Skip to main content
. 2012 Jun 18;12:439. doi: 10.1186/1471-2458-12-439

Table 1.

List of excluded countries due to insufficient data on BMI

Country / Territory UN code Adult pop. (2005)
Other non-specified areas (Taiwan)
158
18,405,317
Serbia
688
8,037,649
China, Hong Kong SAR
344
5,840,953
Puerto Rico
630
2,936,606
Occupied Palestinian Territory
275
1,928,679
Réunion
638
582,423
Montenegro
499
502,268
China, Macao SAR
446
401,495
Guadeloupe
312
338,621
Martinique
474
313,280
Western Sahara
732
301,959
French Polynesia
258
185,626
New Caledonia
540
168,610
Netherlands Antilles
530
143,172
French Guiana
254
130,255
Channel Islands
830
124,942
Guam
316
119,046
Mayotte
175
101,272
United States Virgin Islands
850
84,706
Aruba
533
79,238
TOTAL:   40,726,117

Formula for estimating the expected (average) weight (W) in a specific age-sex group where mean and variance of BMI and of height.

Using the following notation for each individual values of BMI and W: b=BMIBMI¯andh=HH¯

The expected weight in a group of individuals would be: EW=EBMI×H2=EBMI¯+b×H¯+h2=EBMI¯+b×H¯2+h2+2H¯h=EH¯2BMI¯+h2BMI¯+2H¯hBMI¯+H¯2b+h2b+2H¯hb=H¯2BMI¯+Eh2BMI¯+Eh2H¯BMI¯+EbH¯2+Ebh2+Ehb2H¯=H¯2BMI¯+Eh2BMI¯+Ebh2+Ehb2H¯

Assuming that Height and BMI are independent: COV(H,BM)=0Ehb=0

Assuming that the variance of Height is constant in all values of BMI: Ebh2=0

Therefore the above equation simplifies to: EW=BMI¯×H¯2+V(H)