported to stimulate shedding of diverse proteins
such as IL-6R, ErbB4, and TNF-� (39). We thus analyzed

FIGURE 1. PTK7 is shed in colon cancer cells. A, constitutive shedding of
PTK7. Human colon cancer HCT-8, HCT-15, HCT-116, SW480, DLD-1, LoVo, and
HT-29 cells and HEK293 cells were incubated in serum-free medium for 8 h.
Recombinant sPTK7-His (20 ng) was loaded as a positive control. B, PMA-
induced PTK7 shedding. SW480 cells were replaced with serum-free medium
and stimulated with PMA (100 ng/ml) for 30 min. Incubated media were con-
centrated by TCA precipitation. The concentrated media and cell lysates were
analyzed by SDS-PAGE and Western blotting (IB). The positions of sPTK7-
Ig1–7 and PTK7 are denoted by open arrowheads and closed arrowheads,
respectively. Numbers on the left indicate positions of molecular mass mark-
ers (kDa).
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whether PMA increases shedding of sPTK7-Ig1–7 in SW480
cells. PMA treatment enhanced release of sPTK7-Ig1–7 into
conditioned medium when compared with mock- or dimethyl
sulfoxide-treated cells (Fig. 1B). The apparent molecular mass
of sPTK7-Ig1–7 did not change in the presence of PMA (Fig.
1B).
A Metalloprotease Contributes to sPTK7-Ig1–7 Shedding—

To address which protease mediates PTK7 shedding, we ana-
lyzed PTK7 shedding in the presence of various protease inhib-
itors in SW480 cells. A panmetalloprotease inhibitor (GM6001)
and anMMP and ADAM17 inhibitor (TAPI-1) blocked consti-
tutive shedding of PTK7, but inhibitors of serine proteases
(AEBSF), cysteine and serine proteases (leupeptin), aspartic
proteases (pepstatin), and cysteine proteases (E-64) did not
(Fig. 2A). Like constitutive PTK7 shedding, PMA-induced
PTK7 shedding was also inhibited by the metalloprotease
inhibitors, GM6001 and TAPI-1, but not by other protease
inhibitors (Fig. 2B). Thus, the shed fragment size and metallo-

protease requirement were the same in constitutive or PMA-
induced sPTK7-Ig1–7 shedding.
Both the ExtracellularDomain andTransmembraneDomain

of PTK7 Are Cleaved—To identify the cleavage site of PTK7
shedding, PTK7-FLAG was stably expressed in SW480 cells.
SW480 cells expressing PTK7-FLAG were stimulated with
PMA in the presence or absence of GM6001, and PTK7 shed-
ding was analyzed. Immunoprecipitation with an anti-FLAG
antibody followed by Western blot analysis revealed the pres-
ence of two CTFs of PTK7, which we named PTK7-CTF1-
FLAG and PTK7-CTF2-FLAG (Fig. 3A).
To identify the cleavage sites, the CTF bands that were

detected in Coomassie Brilliant Blue-stained SDS gels (Fig. 3A)
were subjected to N-terminal sequencing by the Edman degra-
dation method. The N-terminal sequences of PTK7-CTF1-
FLAG and PTK7-CTF2-FLAGwere 690SEGPG and 722LMFYX,
respectively (Fig. 3B). The amino acid residue at the X position
was Cys which could not be detected by this method. This find-
ing suggests that PTK7 is cleaved at two different positions;
between amino acids Glu689 and Ser690 near the C terminus of
the extracellular domain (Ala31 to Gln703) and between amino
acids Gly721 and Leu722 near the C terminus of a transmem-
brane segment (Thr704 toTyr725). Therefore, sPTK7-Ig1–7 that
spans Ala31 to Glu689 (Fig. 3B) is shed into the extracellular
space, and PTK7-CTF2-FLAGwhich spans Leu722 to Pro1070 is
likely released into the cytosol.
sPTK7-Ig1–7 Shedding Is Mediated by ADAM17—To char-

