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Microglia, which contribute substantially to the tumor
mass of glioblastoma, have been shown to play an im-
portant role in glioma growth and invasion. While a
large number of experimental studies on functional
attributes of microglia in glioma provide evidence for
their tumor-supporting roles, there also exist hints in
support of their anti-tumor properties. Microglial activ-
ities during glioma progression seem multifaceted. They
have been attributed to the receptors expressed on
the microglia surface, to glioma-derived molecules
that have an effect on microglia, and to the molecules
released by microglia in response to their environment
under glioma control, which can have autocrine
effects. In this paper, the microglia and glioma literature
is reviewed. We provide a synopsis of the molecular
profile of microglia under the influence of glioma in
order to help establish a rational basis for their potential
therapeutic use. The ability of microglia precursors to
cross the blood–brain barrier makes them an attractive
target for the development of novel cell-based treatments
of malignant glioma.
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M
alignant gliomas are among the most common
brain tumors. They are characterized by mor-
phological and genetic complexity, and they

infiltrate diffusely into normal brain parenchyma.1

This feature renders all current therapeutic strategies in-
effective, and patients show significant mortality, with a
life expectancy of only 14 months on average from the
time of diagnosis in the case of glioblastoma multiforme
(GBM) despite multimodal therapy.2–5 Furthermore,
conventional strategies are limited by nonspecific

damage to surrounding normal brain tissue.6 A wide
range of other therapeutic strategies, including immuno-
therapy and gene therapy, have been tried or are under
evaluation. However, until today none of these has
proven effective. As a result, there is a pressing need
for better therapies that enable precise targeting of
glioma cells while sparing the neighboring normal tissue.

Within a glioma, microglia/macrophages make up
the largest population of tumor-infiltrating cells, con-
tributing at least one third of the total tumor mass.7–10

These glioma-infiltrating microglia/macrophages (the
macrophage phenotype may predominate) are present
in both intact glioma tissue and necrotic areas,8 and
their density in gliomas is positively correlated with
glioma grade and invasiveness.11,12 There is compelling
evidence that microglial cells are involved in creating a
microenvironment that favors glioma growth.11–16

Specifically, glioma invasion12,17–19 and the establish-
ment of an immunosuppressive milieu20,21 are facilitated
by the presence of intratumoral microglia. However,
the precise molecular mechanisms underlying these
phenomena have remained unclear. Elucidation of the
molecular profile of microglia, including the receptors
they express and the molecules they release in response
to the microenvironment created by glioma, will not
only help to unravel the role of microglia in glioma,
but also lead to the design of more effective treatment
options for these fatal tumors. In this review, we
detail the known molecular mechanisms that govern
microglia–glioma interactions.

Glioma and Microglia: Worse than
a Symbiosis

The presence of microglia in brain tumors was first
reported by Rio-Hortega and Asua in 1921,22 and
Penfield in 192523 provided the first detailed description
of “microglia and the process of phagocytosis in
gliomas.” However, the true extent of microglial infiltra-
tion in both animal and human glioma was not widely
appreciated until recently.9,10,24–29 The initial actions
of glioma-infiltrating microglia, as the resident
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macrophages of the CNS, would be expected to be mi-
gration to the tumor site for rescue and display of prop-
erties similar to peripheral macrophages, such as
phagocytosis, antigen presentation, and release of cyto-
kines/chemokines as well as cytotoxins.30–33

However, such glioma-cytotoxic effects of microglia
have been observed in vitro only.34,35 Most in vivo
studies report that microglial cells actually promote
glioma cell migration and growth.10,16 Interestingly, a
recent study by Voisin et al. found that microglia were
in an activated state with phagocytic activity within
the first 3 h of co-culture with C6 glioma cells.36

However, these microglia lost their phagocytic proper-
ties when in longer contact with glioma cells, ie., after
6 h of co-culture.36 This and other experimental
work16 have provided evidence in support of the view
that the defense and immune functions of microglia are
suppressed and controlled by the glioma. Other studies
even suggest that in case of glioma, microglia acquire a
distinct phenotype that is induced by the tumor cells
and is different from the inflammatory pheno-
type.11,12,37 Microglia under the influence of glioma do
not release pro-inflammatory cytokines that could help
fight tumors; instead they exhibit upregulation of
metalloprotease-II, which facilitates tumor invasion.38

Moreover, they have been found to secrete matrix metal-
loproteinase (MMP)–9,39 epidermal growth factor
(EGF),40 and vascular endothelial growth factor
(VEGF),41,42 which are all known to promote tumor
proliferation. In addition, microglia in glioma release
interleukin (IL)-10, which helps to create an immunosup-
pressive microenvironment.7,20,21,43 In turn, receptors
expressed by glioma-infiltrating microglia including
EGF receptor (EGFR) and Met, enable them to receive
signals from the tumor, via EGF and hepatocyte growth
factor/scatter factor (HGF/SF), which further increases
glioma invasion and migration. Gliomas also promote
the recruitment and proliferation of microglia by
releasing monocyte chemoattractant proteins 1 and 3
(MCP-1 and MCP-3), granulocyte macrophage
colony-stimulating factor (GM-CSF), and granulocyte
colony-stimulating factor (G-CSF).44–46 Even the arma-
ment of microglia is tactically employed by glioma cells
to facilitate their survival, growth, and spread.47

Therefore, the close physical association of microglia
and tumor cells in a glioma seems to suggest a symbiotic
relationship, but it is actually highly skewed to the advan-
tage of the glioma. As a result, microglia that infiltrate a
glioma lose their defense and immune functions.

Sources of Microglia in Glioma

Developmental Aspects

The origin of microglia and whether and how they renew
in healthy adult brain have been controversial for more
than a century. A recent experimental study by Ginhoux
et al.48 appears to have brought previous long-running
disputes to an end. Based on the expression pattern
of the runt-related transcription factor 1 (Runx-1),

Ginhoux and colleagues used a genetic pulse-labeling
strategy to identify yolk sac macrophages between embry-
onic days 6.5 and 10 and found that adult microglia arise
from yolk sac macrophages present between embryonic
days 7.25 and 7.5 and enter the embryo right after vascu-
larization at day 8, before primitive or definitive hemato-
poiesis starts in the embryo. These experiments establish
that during development, microglia originate from a
single population of extra-embryonic yolk sac macro-
phages, which are distinct with respect to the postnatal
hematopoietic origin of other tissue macrophages and
the fact that their numbers in the adult brain are main-
tained independently of circulating hematopoietic cells.
Also in contrast to monocytes, microglia seem to depend
during development on growth factor receptor colony-
stimulating factor (CSF)–1R and its recently identified
ligand, IL-34,49 rather than CSF-1, in keeping with the
presumed distinct ontogeny of microglia.48

Origin of Tumor-Associated Macrophages
and Microglia

Despite the fact that the vast majority of microglia in the
healthy adult brain have to be considered yolk sac–
derived, there remains the burning question as to
whether microglia in the diseased brain can develop at
least in part from other sources, such as bone marrow.
This is of great interest because there may be functional
differences between microglia from different sources
and, consequently, different treatment targets once cel-
lular and genetic therapies for glioma have become real-
ities. The idea of a possible “on-demand influx” of bone
marrow–derived microglia precursors into the diseased
brain is in keeping with the observation that microglia
express several properties usually seen in stem cells and
bone marrow progenitors. Both in vivo and in vitro
studies on microglia that proliferate under pathological
conditions demonstrate that microglia in diseased CNS
harbor at least one phenotypic marker of bone marrow
myeloid progenitors: CD34, the stem and progenitor
cell antigen.50,51 Moreover, a varying degree of recruit-
ment of bone marrow–derived precursors that colonize
the CNS and transform into ramified microglia under
different pathological conditions has been observed, in
experimental models of stroke,52 brain ischemia,53,54

multiple sclerosis,55 Parkinson’s disease,56 Alzheimer’s
disease,57 and others.58–60 Notably, such microglia en-
graftment originating from bone marrow precursors in
the adult diseased brain not necessarily associated with
disruption of the blood–brain barrier (BBB) occurs
only under defined host conditions. The use of irradi-
ation chimeras for assessing microglia turnover has
been questioned because irradiation itself can damage
the BBB and augment or even cause cell infiltration.61 A
recent study by Alshakweer et al. has provided evidence
in support of the view that bone marrow–derived micro-
glia give rise to tumor-infiltrating microglia/macrophages
in pilocytic astrocytoma in the absence of irradiation.62

This finding is matched by experimental results demon-
strating that both bone marrow–derived macrophages
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and resident microglia invade glioma.63 Thus, microglial
cells populating glioma indeed originate from at least 2
sources: intrinsic parenchymal microglia and microglia
freshly derived from their bone marrow precursors in
the blood.8 It should be noted that polarization properties
may specifically distinguish the 2 populations of cells.64

Whether tumor stem cells in glioma can give rise
to intratumoral microglia/macrophages potentially
representing a third source is unknown at present.65

Microglia in nondiseased CNS should be referred to as
resident or ramified microglia rather than resting66

microglial cells.

