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ABSTRACT

The nucleotide sequence of the L gene of the Beaudette C strain of
Newcastle disease virus (NDV) has been determined. The L gene is 6704
nucleotides long and encodes a protein of 2204 amino acids with a calculated
molecular weight of 2u48822. Mung bean nuclease mapping of the 5' terminus of
the L gene mRNA indicates that the transcription of the L gene is initiated
11 nucleotides upstream of the translational start site. Comparison with the
amino acid sequences of the L genes of Sendai virus and vesicular stomatitis
virus (VSV) suggests that there are several regions of homology between the
sequences. These data provide further evidence for an evolutionary

relationship between the Paramyxoviridae and the Rhabdoviridae. A non-coding
sequence of 46 nucleotides downstream of the presumed polyadenylation site of
the L gene may be part of a negative strand leader RNA.

INTRODUCTION

Paramyxoviruses such as NDV have genomes which are nonsegmented
negative-sense strands of RNA, approximately 15 kb long (1). The gene
organization, control of mRNA and protein synthesis, RNA replication and
viral assembly of paramyxoviruses are broadly similar to the corresponding
functions of the rhabdovirus vesicular stomatitis virus (VSV), which has
been more intensively studied (2-6). Both families of viruses have large
(L) genes that occupy most of the 5' half of the genome. The L gene encodes
the L protein which has a molecular weight greater than 200 K (5). The L
protein is the least abundant of virion proteins of VSV (7,8) and the
paramyxovirus Sendai virus (9) which suggests that it has an enzymatic rather
than a structural role. Although the precise functions of the L protein are
not known, it is assumed to be the viral RNA-dependent RNA polymerase. The L
and P proteins of NDV, which are analogous to L and NS proteins of VSV
respectively, reconstitute an active transcriptive complex when added to
viral nuéleocapsids which have been stripped of these proteins (10-11).
There is evidence that the analogous proteins of VSV are responsible for
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synthesis of viral mRNA and capping, methylation, and polyadenylation of
newly synthesized viral mRNAs (12-15). Since the L protein is 5-10 times
larger than the P or NS proteins it may well perform most of these processes.

The complete nucleotide sequences of the L genes of VSV and Sendai
virus, another paramyxovirus, have been determined recently (16-18).
Comparison of those sequences to that of NDV may help us to understand the
functions of the L protein. Here, we report the nucleotide sequence of the L
gene of NDV.

MATERTALS AND METHODS
DNA sequencing

Details of the construction and characterization of cDNA clones to the L
gene of NDV strain Beaudette C have been reported (19). In addition to the
nine clones previously assigned to the L gene, a clone (designated 4.14) was
selected from the colony bank by hybridization with an 868 bp PstI-HindIII
fragment of clone 3.23 which extended the sequence past the 3' end of the L
gene. The dideoxy chain termination method was used for DNA sequencing (20),
but in several instances it was necessary to substitute deoxyguanosine
triphosphate with deoxy-T-deazaguanosine triphosphate (Boehringer Mannheim)
in order to resolve ambiguous regions of the sequence (21). Oligonucleotide
sequencing primers made on an Applied Biosystems model 381A DNA synthesiser
were used in addition to a 17-base universal primer (Pharmacia). The
sequence of both strands of DNA was determined by using M13 mp8, mp9, mp18
and mp19 phage vectors. The sequence data were assembled and analysed using
the computer programs of Staden (22) and Queen and Korn (23).
Mapping of the mRNA 5'terminus

Chick embryo fibroblast (CEF) cells were infected with NDV strain
Beaudette C at a multiplicity of about 50 p.f.u./cell (24). Total cellular
RNA was isolated from cells at nine hours post-infection by phenol extraction
at 70°C. A restriction fragment of plasmid 3.73, which spans the HN/L gene
junction, was isolated from an 8% polyacrylamide gel by electroelution (19).
The restriction fragment extends from an EcoRI site [86-81 bp upstream from
the start of the HN/L intergenic region (25)] to an Xbal site (position 305
to 310, Fig. 1). The 5' termini were labelled with [ 32P] ATP using
polynucleotide kinase. The labelled end at the EcoRI site was removed by
cleavage with HincII [67 bp upstream from the start of the HN/L intergenic
region (25)] to give a 376 bp fragment used for nuclease mapping. Total RNA
from infected or uninfected cells was added to labelled restriction fragment
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6500 6510 6520 6530 6540 6550 6560 6570 6580 6590 6600

Q Q K F Y N KT 1 G N A V K G Y Y S N C D
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6730 6740 6750 6760 6770 6780 6790