acterize whichmetalloprotease is involved, sPTK7-Ig1–7 shed-
ding was analyzed in the presence of TIMPs, which are major
physiologicalmetalloprotease inhibitors. SW480 cells, in which
one of four TIMPs was stably expressed, were stimulated with
PMA to enhance sPTK7-Ig1–7 shedding. Shedding of sPTK7-
Ig1–7 was efficiently suppressed by TIMP-3, but not by
TIMP-1, TIMP-2, or TIMP-4 (Fig. 4A). TIMP-3 inhibits vari-
ous MMPs (MMP-1, MMP-2, MMP-3, MMP-7, MMP-9,
MMP-13, MMP-14, and MMP-15) (40) and ADAM10 and
ADMA17. However, the MMPs inhibited by TIMP-3 are also
inhibited by at least one other TIMP that cannot block PTK7
shedding, suggesting that the sheddase is ADAM10 and/or

FIGURE 2. Effect of protease inhibitors on PTK7 shedding. A, effect of pro-
tease inhibitors on constitutive PTK7 shedding. SW480 cells were incubated
in serum-free medium for 8 h in the presence of various protease inhibitors.
B, effect of protease inhibitors on PMA-induced PTK7 shedding. SW480 cells
were preincubated in serum-free medium in the presence of the protease
inhibitors for 30 min and then treated with PMA (100 ng/ml) for 30 min. Con-
centrations of the inhibitors were 10 �M GM6001, 50 �M TAPI-1, 100 �M

AEBSF, 10 �M leupeptin, 10 �M pepstatin, and 10 �M E-64. Incubated media
were concentrated by TCA precipitation. The concentrated media and cell
lysates were analyzed by SDS-PAGE and Western blotting (IB). The positions
of sPTK7-Ig1–7 and PTK7 are denoted by open arrowheads and closed arrow-
heads, respectively. DMSO, dimethyl sulfoxide.

FIGURE 3. PTK7 cleavage sites were identified by N-terminal sequencing. A, SW480 cells overexpressing PTK7-FLAG were preincubated in serum-free
medium with GM6001 (10 �M) for 30 min and then treated with PMA (100 ng/ml) for 30 min. The lysate was immunoprecipitated using anti-FLAG M2-agarose
and analyzed with SDS-PAGE and transferred to a PVDF membrane. The membrane was stained with Coomassie Brilliant Blue G-250 (CBB-G, left) and immu-
noblotted (IB) with a FLAG antibody (right). B, schematic diagrams for PTK7-FLAG, sPTK7-Ig1–7, PTK7-CTF1-FLAG, PTK7-CTF2-FLAG, and sPTK7-His are shown.
N-terminal sequences of PTK7-CTF1-FLAG and PTK7-CTF2-FLAG which were analyzed by Edman degradation sequencing are indicated.
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ADAM17 and not an MMP. However, TIMP-1 inhibits
ADAM10 but not ADAM17 and does not prevent PTK7 shed-
ding (41, 42), thus indicating that ADAM17 is likely the PTK7
sheddase.
In addition, a synthetic ADAM inhibitor GW280264X,

which inhibits both ADAM17 and ADAM10, inhibits sPTK7-
Ig1–7 shedding in a dose-dependent manner in SW480 cells
with or without PMA stimulation (Fig. 4, B and C). Another
ADAM inhibitor GI254023X, which inhibits ADAM10 about
100 times more than ADMA17 (35, 36), is a poor inhibitor
of sPTK7-Ig1–7 shedding (Fig. 4, B and C). Moreover,
siRNA-mediated ADAM17 knockdown reduced PMA-in-
duced sPTK7-Ig1–7 shedding in SW480 cells, but ADAM10
knockdown did not (Fig. 4D). These results demonstrate that
ADAM17 contributes to PTK7 shedding.
Generation of PTK7-CTF2 Is Dependent on �-Secretase