Glioma: Taking Control of the Microglia

Glioma-Derived Factors Contributing to the
Establishment of an Immunosuppressive Tumor
Environment

Transforming growth factor–b.— TGF-b is the
best-characterized soluble immunosuppressive cytokine
secreted by gliomas. TGF-b protein exists in at least 3
different isoforms in humans: TGF-b1, TGF-b2, and
TGF-b3. These isoforms utilize different cell surface
mechanisms to elicit distinct intracellular responses.67

TGF-b isoforms 1–3 are differentially expressed in
glioma cell cultures68,69 and human glioma tissues,70

with TGF-b2 as the most abundant isoform upregulated
in GBM.69,71 TGF-b2 has been implicated in glioma-
associated immunosuppression,71 whereas TGF-b1 has
been shown to act as a stimulator of glioma cell motil-
ity.72 Significantly, TGF-b inhibits development and ac-
tivation of antigen-presenting cells, including microglia,
represses natural killer (NK) cells, and prevents the acti-
vation and differentiation of cytotoxic T cells.73–76 The
mechanism underlying TGF-b–evoked immunosuppres-
sion may include the downregulation of major histocom-
patibility complex (MHC) class II antigen expression on
microglial cells,77 as well as deactivation of microglia as
phagocytic cells.78 It is thus believed that glioma-derived
TGF-b induces glioma-infiltrating microglia to shift to a
distinct tumor supportive phenotype.79 Recently, Crane
and colleagues80 reported that TGF-b downregulates the
activating receptor NKG2D, which is expressed by NK
cells and CD8+ T cells and has a role in the specific
killing of transformed cells in glioma patients. In add-
ition to its immunosuppressive function, glioma-derived
TGF-b promotes tumor cell migration and invasion by
inducing MMP expression, suppressing expression of
the tissue inhibitor of metalloproteinase,81–83 assisting
neovascularization of tumor tissue by TGF-b–mediated
expression of angiogenic factors, such as VEGF and
fibroblast growth factors (FGFs),84–86 and stimulating
tumor cell proliferation by means of increasing
expression of EGFR.87 A recent study supported the
invasion-promoting role of TGF-b by showing that
glioma-initiating cells (glioma stem cells) pretreated
with TGF-b signaling inhibitor were less aggressive
and showed less lethal potency in an intracranial trans-
plantation assay.88 This finding was confirmed by an in

vivo study using neutralizing TGF-b antibody that was
shown to reduce invasion of the glioma cells into the
adjacent normal brain.89

Prostaglandin E2.— PGE2 is a small lipid-soluble
molecule that is produced by both immune-competent
cells and tumor cells. Glioma cells have been shown to
release significant amounts of PGE2 in vitro and in
vivo, compared with PGE2 synthesis in normal
brain.90–92 Importantly, elevated levels of PGE2 in
glioma were found to downregulate the activity of
lymphokine-activated killer (LAK) cells93 and the
surface expression of MHC class II, human leukocyte
antigen (HLA)–DR, on antigen presenting cells such as
microglia and dendritic cells.94,95 Moreover, the
increased production of PGE2 by glioma is also asso-
ciated with suppression of T-cell activation and prolifer-
ation.96,97 Regulatory T cells are induced by PGE2.98 In
sum, PGE2 plays an important role in the generation of
an immunosuppressive milieu in glioma. Furthermore,
PGE2 promotes glioma cell proliferation via a signaling
pathway involving activation of protein kinase A.99,100

With regard to the cellular source of PGE2 in glioma,
microglia have been found to produce PGE2 when
co-cultured with glioma cells or conditioned glioma
medium, strongly suggesting that microglia contribute
to local immunosuppression by glioma.101 PGE2 biosyn-
thesis is regulated by inducible membrane-associated
PGE2 synthase cyclooxygenase-2 (COX-2) and micro-
somal PGE synthase (mPGES)–1.102,103 Abnormal ex-
pression of COX-2 and mPGES-1 has been detected in
human glioma,100,104 and conditioned glioma medium
was found to enhance the expression of COX-2 and
mPGES-1 in microglial cells.101 Thus, the mechanism
underlying the elevated level of PGE2 in glioma could
be related to the increased production of COX-2 and
mPGES-1 in microglia, although the exact mechanism
has remained obscure.

Fas ligand.— FasL, or CD95L, is a 42-kDa trans-
membrane protein that belongs to the TNF family.
When bound to its receptor, Fas (CD95/APO-1), FasL
initiates an intracellular signaling cascade that leads to
the induction of apoptosis in Fas-expressing cells. Fas–
FasL ligation has been suggested to be one of the main
pathways mediating programmed cell death in a
variety of cell types.43 FasL has been detected on the
surface of human glioblastoma cells and was also
found to be expressed by rat glioma cell lines 9L, F98,
and C6.105 Both microglia and activated T cells
express Fas and thus may be susceptible to a death
signal delivered by functionally active FasL expressed
on astrocytoma cells.106–108 In line with this, Jansen
and colleagues105 recently reported that FasL was re-
sponsible for the death of T lymphocytes when
co-cultured with glioma cells in vitro. These authors
also demonstrated that downregulation of FasL expres-
sion in glioma cells enhances tumor infiltration of T
cells and inhibits tumor growth in vivo.105 Thus, it
is now recognized that FasL expressed in tumors
contributes to local immunosuppression and evasion
of immune surveillance by inducing apoptosis of
Fas-expressing T cells. In contrast, there is so far no
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evidence that glioma-derived FasL induces the apoptosis
of microglial cells despite the presence of Fas on micro-
glia.106 In addition, FasL also functions in the regulation
of glioma motility and invasion. Blocking of Fas signal-
ing has been found to impair MMP-2 activity, resulting
in a reduction of glioma invasiveness and motility.109

Moreover, Choi and colleagues110 found that Fas liga-
tion induces expression of intercellular adhesion mol-
ecule 1 (ICAM-1) in human astrocytoma cells and
postulated that FasL may induce angiogenesis in
glioma. Glioma cancer stem cells (gCSCs) were found
to be resistant to Fas-induced apoptosis, suggesting
that gCSCs are an important factor of resistance to
chemotherapy.111 Therefore, targeting endogenous
FasL in glial malignancies could enhance the efficacy
of immune-based treatment strategies.