Figure 1. Nucleotide sequence of the L gene of NDV strain Beaudette C, and
deduced amino acid sequence of the L protein. The cDNA sequence is shown in
the positive (mRNA) sense. The semi-conserved 11-nucleotide start and 10~
nucleotide polyadenlyation signals are underlined. The deduced amino acid
sequence of the major open reading frame as well as a second, smaller
potential open reading frame, are shown above the nucleotide sequence.

and dried under vacuum on a 'UNIVAP' rotary evaporator and dissolved in 30 ul
hybridization buffer (0.04 M PIPES, pH 6.4, 0.4 M NaCl, 0.001 M EDTA, 80%
formamide). Samples were incubated at 85°C for 15 minutes to denature the
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DNA and then at 50°C for 3 hours to allow hybrid formation, essentially as
described by Maniatis et al. (26). The hybridized products were then diluted
ten-fold into ice-cold nuclease buffer (30 mM Na acetate, 50 mM NaCl, 1 mM
InCl,, 5% glycerol, 0.001% Triton X-100) and incubated for 30 minutes at 37°C
with 50 units of mung bean nuclease. After phenol extraction and isopropanol
precipitation, the DNA fragments protected from nuclease action were analysed
by electrophoresis on 6% denaturing polyacrylamide gels (27). Fragment sizes
were determined by comparison with the migration of polynucleotides of known
length generated by a dideoxy sequencing reaction run in parallel.

RESULTS

The nucleotide sequence and predicted amino acid sequence of the NDV L
gene is shown in Fig. 1. The L gene is 6704 nucleotides long and is presumed
to extend from a typical NDV mRNA transcriptional start site (position 45 to
55) to a typical polyadenylation site (position 6738 to 6748). The sequence
of this mRNA start site 5'-ACGGGTAGGAC-3' matches the consensus sequence 5'-
ACGGGTAGAAG-3' of the mRNA start sites for the NP, P, M, F and HN genes of
NDV at nine of the eleven positions (25,28-31).

The L gene nucleotide sequence contains a very large open reading frame
starting at an ATG codon at position 57 to 59 and continuing to a termination
codon TAA at position 6668 to 6670 (Fig. 1). The sequence around this ATG
codon conforms well to the consensus (5'-purine-N-N-A-U-G-G-3') for
functional initiation codons in eukaryotes (32,33). This open reading frame
encodes a protein of 2204 amino acids with a predicted molecular weight of
2u8822 which is in good agreement with the estimated molecular weight of the
L protein of NDV (220 K), derived from its mobility on SDS gels (5). A small
open reading frame in a different phase starts upstream of the proposed start
site of the L message at the ATG codon position 9 to 11, Fig. 1. Translation
of this small open reading frame would generate a rather hydrophobic
polypeptide of 50 amino acids with a predicted molecular weight of 5.9 K
which does not correspond to any known viral polypeptide.

In an earlier report (25), it was suggested on the basis of a
provisional S1 mapping experiment, that the mRNA start site for the NDV L
gene is at position 1 in the sequence shown (Fig. 1). Using mung bean
nuclease (Fig. 2) we have located the transcriptional start site at position
45 (Fig. 1). A fragment of 264 bp was protected against mung bean nuclease
by RNA from NDV-infected CEF (Fig. 2, lane 2) while no protected bands other
than a trace of the starting material were seen in a control using uninfected
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gggure 2. Mapping of the 5' terminius of the L mRNA. Lane 1: the original

P 5' end-labelled, 376 bp HincII-Xbal restriction fragment (see Methods),
indicated by upper arrow. Lane 2: restriction fragment annealed to the RNA
from NDV-infected CEF cells, mung bean nuclease protected fragment of 264 bp,
indicated by lower arrow. Lane 3: control using RNA from uninfected cells. A
dideoxy sequencing reaction (lanes T,C,G and A) was run in parallel to allow
determination of fragment sizes.
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Figure 3. Dot matrix homology plots of the L amino acid sequences.
Comparisons of NDV with Sendai virus and VSV are shown in (a) and (b),
respectively. In both cases a window of 99 and a proportional score of 1025
were used with the DAIGON computer program (Staden, 1984).
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CEF cellular RNA (Fig.2, lane 3). The sequence resembling the mRNA start
site at base 1 is discussed later.

The polyadenylation site, 5'-TTAGAAAAAAA-3', matches a consensus
sequence reported previously for NDV (19). There is a non-coding region of
70 nucleotides between the end of the long open reading frame and the
proposed polyadenylation site (Fig. 1). Downstream of the proposed
polyadenylation site is another non-coding region of 49 nucleotides which is
discussed later. '

Comparison of the predicted NDV L amino acid sequence to the L amino
acid sequences of Sendai virus (16) and VSV (18) using the dot matrix
homology computer program DIAGON (22) are shown in Fig. 3. The diagonal
lines on the plots suggest extensive homology between the L amino acid
sequences of NDV and Sendai virus (Fig. 3a) and to a lesser extent with that
of VSV (Fig. 3b).