Activity—As shown above, PTK7-CTF2 was generated by pro-
teolytic cleavage within the transmembrane segment (Fig.
3B). Many receptor proteins that are cleaved in the extracel-
lular domain by ADAMs are processed within a transmem-
brane segment by a �-secretase complex (43). To analyze
whether a �-secretase complex is involved in PTK7 process-
ing, generation of PTK7-CTF2 was analyzed in SW480 cells
expressing PTK7-FLAG in the presence of the �-secretase
inhibitors, DAPT and L-685458, with or without GM6001.
Treatment with DAPT or L-685458 completely blocked the
generation of PTK7-CTF2-FLAG (Fig. 5). Interestingly,
GM6001 alone prevented the generation of PTK7-CTF2 as
well as production of PTK7-CTF1. These results indicate
that sequential cleavage of PTK7 by ADAM17 and �-secre-
tase releases sPTK7-Ig1–7 into the extracellular space and
PTK7-CTF2 into the cytoplasm.
PTK7-CTF2 Is Localized Mainly in the Nucleus—In an

attempt to determine a role for PTK7-CTF2, we analyzed its
intracellular localization of PTK7-CTF2-FLAG in SW480 cells
using two different methods. First, SW480 cells expressing

PTK7-FLAG were separated into cytosolic and nuclear frac-
tions. PTK7-CTF1-FLAG was found in the cytosolic fraction,
but PTK7-CTF2-FLAGwas mainly in the nuclear fraction (Fig.
6A). Second, immunofluorescence demonstrated that PTK7-
CTF2-FLAGexpressed in SW480 cells ismainly localized to the
nucleus (Fig. 6B).

FIGURE 4. PTK7 shedding is dependent on ADAM-17. A, SW480 cells stably expressing each TIMP were incubated in serum-free medium with PMA (100
ng/ml) for 24 h. B and C, SW480 cells were preincubated in serum-free medium with various concentrations of the ADAM-specific inhibitors GW280264X and
GI254023X for 30 min and then incubated with PMA (100 ng/ml) for 30 min (B) or without PMA for 8 h (C). D, SW480 cells were transiently transfected with siRNA
for negative control, ADAM10, and ADAM17. At 72 h after transfection, cells were replaced with serum-free medium and stimulated with PMA (100 ng/ml) for
30 min. Cell lysates and concentrated media were analyzed by SDS-PAGE and Western blotting (IB). The positions of sPTK7-Ig1–7 and PTK7 are denoted by open
arrowheads and closed arrowheads, respectively. DMSO, dimethyl sulfoxide.

FIGURE 5. Generation of PTK7-CTF2 is dependent on �-secretase. SW480
cells expressing PTK7-FLAG were incubated in serum-free medium with
GM6001 (10 �M) and the �-secretase inhibitors, DAPT (10 �M) and L-685458 (2
�M) for 30 min and were then incubated with PMA (100 ng/ml) for 30 min. The
cells were lysed with RIPA lysis buffer and immunoprecipitated (IP) using anti-
FLAG M2-agarose. The lysate were analyzed by SDS-PAGE and immunoblot-
ting (IB) for FLAG. The positions of sPTK7-Ig1–7 and PTK7 are denoted by open
arrowheads and closed arrowheads, respectively.
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PTK7-CTF2 Expression Increases Cell Proliferation and
Migration—To investigate further the function of nuclear
PTK7-CTF2,we carried out several assays tomonitor biological
functions. An MTT assay showed that SW480 cells expressing
PTK7-CTF2-FLAG (Fig. 7A) grow up to two times faster than
SW480 cells transfected with an empty vector (Fig. 7B). A
migration assay using a Boyden chamber showed that SW480
cells expressing PTK7-CTF2-FLAG migrate approximately
four times faster than control SW480 cells (Fig. 7C). Further,
anchorage-independent colony formation assays indicated that
expression of PTK7-CTF2-FLAG enhanced colony formation
in soft agar, with almost twice as many colonies as the vector
control (Fig. 7D). Together, these findings suggest that PTK7-
CTF2 translocation to the nucleus will enhance the oncogenic
potential of SW480 cells.