Role of Signal Transducer and Activator of Transcription
Protein 3 in Mediating Immunosuppressive Effects
in Glioma

Signal transducer and activator of transcription protein
(STAT)3 is a member of a transcription factor family,
which is encoded by the STAT3 gene in humans.
STAT3 activation causes expression of genes that play
important roles in mediating the signals of cytokines
and growth factors involved in cell growth, prolifer-
ation, differentiation, and apoptosis.112,113 STAT3 was
first implicated in glioblastoma pathology through
studies demonstrating that STAT3 is constitutively acti-
vated in GBM cell lines as well as human GBM
tissue.114–117 STAT3 activation has been found to
reduce the expression of MHC class II molecules,
CD80, and CD86 in hematopoietic cells and glioma-
infiltrating microglia.118 In addition, STAT3 activation
has been implicated in inhibiting the T-cell response
against glioma.119 When STAT3 activation was in-
hibited, gCSC-induced IL-10 production in glioma-
infiltrating microglia was reduced, and gCSC-dependent
inhibition of phagocytosis by glioma-infiltrating micro-
glia was also reversed.79 STAT3 thus appears to be a
key mediator of immunosuppression in glioma. Apart
from its role in immune evasion, STAT3 also contributes
to gliomagenesis and progression. STAT3 activation is
required for glioma growth120 and for proliferation and
maintenance of gCSCs.121 Inhibition of STAT3 has
been shown to suppress proliferation and growth and to
induce apoptosis in glioblastoma cells both in vitro122

and in vivo.123 Moreover, inhibition of STAT3 has also
been found to enhance radiosensitivity of glioma.124

Many factors found in glioma, including IL-10, IL-6,
EGF, and FGF, are activators of STAT3. IL-6 was found
to induce STAT3 activation in glioma cell lines125 and in
mouse models.126,127 Furthermore, oncostatin M, a
member of the IL-6 cytokine family, increases the
STAT3-depedent expression and activation of VEGF
and MMP-9 in human astrocytoma cell lines.128,129 It
is thus reasonable to postulate that IL-6 derived
from glioma cells functions in tumor invasion and angio-
genesis, at least in part through its activation of STAT3.

There is also evidence to support a role for EGFR in
glioblastoma-associated STAT3 activation. EGFR is
amplified in approximately 50% of GBMs, and in
about 50% of these amplified cases the GBMs express
EGFRvIII, a mutant EGFR that lacks a portion of the
extracellular ligand-binding domain. EGFRvIII was
shown to be persistently autophosphorylated at low
levels,130 resulting in inefficient EGF signal attenuation
and persistent activation of downstream kinase path-
ways, including those involving STAT3, Ras/MAPK,
and Akt.131 Moreover, as a downstream transcriptional
target of FGF receptor, STAT3 can be activated by FGF
via the FGF receptor.132 Interestingly, STAT3 target
molecules, such as IL-10, can also activate STAT3 in
various cells. Therefore, a feed-forward mechanism
appears to account for the constitutive activation of
STAT3 in glioma cells and glioma-infiltrating microglia
so that these STAT3-regulated molecules and
STAT3-regulating molecules continue to accumulate.
However, gene mutations of STAT3 have not been
detected in glioblastoma. Aberrant STAT3 activity may
also be caused by dysregulation of upstream tyrosine
kinases or loss of negative feedback.133 Therefore, in
spite of the fact that multiple cytokines and growth
factors may contribute independently to glioblastoma
pathology, substantial data gathered from cell lines,
rodent models, and patient samples support a role for
STAT3 as a critical “molecular hub” that links multiple
pathways involved in glioblastoma pathology. 133

Polarization of Microglia (M2)

Heterogeneity of macrophage activation provides a basis
for the conceptual classification of macrophages into 2
polarized functional categories: M1 (classically acti-
vated macrophages) and M2 (alternatively activated
macrophages). As illustrated in Fig. 1, these 2 types of
macrophage functional states differ in terms of activat-
ing signals, cytokine/chemokine production, receptor
expression, and biological effects. Originally, macro-
phages were found to be activated by exposure to micro-
bial products, such as lipopolysaccharides, along with
exposure to interferon gamma (IFNg). Activated type
1 polarized macrophages are characterized by preferen-
tial production of high levels of pro-inflammatory cyto-
kines, such as IL-12, and oxidative metabolites, such as
nitric oxide (NO),134 and by displaying elevated expres-
sion levels of MHC class II and co-stimulatory molecules
CD80 and CD86.135 Thus, these macrophages, which
are also referred to as classically activated macrophages,
exhibit potent microbicidal/tumoricidal activities but
also cause damage to healthy tissue as a side effect.136

The first hint to the existence of alternatively activated
macrophages came in the early 1990s, when Gordon
and colleagues137 treated macrophages with IL-4 and
IL-13 in a study examining the regulation of mannose re-
ceptorexpression on elicited macrophages. Theyobserved
signs of macrophage activation; however, these macro-
phages exhibited diverse biological properties that were
clearly distinct from those of their classically activated
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counterparts. These M2 cells typically produce anti-
inflammatory cytokines, such as IL-10, and show a
lower level of NO production. Furthermore, although
they still upregulate the expression of MHC class II mole-
cules, they are not efficient at antigen presentation. In con-
trast, M2 macrophages have been found to promote tissue
remodeling, angiogenesis, and repair and act to suppress
tissue-destructive immune reactions.138 The key deter-
minant in polarizing macrophages is the microenviron-
ment in which they dwell, and the latter selectively
induces specific M1 or M2 functional programs.136

Polarization of glioma-infiltrating microglia toward
the M2 phenotype has been well documented both in
vitro and in vivo. Rodrigues et al.139 reported that per-
ipheral blood mononuclear cells (PBMCs) exposed to
glioma, which were obtained from either normal
donors or glioma patients, acquire immunosuppressive
properties. This includes reduced expression of CD14

(but not of CD11b); increased expression of immuno-
suppressive IL-10, TGF-b, and B7-H1; decreased phago-
cytic capacity; and the increased ability to induce
apoptosis in activated lymphocytes when monocytes
were exposed to glioma cells in vitro. In addition, Wu
and colleagues79 have demonstrated that gCSC-
conditioned medium polarizes glioma-infiltrating micro-
glia toward an M2 phenotype. These M2-polarized
microglia in glioma exhibited reduced phagocytic activ-
ity and secretion of immunosuppressive cytokines, such
as IL-10 and TGF-b, and were less capable of stimulat-
ing T-cell proliferation. This is in line with previous
findings by Hussain et al.140 that glioma-infiltrating
microglia do not secrete the pro-inflammatory cytokines
IL-1b and TNF-a that play a critical role in the develop-
ment of effective innate immune responses nor are
capable of mediating an anti-tumor adaptive immune re-
sponse.37 It is believed that glioma-derived molecules

Fig. 1. Microglia in glioma are polarized. M1 (classically activated macrophages) and M2 (alternatively activated macrophages) differ with

respect to activating signals, receptor expression, cytokine/chemokine production, and biological behavior. When mononuclear/phagocytic

cells are stimulated by IFNg, lipopolysaccharides, and other microbial products, they differentiate into the M1 phenotype. Microbial products

are recognized by PRRs on the surface of M1, such as TLRs, and stimulate the production of pro-inflammatory cytokines as well as the

expression of receptors that are involved in antigen presentation. When mononuclear/phagocytic cells are activated by IL-4, IL-13,

IL-10, and M-CSF, they differentiate into the M2 phenotype. Tumor-derived molecules, such as TGF-b and M-CSF, can polarize

glioma-infiltrating microglia/microphages (MMs) toward the M2 phenotype and accordingly stimulate the production of

anti-inflammatory molecules. Some other glioma-derived molecules, such as MCP-1 and VEGF, can recruit myeloid cells into the tumor site.
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such as TGF-b, macrophage (M)-CSF, IL-10, and IL-4
induce the shift of glioma-infiltrating microglia toward
the M2 phenotype.141,142 This view is supported by
the following in vivo studies. Using a mouse model,
Gabrusiewicz et al.63 recently demonstrated that
glioma-infiltrating microglia acquire the M2 phenotype
in vivo, as evidenced by upregulation of IL-10 and
GM-CSF, as well as the increased expression of genes
characteristic for the alternative and pro-invasive pheno-
type of glioma-infiltrating microglia, arginase 1 (Arg-1),
membrane type 1 metalloprotease (MT1-MMP), and che-
mokine (C-X-C motif) ligand14 (CXCL14). Furthermore,
M-CSF expression in glioma cells was found to correlate
with the expression of CD163 in glioma-infiltrating micro-
glia in vivo, supporting the role of glioma cells in microglia
polarization.143 Specifically, expression of CD163 and
CD204, both of which are considered M2 macrophage
markers, by microglia/macrophages infiltrating glioma
was significantly higher in grade IV glioma when com-
pared with World Health Organization grades II and III
glioma, indicating that polarization of glioma-infiltrating
microglia toward the M2 phenotype correlates with a
more malignant histologic grade.143 Taken together,
glioma-derived factors are able to “educate”
glioma-infiltrating microglia to acquire the M2 phenotype
and thus create a favorable microenvironment for glioma
growth.