An alignment of the L amino acid sequence of NDV to those of Sendai
virus and VSV is shown in Fig. 4. Gaps were inserted where necessary to
maximise homology. If the extra gaps positioned to align the VSV sequence to
those of NDV and Sendai virus are disregarded, the overall level of amino
acid identities between NDV and Sendai virus is 27% in this alignment but the
proposed sequence alignment can be roughly sub-divided into four regions with
different levels of homology. The first 660 positions (matches plus gaps)
show 24% identity, the second 650 positions show 39% identity, the third 600
positions show 21% identity and the remaining 350 positions show 17%
identity.

Additional gaps must be inserted to align the VSV L amino acid sequence
(residues 226 to 1243) into the sequence alignment (Fig. 4). Two regions of
homology between VSV and the paramyxovirus sequences have been identified
corresponding to amino acids 226 to 581 and 598 to 1243 of the VSV L
sequence. There are 127 positions in which the amino acid residues are
identical in the three proteins. These 'three-way matches' occur in the two
blocks of sequence where the L protein of VSV has been aligned to those of
NDV and Sendai virus. The number of glycine residues conserved in three-way
matches is striking: 19/127 of the three-way matches are glycines (15% of the
total) compared to the overall abundance of glycine in these regions of the
three viral sequences (about 5% in all cases). Lysine and arginine residues
are also present in three-way matches at a somewhat higher level than might
be expected on the basis of their relative abundances.
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Only the central region of VSV

The amino acid sequences are numbered from their N-termini,
(residues 226-1243) which shows good homology to NDV and Sendai virus is

Comparison of the L amino acid sequences of NDV, Sendai virus

At positions where identical amino acids occur the residues are

shown on the left hand side of the figure.

Figure 4.
(Sen) and VSV.

shown.
boxed.

The unmodified L protein has a net charge of +27 at pH 7.0 (assuming a

A

charge of +0.5 on histidine residues) and an estimated pI of 7.28.
hydropathy plot of the NDV L amino acid sequence using the procedure of Kyte

This plot is similar to the

5.

hydropathy plot of the L protein of Sendai virus and to a lesser extent to

and Doolittle (34) is shown in Fig.
that of VSV (data not shown).

The corresponding hydrophilic

derably more extensive in the L protein of Sendai virus but is

absent from that of VSV.

There is a highly hydrophilic region in the

NDV L protein sequence at position 602 to 633.

region is consi

The amino acid alignment of Fig. 4 locates this

have

hydrophilic region in an area where extensive insertions or deletions

The two regions where good homology

can be detected between all three L protein sequences flank this highly

occurred between the various proteins.

variable area.
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Figure 5. Hydropathy plots of the NDV L amino acid sequence. Hydrophobic
regions are above and hydrophilic regions below the horizontal line, which is
the average hydropathy of a large number of sequenced proteins.

DISCUSSION

The nucleotide sequence of the NDV L gene is 6704 nucleotides long and
encodes the L protein of approximately 249 K. Apart from the major open
reading frame of 2204 amino acids, corresponding to the L protein, a second
open reading frame of 50 amino acids is shown in Fig. 1. There is evidence
from a previous S1 nuclease mapping experiment using a labelled fragment
ending at the Tagl site (position 192, Fig. 1) which suggested that
nucleotides 1 and 45 both represented the 5' ends of viral transcripts (25).
If a genuine mRNA start occurred at position 1, corresponding to the sequence
resembling an mRNA start sequence at bases 1 to 11, the resulting mRNA would
encode the smaller open reading frame, which begins at the ATG codon at
position 9 to 11. A sequence of seven A residues follows this open reading
frame (position 218 to 227) and this resembles the consensus NDV
polyadenylation sequence that contains six A residues (25). If such a
transcript did terminate at this site it would not appear as a protected band
in the mung bean nuclease mapping experiment described here (Fig. 2), using a
fragment labelled at the Xbal site (position 309, Fig. 1). Work is now
underway to investigate the possibility of further transcriptional start
sites in the NDV genome. This small hydrophobic, 50 amino acid sequence is
neither homologous to the small hydrophobic (SH) protein recently detected in
SV5 (35) nor to the polypeptides which may be encoded upstream of the L gene
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Figure 6. Comparison of positive strand leader RNA sequence with putative
negative strand leader RNA,

of Sendai virus (17) and at present there is no evidence that this
polypeptide is generated.

We have also mapped the 5' end of the HN mRNA using mung bean nuclease.
The results indicate that there is a 31 bp intergenic region between the F
and HN genes, rather than the dinucleotide intergenic region which was
previously proposed on the basis of sequence homology (19). These results
agree with the recently published sequence of HN from the B1 strain of NDV
(31). At the junction of the F and HN gene there is, however, a similar
situation to that described at the HN/L junction. A sequence resembling an
mRNA start sequence in the non-coding region is followed by an open reading
frame of 41 amino acids that overlaps HN, which in turn is followed by a
sequence of six A residues (25). The significance of these overlapping
reading frames at the F/HN and HN/L junctions is not yet clear.