DISCUSSION

In this study, we found shed PTK7 in the medium frommul-
tiple colon cancer cell lines. The shed polypeptide is �100 kDa
and includes all seven Ig loops of the extracellular domain of
PTK7. Treatment with PMA enhances shedding, but does not
alter the size of the shed fragment in SW480 cells. Sheddingwas
inhibited by a panmetalloprotease inhibitor, GM6001, and the
MMP/ADAM inhibitors, TAPI-1 andTIMP-3, but not by other
TIMPs or nonmetalloprotease inhibitors. In addition, an
ADAM10/17 inhibitor, GW280264X, inhibited PTK7 shedding
whereas another ADAM inhibitor that is 100 timesmore selec-
tive forADAM10 thanADAM17,GI254023X, poorly inhibited,
in SW480 cells with or without PMA stimulation (Fig. 4) and in
other colon cancer cells (data not shown). Furthermore,
ADAM17 knockdown reduced PMA-induced sPTK7-Ig1–7
shedding. These data demonstrate that ADAM17 should be a
sheddase of PTK7.

Among the 21 ADAMs identified in the human genome, 13
members are proteolytically active. ADAM17 is one of the pro-
teolytically active members (26). Expression of ADAM17 is
increased in various cancers including breast cancer (44), colo-
rectal cancer (45), pancreatic cancer (46), prostate cancer (47),
renal cancer (48), and hepatocellular cancer (49). Overexpres-
sion of ADAM17 in breast cancer cells increased in vitro inva-
sion and proliferation (50). Also, silencing of ADAM17 sup-
pressed tumor formation by inhibiting ADAM17-mediated
TGF-� release, a ligand for the EGF receptor, in renal carci-
noma cells (51). Therefore, ADAM17 contributes to tumori-
genesis and metastasis by promoting cell proliferation, adhe-
sion, migration, and invasion (52–54).
During our study, Golubkov et al. (34) reported that PTK7

levels were reduced in breast cancer cells overexpressing
MMP-14 and that sPTK7-Ig1–6 shed fromPTK7was observed
in HT1080 cells overexpressing MMP-14. We observed a
73-kDa band, which may correspond to sPTK7-Ig1–6, at low
level in culture medium of some colon cancer cells such as
HT-29 cells (Fig. 1A). However, the major PTK7 shed product
detected was 100-kDa band corresponding to sPTK7-Ig1–7
rather than 73-kDa band. These results strongly suggest that at
least in colon cancer cells ADAM17 is a main sheddase of
PTK7.
In this study, we found that PTK7 was processed not only at

the extracellular domain to shed sPTK7-Ig1–7 but also within a
transmembrane segment to generate PTK7-CTF2. Because the
cleavage to generate PTK7-CTF2 occurs between amino acids
Gly721 and Leu722 near the C terminus of a transmembrane
segment (Thr704 toTyr725), it is likely that the enzyme is amem-
ber of the I-CliP family. I-CliP members can be classified into
three groups; site-2 proteases which are metalloproteases,

FIGURE 6. PTK7-CTF2 displays a nuclear localization. A, SW480 cells stably expressing PTK7-FLAG were incubated in serum-free medium with DAPT (10 �M)
for 30 min and then with PMA for 30 min. The cells were lysed with hypotonic buffer, and the cytosolic fraction and nuclei were separated. The nuclei were lysed
with RIPA lysis buffer. FLAG-tagged polypeptides were immunoprecipitated (IP) from cytosolic and nuclear fractions using anti-FLAG M2-agarose. The immu-
noprecipitates and lysates were analyzed by SDS-PAGE and immunoblotting (IB) for PTK7. The positions of sPTK7-Ig1–7 and PTK7 are denoted by open
arrowheads and closed arrowheads, respectively. B, SW480 cells stably expressing PTK7-CTF2-FLAG or transfected with control vector were fixed with 3.7%
formaldehyde. PTK7-CTF2-FLAG cells were labeled with anti-FLAG M2 antibody and rabbit anti-mouse IgG conjugated with Alexa Fluor 488. Nucleus was
stained with DAPI. Immunofluorescence was observed by a confocal microscope. DIC, differential interference contrast.
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�-secretase complexes and signal peptide peptidases which are
aspartyl proteases, and rhomboids which are serine proteases
(55, 56). Among these, �-secretase cleaves mainly type I trans-
membrane proteins (43), and therefore PTK7 which has the
samemembrane topology could represent a potential substrate.
It was also reported that C-terminal fragments of many trans-
membrane receptors that are shed by ADAMs are further pro-
cessed by �-secretase in the transmembrane domain (43). As
expected, we found that the �-secretase inhibitors, DAPT and
L-685458, blocked PTK7-CTF2 generation. Moreover, a metal-
loprotease inhibitor, GM6001 blocks generation of both PTK7-
CTF1 and PTK7-CTF2. These results demonstrate that cleav-
age by ADAM17 is required for the �-secretase cleavage, and