Molecules Promoting the Proliferation of Microglia

M-CSF, also known as CSF-1, is a growth factor that was
found to be expressed in mice and human glioma tissues
as well as GBM cell lines.40,144 The M-CSF receptor
(R), encoded by the c-fms proto-oncogene, is the main re-
ceptor for M-CSF145 and is expressed on microglial
cells146 and possibly on neurons.147 Increased M-CSFR
expression in activated microglia has been reported
following mouse facial nerve axotomy146,148 and cere-
bral ischemia147 and in a transgenic mouse model of
Alzheimer’s disease.149 Furthermore, M-CSFR overex-
pression was found to result in microglial cell prolifer-
ation and increased expression of inducible NO
synthase, pro-inflammatory cytokine IL-1a, macrophage
inflammatory protein (MIP) 1a, IL-6, and M-CSF
itself.150 A recent study employing the rat facial nerve
axotomy model reported that the expression of M-CSF
in microglia was upregulated, which triggered increased
expression of M-CSFR in microglia.151 This autocrine
loop between M-CSF and M-CSFR in microglia appar-
ently underlies the proliferation of microglia in this
model.151 Despite the fact that there is so far no evidence
for the expression of M-CSFR on glioma-infiltrating
microglia, the production of M-CSF by glioma cells and
the presence of M-CSFR on activated microglia151 raise
the possibility of a paracrine loop that could promote
intratumoral proliferation of microglia in glioma.
Papavasiliou et al.152 demonstrated the existence of a
paracrine loop in medulloblastoma, reporting that the
tumor cells expressed M-CSF but not M-CSFR, and
microglia treated with media conditioned by serum-free

medulloblastoma significantly increased their prolifer-
ation in vitro. In addition, M-CSF and M-CSFR paracrine
communication between GBM and microglia has been
confirmed by a recent in vivo study, which further indi-
cated that blockade of M-CSFR signaling reduces the
number of glioma-infiltrating microglia and thus
GBM invasion.40 It is noteworthy that expression of the
M-CSF gene may result in 2 different isoforms of
the M-CSF protein, ie., the secreted form (sM-CSF) and
the membrane-bound form (mM-CSF), which elicit differ-
ent effects on glioma-infiltrating microglia. Glioma-
derived sM-CSF promotes tumor invasion by stimulating
the proliferation and recruitment of glioma-infiltrating
microglia.144 In contrast, expression of mM-CSF by
tumor cells elicits anti-glioma activity in microglia, stimu-
lating direct tumor cell killing and antigen processing.153–

155 Disruption of internal potassium ion homeostasis in
mM-CSF–expressing glioma cells through channel
activation of functional big potassium (BK) may represent
an alternative mechanism underlying the mM-CSF–
mediated anti-glioma activity of microglia.156

Furthermore, GBM-derived sM-CSF induces polarization
of glioma-infiltrating microglia toward the immunosup-
pressive M2 phenotype, which increases proliferation
and migration of glioma cells.143 This finding was
further corroborated by a recent study on gCSCs, which
are demonstrated to also produce sM-CSF that can drive
polarization of microglia toward the M2 phenotype.79

Molecules Controlling the Recruitment/Migration
of Microglia

Chemokine (C-C motif) ligand 2.— CCL2, introduced
earlier in this paper as MCP-1, is a protein belonging
to the CC chemokine family, encoded by the CCL2
gene. By binding to chemokine (C-C motif) receptor 2
(CCR2), MCP-1 induces the migration of monocytes,
memory T cells, and dendritic cells to sites of tissue
injury, infection, and inflammation. MCP-1 has been
found to be produced by glioma cells,45,157,158 and its
expression is positively correlated with microglial infil-
tration of human gliomas.159 This is in keeping with
the results of an in vivo study by Platten et al.,158

which provided direct experimental evidence that
MCP-1 expression promotes the recruitment of micro-
glial cells to the site of glioma. MCP-1 is therefore con-
sidered a critical chemoattractant for glioma-infiltrating
microglial cells. Furthermore, MCP-1 expression is
correlated with the grade of malignancy,160 and
MCP-1–expressing gliomas appear more anaplastic
and vascularized than control tumors.158 These studies
suggest that the expression of MCP-1 by glioma cells
not only induces the recruitment of microglial cells to
the site of glioma, but also promotes tumor growth
and neo-angiogenesis as a consequence of local infiltra-
tion of microglia. Interestingly, while causing migration
and proliferation of microglia, MCP-1 does not appear
to directly activate an inflammatory response in micro-
glia,161 and the authors concluded that other factors
may be necessary to cause the changes that result in
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the neuronal damage commonly observed in situations
where MCP-1 levels are elevated. MCP-1 may stimulate
CCR2-bearing microglia to produce and secrete IL-6,
which in turn acts on glioma cells to promote their
invasiveness.162

Hepatocyte growth factor/scatter factor.— HGF/SF
is a protein functioning through its exclusive receptor,
tyrosine kinase c-Met. In the case of GBM, HGF/SF
and c-Met are expressed by both tumor cells and micro-
glial cells.163–165 Glioma-derived HGF/SF is able to
chemotactically attract isolated microglial cells
in vitro,163 which suggests that it has a role in microglia
chemotaxis in glioma in vivo. In addition, glioma-
derived HGF/SF and c-Met have emerged as crucial
determinants of glioma growth and angiogenesis. The
expression levels of HGF/SF and c-Met in glioma cells
increase with the grade of malignancy.164,165 This auto-
crine HGF/SF–c-Met signaling loop in glioma has been
demonstrated to be associated with tumor invasion and
proliferation both in vitro164,166–168 and in vivo.169

Furthermore, HGF/SF has been shown to be a potent
angiogenic molecule.167,170 The angiogenic activity of
HGF/SF is mediated either through direct actions on
brain tumor endothelial cells (including stimulation of
cell migration, proliferation, protease production, inva-
sion, and organization into capillary-like tubes167) or
through induction of VEGF expression and secretion in
malignant glioma cells.171 Hypoxia can induce c-Met
expression in glioma cells,172 whereas gangliosides and
TGF-b have been found to stimulate the production of
HGF/SF in human glioma cells.173 Radiation enhances
HGF/SF secretion, resulting in increased angiogenic po-
tential of the tumor, which may be a factor in the radio-
resistance of glioma.174 Accordingly, Buchanan and
colleagues175 recently reported that modulation of Met
signaling with anti-HGF monoclonal antibody–
AMG102 is able to increase the radiosensitivity of
glioma cells, raising the possibility of a novel radiation
sensitizing strategy. Inhibition of c-Met further enhances
the chemosensitivity of glioma cell lines.176

Vascular endothelial growth factor.— VEGF is a sig-
naling protein that is important for stimulating vasculo-
genesis and angiogenesis. Glioma cells constitutively
secrete large amounts of VEGF,42,177 and the level of
VEGF production in glioma increases with the degree
of tumor malignancy.178,179 Thus, VEGF is considered
to play a pivotal role in glioma growth. One possible
mechanism underlying the VEGF glioma-promoting
function is its chemotactic effect on microglial cells.
VEGF has been found to induce the migration and pro-
liferation of microglial cells that express VEGFR-1 in
vitro.180 Thus, it is likely that glioma-derived VEGF at
least in part accounts for infiltration of microglia into
glioma. Significantly, VEGF also contributes to the
recruitment of bone marrow–derived cells.181 Kerber
et al.15 reported that inducing VEGF overexpression in
glioma tissues leads to a substantial infiltration of bone
marrow–derived microglia/macrophages in vivo, and
there was a 3.1-fold increase in infiltration compared
with tumors created by implantation of wild-type
glioma cells.