The complementary sequence to the non-coding region at position 6749 to
6777, downstream of the polyadenylation site, is compared to the positive
strand leader RNA sequence of NDV (36) in Fig. 6, and may be part of a
negative strand leader RNA similar to that demonstrated for VSV (37).
Approximately 50% of the bases are identical including ;)ine of the thirteen
most 3' proximal residues. These sequences could act as signals for
termination of transcription in both positive strand and putative negative
strand leader RNAs. The positive and negative strand leader RNAs of Sendai
virus are identical in eleven of the twelve most 5' proximal bases (14,38).
The six most 5' proximal bases found in the positive strand leader of NDV
(36) do not show homology to our sequence (Fig. 6) which suggests that our
clone (4.14) may not quite reach the 5' terminus of the NDV genome.

In our alignment of the three L amino acid sequences (Fig. 4) the
central region (position 634 to 1283 of NDV) is 39% conserved between NDV and
Sendai virus, compared to approximately 20% conservation of the viral NP, M,
F and HN proteins (25,28-30) and is thus probably the most highly conserved
viral protein sequence, given the known variability of the P proteins (39).
Four peptides that show strong homology between the three viruses are located
in the NDV sequence at positions 543 to 554 (7/12 three-way matches), 715 to
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725 (7/10 three-way matches), 749 to 755 (6/7 three-way matches) and 1192 to
1199 (5/8 three-way matches). The region corresponding to positions 543 to
560 of the NDV L protein was identified by Morgan and Rakestraw (17) as being
a well conserved region between Sendai virus and VSV.

The L protein of NDV is probably multifunctional in the processes of
viral transcription and replication, perhaps including initiation,
elongation, termination, polyadenylation, capping and methylation activities,
as has been shown for VSV (12-15). It may be that the regions of high
homology between NDV, Sendai and VSV are those that perform functions common
to all the L proteins. These conserved regions could act as catalytic sites
or binding sites for small host metabolites, while the variable regions of L
may be those that interact with other viral proteins such as P or NS. The P
and NS proteins are themselves known to be highly variable and appear to
mutate at a high frequency (39,40). None of the well conserved regions that
we have detected, match any of the presently identified consensus sequences
for nucleotide-protein interacting sites, although the sequences Gly-Gly-Ile-
Glu-Gly (NDV positions 715 to 719) and Gly-Ser-Lys-Thr (NDV positions 1194 to
1197) are reminiscent of the ATP binding sites with the consensus sequence
Gly-X-Gly-X-X-Gly and Gly-Lys-Thr/Ser respectively (41-43),

Conserved regions which are present in all three viral sequences may
have important enzymatic or conformational functions. Conserved glycines may
be important in maintaining protein structure, as glycines occur at tight
turns around alpha-helices or between the strands of beta-sheets (43-45).
The abundance of conserved glycines in the regions of homology between NDV,
Sendai virus and VSV L proteins suggests similar conformations in these
regions. For example, the conserved region in the amino acid alignment
corresponding to NDV positions 531 to 594 is predicted to be rich in alpha-
helix (44). The conserved Gly-Arg-(hydrophobic) residues within this region
(at position 551 to 553 in the NDV sequence) could form a turn in this
largely alpha-helical part of the L proteins. This region could thus have a
conformation of helix-turn-helix similar to that present at the DNA binding
site of several bacterial repressor proteins (45), and could be important in
the interaction of the L proteins with viral RNA.

The above considerations suggest that most of the RNA synthetic and
modification activities are located in the N-terminal two-thirds of the L
protein. The strongly hydrophilic region extending from position 602 to 633
in the NDV L protein, which is variable amongst the three viruses, is located
between the two regions conserved in all three sequences and may form a

3974



Nucleic Acids Research

bridge linking these two conserved regions, which could thus be considered as
separate domains. The domain nearer the C-terminus is more highly conserved
than the domain nearer the N-terminus (39% and 26% identities between NDV and
Sendai virus; 14% and 9% three-way matches, respectively). The most variable
regions of the L proteins are located at the C-terminal third of the
sequences. These regions may have virus-specific functions such as
interactions with the respective NP and P or NS polypeptides.

The amino acid sequence homologies detected between the L proteins of
the two paramyxoviruses NDV and sendai virus and the rhabdovirus VSV, are
evidence that an evolutionary relationship exists between the Paramyxoviridae
and Rhabdoviridae, and strongly suggests that these groups of viruses have
evolved from a common ancestor.
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