thus that PTK7 is sequentially cleaved by ADAM17 and
�-secretase.

Intracellular domains of type I transmembrane receptors
cleaved by �-secretases are known to exert biological effects at
other sites within the cell. Themostwell characterized function
of such intracellular domains is transcriptional regulation in
the nucleus. For example, the intracellular domain of ErbB4
complexedwith the signaling protein TAB2, and the co-repres-
sor N-CoR translocates to the nucleus and represses GFAP and
S100� promoters (30). Likewise, PTK7-CTF2 is localized
mainly in the nucleus. Ectopic expression of PTK7-CTF2
increases proliferation, migration, and anchorage-indepen-
dent colony formation of SW480 cells. Thus, PTK7-CTF2
translocation from the plasma membrane to the nucleus
likely regulates transcription, thus enhancing tumor gener-
ation and progression.
Accumulated data suggest that PTK7 is up-regulated in var-

ious cancers (2, 15–20) and that its expression promotes prolif-
eration, survival, migration, and invasion (15, 20–22).We have
also shown that treatment with sPTK7-Ig1–7 or PTK7 knock-
down inhibits VEGF-induced migration, invasion, tube forma-
tion of HUVECs, and VEGF-induced angiogenesis in vivo (33).
However, it has also been reported that PTK7 down-regulates
actin cytoskeleton organization and actomyosin contraction
and that sPTK7-Ig1–6 enhances cell locomotion and invasion
in HT-1080 cells by reversing PTK7 functions (34). The func-
tional differences between sPTK7-Ig1–7 and sPTK7-Ig1–6
could result from the presence of the seventh Ig loop in sPTK7-
Ig1–7 or may be dependent on the cell type studied. Nonethe-
less, sPTK7-Ig1–7 is thought to act as a tumor suppressor by
counteracting PTK7. However, to neutralize PTK7 function,
high concentrations (�53 �M) of sPTK7 were required (33).
Moreover, shed sPTK7 would diffuse out into extracellular
space, and so we assume that the effect of shed sPTK7 would
not be significant in cancer tissues. In contrast, another proc-
essing product of PTK7, PTK7-CTF2, is able to be effectively
concentrated in the nucleus and thus activate signaling path-
ways to promote tumorigenesis and metastasis. Therefore,
although it seems that PTK7 is oncogenic as an intactmolecule,
it maintains its oncogenic properties through the generation of
PTK7-CTF2 in the malignant environment.
Here, we have shown that PTK7 is sequentially processed by

ADAM17 at the C-terminal region of the extracellular domain
and then by �-secretase within the transmembrane segment
and that the resulting fragments sPTK7-Ig1–7 andPTK7-CTF2
are released into the extracellular space and nucleus, respec-
tively. We also showed that PTK7-CTF2 localized to the
nucleus can increase proliferation, migration, and anchorage-
independent colony formation. Therefore, in addition to the
known oncogenic role of the intact PTK7 molecule, we add a
novel role of PTK7 upon its shedding: PTK7-CTF2 translocates
into nucleus and enhances oncogenic properties of the cell.
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