One well-known mechanism underlying the VEGF
glioma-promoting function is the major role VEGF
plays in angiogenesis in glioma. Endothelial cells in the
vicinity of a glioma coexpress both VEGFR-1 and
VEGFR-2, which serve a paracrine-signaling loop with
glioma-derived VEGF that stimulates endothelial cell
migration and proliferation and consequently new
blood vessel formation.181,182 This finding confirms the
results of a previous study on primary brain tumors,
which demonstrated that VEGF expression was corre-
lated with vascularization in gliomas.178 Glioma
cancer stem cells have been proposed to be critical in sus-
taining tumor progression due to their capacity for self-
renewal and their proliferative potential. Folkins and
colleagues183 found that tumors high in gCSCs express
increased levels of VEGF and exhibit increased micro-
vessel density and blood perfusion, as well as increased
mobilization and recruitment of bone marrow–derived
endothelial progenitor cells into the tumor. Blockade
of the VEGF–VEGFR pathway alone or in combination
with cytokines such as IL-6 has been reported to inhibit
tumor growth.184

Abnormal energy metabolism is one feature of glioma.
Glioma cells require a higher rate of glucose and glutam-
ine uptake and metabolism than normal to maintain their
survival and growth.185–188 Significantly, human glioma
cells secrete glutamate,189,190 and high glutamate secre-
tion conveys a growth advantage.191 Therefore, glutam-
ate release is thought to contribute to glioma spread as
well as excitotoxicity.191 Glucose and glutamine are
also important fuels for microglia, macrophages, and
other cells of the immune system.192,193 Intriguingly, glu-
tamate has been found to induce directed chemotaxis of
microglia.194 Both radiation and chemotherapy can
induce necrosis and inflammation, which will increase
tissue glutamate levels.195,196

Microglia Supporting Glioma Growth

Microglia Listening to Glioma

Receptors involved in microglia chemotaxis and
proliferation.— The exact mechanisms underlying the
recruitment of microglial cells into a glioma are still
not entirely clear, but chemotactic factors released by
tumor cells likely play a pivotal role. Several such
factors have been identified, with MCP-1 turning out
to be the most powerful. MCP-1 is constitutively pro-
duced by glioma cells as evidenced by both in vitro
and in vivo studies,45,157 whereas the specific MCP-1 re-
ceptor, CCR2, is expressed on glioma-infiltrating micro-
glia/macrophages.197,198 Importantly, an in vitro study
by Platten et al.158 provided direct experimental evi-
dence that MCP-1 expression recruits microglial cells
to the site of glioma. Thus, MCP-1 locally produced
by glioma cells binds to CCR2 receptors expressed on
the surface of microglial cells, and MCP-1/CCR2
binding facilitates recruitment of resident microglia
into the site of glioma. In contrast, Okada and
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colleagues44 recently claimed that it is tumor-derived
MCP-3, not MCP-1, that facilitates the infiltration of
microglia into glioma tissues. However, MCP-1 binds
to CCR2 exclusively, whereas MCP-3 binds to CCR1,
CCR2, and CCR3.199 The study did not report which
receptor(s) respond to MCP-3 production in glioma.

Met. Met is a transmembrane tyrosine kinase recep-
tor encoded by the proto-oncogene MET. Badie
et al.163 detected Met immuoreactivity in BV-2 murine
microglia, and this is in keeping with what had been
reported by Yamada et al.,200 who described the expres-
sion of Met in microglia, predominantly in the white
matter of human brain tissue. A more recent study also
confirmed the expression of Met in human glioma–
associated microglia.165 As discussed earlier, the
cognate ligand of c-Met, HGF/SF, is expressed by
glioma cells.163–165 Badie et al.163 have demonstrated
that glioma-derived HGF/SF is able to induce the migra-
tion of microglial cells in vitro, suggesting the existence
of a paracrine loop of HGF/SF–Met signaling that plays
a role in microglia chemotaxis in glioma in vivo. The ex-
istence of paracrine HGF/SF effects is supported by the
results of an in vitro study that analyzed the effects of
a panel of chemokines on glioma motility, demonstrat-
ing that HGF/SF was the most potent chemotactic
factor for 3 glioblastoma cell lines.201 Interestingly,
microglia have also been reported to produce HGF/
SF.163,200,202,203 These findings raise the possibility of
an autocrine motility loop in microglia, which HGF/
SF–Met underlie.

Epidermal Growth Factor Receptor. EGFR is a
170-kDa transmembrane protein characterized by its
ligand-dependent tyrosine kinase activity.204 Activation
of EGFR results in increased tumor cell proliferation
and angiogenesis and decreased apoptosis and is asso-
ciated with invasiveness of the tumor. Ilschner and col-
leagues205 have described the transient appearance of
K+ outward currents in murine microglial cells that
were induced by EGF, confirming the presence of
EGFR on microglia.206 Nolte et al.207 from the same
group demonstrated the expression of EGFR on micro-
glial cells in vitro and further showed a dose-dependent
effect of EGF on microglial motility and chemotaxis.
Interestingly, glioma cells, especially in GBM, also
express EGFR,208,209 usually as a result of EGFR gene
amplification.210,211 A recent study demonstrated that
EGFR signaling in GBM is necessary for microglial
stimulation of GBM invasion.40 This indicates the exist-
ence of an EGF–EGFR paracrine loop linking GBM cells
and microglia.

VEGF signals via 2 tyrosine kinase receptors,
VEGFR1 (Fms-like tyrosine kinase 1 [FLT-1]) and
VEGFR-2 (kinase insert domain receptor [KDR]/fetal
liver kinase 1 [FLK-1]).182 Both receptors are expressed
on endothelial cells,212 while only VEGFR-1 is found
on cells of the monocyte/macrophage lineage.213

Forstreuter et al.180 reported that both rat microglial
cells and mouse BV-2 microglia cell lines express
VEGFR-1, but not VEGFR-2. Using in vitro assays,
Forstreuter and colleagues in the same study further
demonstrated that VEGF increases the chemotaxis and

proliferation of microglial cells. Thus, apart from
CCR2, Met, and EGFR, VEGFR-1 may be another candi-
date receptor involved in microglia chemotaxis.

Receptors involved in tumor immunity.— Many
cytokines and cytokine receptors are expressed by
microglia in the immunosuppressive microenvironment
of glioma, and the binding of the respective cytokines
to their receptors plays a key role in tumor immunity.
Chemokine receptors represent a subclass of cytokine
receptors that are expressed on the surface of microglia.
They have been observed to mediate an efficient cross
talk between glioma-infiltrating microglia and glioma
cells.

Chemokine (C-X3-C Motif) Ligand 1. CX3CL1 is
one of the most highly expressed chemokines in the
CNS. It can be expressed as a membrane-bound form
mediating cell–cell adhesion or as a soluble form sus-
taining chemotaxis.214 Human glioma cells express
both forms and, significantly, according to Sciume and
colleagues,215 the tumor cells also express the cognate
receptor for CXC3CL1, CX3C chemokine receptor 1
(CX3CR1), on their surface. These authors further
reported that disruption of CX3CR1/CX3CL1 inter-
action by means of an anti-CX3CL1 neutralizing anti-
body enhances glioma cell invasion, indicating that
CX3CL1 inhibits glioma invasion.215 In contrast, in a
study on the expression and function of CX3CR1/
CX3CL1 in human glioma, Held-Feindt et al.216 demon-
strated that CX3CR1 (also termed RBS11 or V28) was
exclusively expressed in glioma-infiltrating microglia/
macrophages, whereas its ligand CX3CL1 was
expressed solely in glioma cells. The latter results are
in agreement with previous observations on the expres-
sion of CX3CR1 by microglial cells in a murine glioma
model,217 as well as human glioma.218 In addition,
Held-Feindt and colleagues found that glioma-derived
CX3CL1 not only promotes recruitment of human
glioma-infiltrating microglia/macrophages, but also
enhances expression of MMP2, -9, and -14 in these
cells. This finding is significant because the enhanced ex-
pression of MMPs might favor adhesion and migration
not only of glioma-infiltrating microglia but also of
glioma cells.11 Taken together, CXC3CL1 may act in
an autocrine as well as paracrine fashion to promote
the adhesion and chemotaxis of CX3CR1-expressing
glioma and microglial cells during tumor growth.

Receptors involved in antigen presentation.—
Antigen presentation is crucial for the generation of a
specific anti-tumor response by the adaptive immune
system. This process requires physical interaction
between the T-cell receptor and immunogenic peptides
presented via MHC class II molecules on the cytoplas-
mic membrane of antigen-presenting cells. A productive
dialogue between microglia and T cells to result in T-cell
proliferation requires a second signal, which is the simul-
taneous expression of co-stimulatory molecules, such as
CD80 (B7-1) and CD86 (B7-2), on the surface of the
antigen-presenting cells. The expression of MHC mole-
cules has been described on microglia in both human
and experimental glioma.219–221 However, the expres-
sion of MHC class II by microglia is reduced in high-
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grade glioma.221 Therefore, it appears that microglia in
glioma are deficient to helper and cytotoxic T cells in a
proper antigen-presentation capacity. Using a cytotox-
icity assay based on fluorescence-activated cell sorting,
Flugel and colleagues222 demonstrated that the ability
of microglia was severely compromised to present C6
glioma antigen or stimulate C6-primed T cells.
Furthermore, the expression of MHC class II and
co-stimulatory B7 molecules in rodent glioma correlates
directly with tumor immunogenicity and the extent of
lymphocyte infiltration into tumors.223 Schartner and
colleagues224 have reported downregulation of MHC
class II and CD80 on the surface of microglia in glioma-
bearing rats, which is consistent with a study that
showed microglia isolated from human GBM exhibit
downregulation of HLA-DR expression and suppression
of CD80 induction by lipopolysaccharides.225 Similarly,
there was a lack of expression of the co-stimulatory
molecules CD86 and CD80 in glioma-infiltrating micro-
glia.37 In contrast, the expression of MHC class II and
B7 co-stimulatory molecules recovered after microglia
were isolated from tumors and cultured for a short
period of time in the absence of glioma cells.223 These
studies suggest that antigen-presenting functions of
microglia are torpedoed by glioma cells.

Receptors involved in phagocytosis and cytotoxicity.—
Cytotoxic and phagocytic functions of microglia are con-
sidered critical for anti-glioma responses. These defense
functions require microglia to upregulate the expression
of complement (CR1, CR3, CR4) and Fc-gamma receptors
(CD64, CD32, CD16). Both enhance phagocytic capacity
by binding to complement components and immunoglobu-
lin fragments, respectively.226,227 The expression of com-
plement receptors, namely CR3 (CD11b/CD18), on the
surface of microglia was found throughout glioma, and
at an increased density along the tumor’s periphery.228

However, no evidence of glioma killing by CR3+ micro-
glia was seen.228 Furthermore, a significant positive correl-
ation was found between the number of CR3+ cells and
the proliferation rate of human glioma.229 Taken together,
these studies suggest that glioma-infiltrating microglia are
in an activated state, yet exhibit tumor-supportive rather
than tumor-phagocytic functions.8

Activation of phagocytes, including microglia, is the
most common function of Fc receptors. Microglial
cells are potent effector cells in antibody-dependent cell-
mediated cytotoxicity in vitro,35 which involves Fc
receptor expression on the surface of microglia that sti-
mulates microglial cells to release cytotoxic molecules
that kill antibody-covered target cells.35 Morimura and
colleagues229 have demonstrated abundant concomitant
expression of Fc receptors (CD64, CD32, CD16) and
CR3 on the surface of microglia in human glioma,
which was found to be more intense in the area of
tumor necrosis. Interestingly, Fc-gamma receptors 1
and 2 (CD64 and CD32) were detected mainly on micro-
glia inside the tumor and to a much lower extent on
microglia of peritumoral tissue, indicating that the
expression of Fc-gamma receptors depends on the state
of activation of microglia in glioma. These studies
provide evidence that myeloid cells in human gliomas

are equipped with the respective surface receptors for
antibody- and complement-mediated cytotoxic actions.
However, they are quite obviously not effective in real
life.

Pattern Recognition Receptors. PRRs are proteins
expressed by cells of the innate immune system, which
allow the detection of pathogen-associated molecular
patterns (PAMPs) associated with microbes or cellular
stress. Toll-like receptors (TLRs) are the main family
of PRRs that are necessary for the induction of an adap-
tive immune response to PAMPs or tumor cells through
the activation and maturation of macrophages and den-
dritic cells.230–232 The interaction between TLRs and
their specific PAMPs induces signaling by NF-kB
(nuclear factor kappa-light-chain-enhancer of activated
B cells), activation of the mitogen-activated protein
kinase (MAPK) pathway, and consequently the secretion
of pro-inflammatory cytokines, such as TNF-a, IFN, and
IL-12, all of which can help to limit tumor growth.232

Microglia have been reported to be the predominant
TLR-expressing cell type in the CNS,233 and microglia
freshly isolated from human glioma tissue also express
substantial levels of TLRs (TLR2, TLR3, and especially
TLR4).37 This expression can be accompanied by ex-
pression of CD14 in glioma-infiltrating microglia.37

CD14 is otherwise expressed mainly by macrophages
and acts as a co-receptor of TLR4 in the detection of bac-
terial lipopolysaccharides.234 Yet, these TLR-expressing
glioma-infiltrating microglia do not express cytokines
that would be reflective of tumoricidal activity.37 In con-
trast, microglia have been found to facilitate glioma cell
invasion via TLRs.10 Glioma-released factors stimulate
the expression and activity of MT1-MMP via TLRs
and their downstream molecules MyD88 and p38
MAPK in microglia, and MT1-MMP–expressing micro-
glia in turn promote glioma expansion by degrading the
extracellular matrix.10 Independently, the high-mobility
group box 1 protein (HMGB1), an alarmin protein
released from dying glioma cells, has recently been iden-
tified as an endogenous ligand for TLR2.235 Curtin
et al.235 further demonstrated that dying glioma-derived
HMGB1 acts as a TLR2 agonist, induces endogenous
TLR2 signaling, and initiates a CD8+ T cell-dependent
anti-GBM immune response. Furthermore, a recent in
vitro study reported that human microglia isolated
from brain tumors exerted tumor-suppressing activities
if they were pretreated with polyinosinic-polycytidylic
acid.236 These studies suggest that the tumor-supporting
function of glioma-infiltrating microglia could be
overridden by tumor-suppressing activities if they were
activated via TLR agonists.

Scavenger Receptors. These receptors are thought to
participate in the removal of many foreign substances
and waste materials in the living body, and they also
play a role in modulating phagocytic activity of micro-
glia. Macrophage scavenger receptor 1 (MSR1 or
CD204), a class A scavenger receptor, is a protein
encoded by the MSR1 gene in human. CD204 was
found to be expressed in high-grade gliomas, and
tumor culture supernatants from glioma cell line T98G
induced its upregulation in human macrophages in
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vitro.143 Increased MSR1 expression was also seen in
ovarian cancers,237 and targeted depletion of
CD204-positive macrophages blocked ovarian tumor
progression and ascites accumulation, as demonstrated
in a murine model of ovarian cancer.238 It is postulated
that CD204 signaling in tumor-associated microglia
cells may negatively regulate microglia activation.
Therefore, CD204 may be one of the more promising
targets for the immunotherapy of some cancers, includ-
ing ovarian cancer and glioma.

Receptors potentially exerting an anti-tumorigenic
function.— Adenosine is an endogenous ubiquitous
biological mediator that regulates many physiological
processes. The extracellular concentration of adenosine
increases in response to cellular stress and tissue
damage. Adenosine signals through 4 known adenosine
receptor subtypes: A1AR, A2AAR, A2BAR, and A3AR,
each featuring a different tissue distribution, ligand af-
finity, and signal transduction mechanism. A1AR is
found throughout the brain239 and is expressed mainly
on microglia/macrophages as well as neurons.240 In
glioma, expression of A1AR is high in glioma-infiltrating
microglia, whereas its expression in tumor cells is
minimal in both human GBM and rodent glioma.241

Synowitz et al.241 showed that A1AR-mediated inhib-
ition of glioma growth depends on the presence of
microglial cells because the size of the glioma was
increased in microglia-depleted brain even when A1AR
was activated by the specific agonist. Furthermore,
when comparing A1AR2/2 mice with their A1AR+/+

littermate controls, the tumor volume was also signifi-
cantly larger, as expected, and simultaneously the
number of glioma-infiltrating microglia was significantly
higher in A1AR2/2 mice than in controls.241 The same
study further demonstrated that activation of A1AR
markedly decreases the activity of glioma-induced
MMP-2 in microglia, suggesting that the inhibitory
effect of adenosine on glioma invasion is at least in
part due to decreased extracellular protease activity.
This finding complements results of an earlier study in
a model of multiple sclerosis, which revealed that
A1AR activation on microglia/macrophages interferes
with the production of MMPs such as MMP-12 and of
cytokines such as IL-1b.242 In summary, A1AR inhib-
ition of glioma growth represents an interesting novel
mechanism whereby microglia can modulate the bio-
logical behavior of a glioma.

Molecules Derived from Glioma-Infiltrating Microglia

Molecules contributing to the immune-suppressive
milieu in glioma.— Interleukin 10. Originally termed
cytokine synthesis inhibitory factor (CSIF), IL-10 is a
17- to 21-kDa cytokine with a broad spectrum of im-
munosuppressive activities, including inhibition of
antigen presentation, ie., antigen-specific T-cell prolifer-
ation,243 and of inflammatory cytokine synthesis by infil-
trating monocytes/macrophages.244 Increased IL-10
mRNA expression has been reported in human glioblast-
omas in vivo compared with low-grade tumors, but only

weak expression was seen in human glioblastoma cell
lines.245 Using in situ hybridization analyses of native
tissue samples of glioblastomas, Huettner et al.20

demonstrated that both microglia and astroglia might
contribute to IL-10 gene expression in vivo.
Subsequent studies using primary cultures from human
glioma specimens indicated that the IL-10 gene and its
protein product are expressed by glioma-infiltrating
microglia, and to a much lesser extent by the glioma
cells.21 IL-10 secreted by glioma-infiltrating microglia
in the immunosuppressive microenvironment of glioma
not only promotes glioma cell proliferation, but also
enhances the ability of glioma cells to migrate in
vitro.20 Thus, glioma-
infiltrating microglia contribute to the maintenance of
an immunosuppressive microenvironment in glioma by
producing and secreting immunosuppressive IL-10.7,43

The expression of IL-10 in glioma-infiltrating microglia
is regulated by upstream stimulating factor 1
(USF-1)246 and STAT3.247 Inhibition of USF-1 derived
from glioma-infiltrating microglia results in upregula-
tion of IL-10 in the glioma-infiltrating microglia,246 as
does increased STAT3 activity in the murine microglia
cell line N9.247

In addition to its expression by glioma cells105 (see
earlier section), FasL has been found to be expressed
by glioma-infiltrating microglia43,106 and activated T
cells in GBM.248 Using flow cytometry analysis, Badie
and colleagues43,106 showed that glioma infiltrating
microglia are the major cellular source of FasL in
murine glioma, and nearly every microglia cell expressed
FasL on its membrane. This study thus suggests that
microglia, and not the T lymphocytes or tumor cells,
are responsible for the increased expression of FasL in
glioma. Considering the fact that microglia can induce
apoptosis of activated T cells in vitro249 and that apop-
totic T cells in GBM express Fas,250 it is postulated that
glioma-infiltrating microglia may contribute to the local
immunosuppressive microenvironment in glioma by me-
diating T-cell apoptosis via the Fas–FasL pathway. This
is further evidenced by the significant increase in the
number of tumor-infiltrated lymphocytes after an injec-
tion of anti-FasL neutralizing antibody into intracranial
murine G26 glioma.43 However, in contrast to Badie’s
findings in murine glioma, Hussain et al.37 determined
that human glioma-infiltrating microglia did not
express FasL, or expressed it at only very low levels, in-
dicating that apoptosis mediated by Fas–microglial FasL
may not be the predominant mechanism of immune
evasion in human tumors. Rat glioma cell–derived
FasL is also able to mediate the death of T lymphocytes
when T cells are co-cultured with glioma cells.105

Furthermore, Jansen et al.105 demonstrated that downre-
gulation of FasL expression in glioma cells following the
application of short hairpin RNA can enhance T-cell in-
filtration in glioma and thus inhibit tumor growth.
Moreover, T-cell apoptosis in GBM was even found to
be mediated by ligation of Fas with FasL on the same
T cell.248 In spite of the uncertainty surrounding the
main cellular source of FasL in glioma, Fas–FasL inter-
action is likely to contribute to the immunosuppressive
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microenvironment of glioma. Further investigations are
therefore needed to elucidate the main cellular source
of FasL in glioma in vivo.

Molecules contributing to glioma angiogenesis.—
Neo-angiogenesis is very conspicuous in glioblastoma,
and has been widely recognized as a key process in the
malignant progression of glioma.251,252 The process is
thought to be driven largely by VEGF, which is a signal-
ing protein functioning via its 2 receptors, VEGFR-1
and VEGFR-2. These 2 receptors are co-expressed on
endothelial cells. Consequently, it is a widely held
view that VEGF interacts with its receptors in vascular
endothelium in a paracrine fashion and that it plays
a major role in the regulation of tumor neo-
angiogenesis.177,253,254 In addition to glioma cells,
microglial cells also secrete VEGF.41,42 It is therefore
speculated that microglial cells play a role in tumor pro-
gression by supporting angiogenesis as well.19,255

Molecules contributing to glioma growth and
invasion.— TGF-b1 protein is produced by microglia
under certain pathological conditions, such as experi-
mental allergic neuritis,256 and in traumatically injured
brain.257 TGF-b signals through TGF-b type II receptor
(TbRII), which recruits and activates TGF-b type I re-
ceptor (TbRI).18 Using in situ hybridization, Kiefer
and colleagues258 revealed that both activated microglial
cells and glioma cells produce TGF-b1 in the vicinity of
glioma in vivo. A recent study by Wesolowska et al.18

confirmed that cultured microglial cells secrete
TGF-b1, and their exposure to glioma cells strongly
enhances secretion of TGF-b1. In addition, the study
also demonstrated that the invasion-promoting activity
of microglia was lost in glioma cells exhibiting downre-
gulated TbRII, indicating that the promotion of glioma
invasion of microglia is mediated by TGF-b.18

Furthermore, expression of TGF-b may upregulate the
expression of its receptors, TbRI and TbRII, both of
which show increased expression in gliomas compared
with normal tissues, and their antagonists are able to
inhibit human glioma cell line proliferation and motil-
ity.69,259,260 Thus, additional paracrine loops seem to
exist that skew the microglial cell–glioma relationship
in favor of the tumor, in that glioma-derived TGF-b
exerts immunosuppressive effects in and around the
tumor that render the glioma-infiltrating microglia inef-
fective, whereas microglia-derived TGF-b promotes
tumor growth and invasion by stimulating the upregula-
tion of its cognate receptors, TbRI and TbRII, on glioma
cells.

Degradation of the extracellular matrix by proteolyt-
ic enzymes, such as membrane-bound and secreted
MMPs, is a key mechanism utilized by invading
glioma.39 MMP-2, also known as gelatinase A, was
found to play an especially important role in this
process. Expression of the MMP-2 gene in human
glioma tissues is upregulated when compared with
normal brain and is dramatically increased in
GBM.261–263 Immunostaining of human glioma biop-
sies confirmed upregulation of MMP-2 and identified
tumor cells as the cellular source of MMP-2.262 The

activity of this enzyme has been directly correlated to
glioma invasiveness and the survival rate of tumor-
bearing mice.11,264 Both microglial cells and glioma
cells produce MMP-2, as demonstrated both in
vitro11,263 and in human glioma tissue.265 Notably,
MMP-2 released by glioma cells is in an inactive
soluble form (pro-MMP-2), is found especially at the ac-
tively invasive tumor zone, and needs to be cleaved to
become activated.265 The extracellular activator of
MMP-2, MT1-MMP, is required for this cleavage.39,266

However, glioma cells themselves cannot produce
MT1-MMP but have to rely on microglial cells, which
are the major, though not exclusive, cellular source of
MT1-MMP in glioma.10 In normal brain, MT1-MMP
expression in microglia is low and detectable only in
white matter.266 In the context of glioma, MT1-MMP
expression has been found to be upregulated in
human, mouse, and rat glioma-infiltrating microglia,
and its immunoreactivity was particularly pronounced
when the microglia were in close contact with glioma
cells.10 A recent in vitro study demonstrated that at-
tenuating microglial MT1-MMP expression using
minocycline reduces glioma growth and invasion.267

Moreover, deletion of the TLR adapter protein,
MyD88, prevented overexpression of MT1-MMP,
which had been induced by glioma-conditioned medium
(GCM) in microglia, suggesting that the expression of
MT1-MMP in glioma is regulated by TLR signaling.10

Furthermore, TLR-mediated MT1-MMP expression
was dependent on p38 MAPK, which resides downstream
of MyD88.10 Among the major candidate mechanisms
underlying glioma invasion facilitated by microglia
appear to be the production of heat-shock proteins,
HMGB1, and hyluronan.268–270 These glioma-derived
molecules can activate microglial TLR signaling (via
MyD88) and its downstream p38 MAPK pathway and
thereby trigger the upregulation of MT1-MMP in micro-
glia. MT1-MMP expressed in microglia is then thought to
convert glioma-derived pro-MMP-2 into MMP-2.
MMP-2 in turn promotes glioma cell invasion and
tumor expansion.10 Thus, microglia can serve as activa-
tors for the degradation of extracellular matrix, which is
key for glioma invasion.

Connective Tissue Growth Factor. CTGF, also known
as CCN2, is a cysteine-rich, matrix-associated, heparin-
binding protein encoded by an immediate early gene,
which is associated with drug resistance in GBM.271

CTGF has been found to be implicated in cancer progres-
sion272,273 when binding the cell surface protein beta 1 in-
tegrin (ITGB1),274 tyrosine kinase receptor type A (TrkA),
and co-receptor p75NTR.275 Edwards and colleagues276

have shown that a CTGF-rich microenvironment increases
the invasiveness of malignant gliomas. Halliday and
Holland277 have pointed out that parallels exist between
brain tumors and brain injury with regard to CTGF
expression and emphasize that CTGF is expressed by
microglia under pathological conditions. Thus, microglia
come into the spotlight again because expression levels
of CTGF are prognostic of tumor progression as well as
survival of patients with glioma.278
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Interleukin-6. IL-6 is a protein of 185 amino acids
encoded by the IL6 gene in humans. It has been reported
that GBMs display a significantly higher level of IL-6 ex-
pression than normal brain tissue.279 In addition, IL-6
expression has been correlated with glioma growth inva-
siveness.280,281 Glioma cells as well as microglia have
been reported to secrete IL-6,47,162,282,283 and both
express IL-6 receptors.94,284 Glioma-derived IL-6,
working together with other tumor-secreted factors,
such as TGFb and PGE2, polarize glioma-infiltrating
microglia toward the M2 phenotype,47,282 and
microglia-derived IL-6 has been reported to induce
glioma cell migration and invasiveness.162,283 Notably,
IL-6 has been confirmed as a growth factor for glioma
stem cells.285 The mechanism by which IL-6 promotes
the invasiveness of glioma cells is unclear. IL-6 has
been found to increase the production of MMP-2 by
glioma cells, suggesting that it may exert its tumor-
promoting role via MMP-2.281 Furthermore, it has
been hypothesized that activated microglial cells synthe-
size IL-6 following NF-kB activation, which in turn may
stimulate transcription factors STAT3 and NF-kB in
glioma cells that initiate specific pathways of glioma pro-
gression such as angiogenesis, migration, and apoptosis
inhibition.94,286

STAT3 activation of glioma-infiltrating microglia.—
STAT3 activity has been shown to be higher in
glioma-infiltrating microglia compared with microglia
from normal animals.247 Activation of the STAT3
pathway was found to increase expression of IL-10 and
IL-6 in glioma-infiltrating microglia.247 STAT3 blockage
stimulates the immunological activation of glioma-

infiltrating microglia, as evidenced by their increased ex-
pression of co-stimulatory molecules CD80 and
CD86.119 Furthermore, in vivo STAT3 inhibition in
murine glioma-infiltrating microglia was shown to
reduce expression of immunosuppressive cytokines,
such as IL-10 and IL-6, while it stimulates production
of pro-inflammatory TNF-a.247

Activation of STAT3 in glioma-infiltrating microglia
can be induced by means of several immunosuppressive
factors that are highly expressed in gliomas, such as
IL-10, and VEGF.287 Interestingly, these soluble
factors can also activate STAT3 in hematopoietic cells
in the tumor microenvironment.118 In addition, Zhang
et al.288 recently reported that S100B, which is constitu-
tively expressed by glioma cells, might be yet another
factor that induces the activation of STAT3 in
glioma-infiltrating microglia through interaction with
RAGE, the receptor, for advanced glycation end
product, in glioma-infiltrating microglia both in vitro
and in vivo. Therefore, it appears that glioma-derived
factors polarize glioma-infiltrating microglia toward
the immunosuppressive M2 phenotype through STAT3
activation, which upregulates expression of immunosup-
pressive factors by glioma-infiltrating microglia while
limiting their expression of co-stimulatory molecules.

Conclusions and Future Directions

GBM is the most common and aggressive primary tumor
of the brain and has one of the worst 5-year survival
rates among all human cancers.289 Microglial cells and

Fig. 2. Glioma-microglia synergies drive a self-amplifying process that spirals out of control. Glioma and microglial cells have a symbiotic

relationship that becomes highly skewed in favor of the glioma. The immunosuppressive microenvironment created by molecules such as

TGF-b, FasL, and IL-10 polarizes glioma-infiltrating microglia toward the M2 phenotype (cf. Fig. 1). Glioma (red) produces chemotactic

factors, such as MCP-1, resulting in the recruitment of microglia. Glioma further promotes the proliferation of microglia. In turn,

microglia (purple) promote glioma angiogenesis as well as glioma cell invasion. The cross talk between glioma and microglia is governed

by multiple paracrine loops formed by glioma and microglia released molecules and their receptors, as indicated by superscript (P) in the

figure. In addition, some of the molecules act in an autocrine fashion, as indicated by the superscript (A) and regulate either glioma or

microglia behavior.
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macrophages have been found to populate malignant
glioma in large numbers, contributing one third or
more to their actual tumor mass. Representing the
immune effector cells of the CNS, microglia have been
found to phagocytose glioma cells in vitro but their be-
havior is quite different in vivo, where they act more
like nodding sycophants of tumor cells. As illustrated
in Fig. 2, experimental studies have demonstrated that
microglia express a variety of receptors on their
surface, which are able to receive signals from glioma.
In response, microglia under the influence of glioma
release several classes of molecules that foster glioma
growth and progression. There is clearly more than
one self-amplifying autocrine and paracrine loop,
which can spiral out of control and the tumor pro-
gresses. However, we now also know of a number of po-
tential molecular targets in tumor-associated microglia
that could be used to alter the fatal course of glioma.
A significant portion of the microglia found in glioma
appear to be derived from bone marrow precursors,
and it may become possible to enable these bone
marrow–derived microglia to track down glioma cells
using the same genes that stem cells employ for sniffing

out glioma in the brain.290 Consequently, the great at-
traction of glioma for microglia and the principal
ability of microglia precursors to cross the BBB make
them attractive targets for the development of a truly
novel therapeutic approach. Emerging technologies291

may allow us to genetically enhance (reprogram) micro-
glia65 so that they are protected and able to turn against
the glioma.
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