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Abstract

The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it
attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking.
Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we
quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in
the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate
areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches,
after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance)
and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved
oxygen) increased with macrophyte cover (r2 = 0.95, p,0.001), while patch size of hyporheic parameters decreased from 6
to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p,0.001), irrespective of the time of year. Since the spatial
variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be
adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity,
while the number of samples should be related to macrophyte cover.
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Introduction

The hyporheic zone in stream ecosystems is highly heteroge-

neous. Its biotic and abiotic properties vary spatially and

temporally [1,2]. Many studies have recognized abiotic heteroge-

neity as a significant driver of biodiversity with effects on genetic

diversity [3], population dynamics [4] and species diversity [5].

Also, the hyporheic zone is considered a key habitat for species

across many taxa and levels of organization, including microor-

ganisms, periphyton, invertebrates and fishes [6]. Many critically

endangered freshwater taxa directly or indirectly depend on the

properties of the hyporheic zone for completion of their life cycles

[7,8]. Additionally, it is essential for ecosystem functions related to

turnover and retention of nutrients and contaminants. Thus, the

hyporheic zone attracts high attention among freshwater scientists;

however, despite of recent progress in frameworks for hyporheic

sampling [9,10,11], generally applicable strategies for sampling are

still lacking.

A proper sampling strategy should account for accuracy,

precision, representativeness and autocorrelation of the data. To

ensure a proper sampling design, critical decisions have to be

made for every ecological study in advance. These decisions need

to consider both the spatial and temporal variability of the stream

reach under study [12,13]. In particular, decisions related to the

spatial variability comprise (i) the stream reach to investigate

(larger spatial scale), (ii) the placement of sampling sites - either

random sampling or any kind of systematic sampling design -

within the stream reach (smaller spatial scale), (iii) the distance

between sampling sites, and the (iv) total number of samples; with

subdivisions (ii), (iii) and (iv) determining the size of the investigated

area. Decisions related to the temporal variability are the (v) time

of sampling (regarding different time scales, from a daily scale to

an annual scale) and (vi) potential temporal repetitions. Lastly, the

researcher has to decide, (vii) whether one sampling design is

appropriate for all stream reaches included in a study. Without a

scientific framework for hyporheic zone sampling, doubtful

decisions are likely to be made, which additionally may vary

between researchers, and even between studies with the same

researcher [14]. Therefore, this paper addresses how unbiased

data collection - in the sense to avoid or correct for spatially

autocorrelated samples - may be performed using the example of

the hyporheic zone. It is worth noting that spatial autocorrelation

needs to be considered in all possible sampling designs and is thus

inevitably to be taken into account when designing a sampling

strategy.

Geostatistics are highly suitable to analyze spatial patterns, e.g.

spatial autocorrelation [15,16], yet they are hardly considered in

aquatic ecology. A geostatistical approach, which quantifies spatial

autocorrelation, might therefore provide a step forward in

ecological research of the hyporheic zone. Spatial autocorrelation

is a measure of the spatial dependence, based on the principle, that

nearby sampling sites are more similar than distant sampling sites.

Derived conclusions comprise i) the patch contrast, indicating the

quantitative difference between two patches and ii) the patch size,
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representing the spatial extension of a patch, where a patch is

herein defined as an area differing from its surroundings [17].

These results will influence recommendations for sampling

designs, since the distance between two sampling sites should be

related to the specific local patch size [18]. Thereby, we cover an

unsolved key issue for environmental monitoring or any assess-

ment of habitat aiming to assess the ecological status in stream

ecosystems as e.g. required by the EU Water Framework

Directive. A proper sampling design may, however, differ between

streams, between parameters to be measured and according to the

time of sampling.

The application of geostatistical approaches in ecology and

environmental monitoring can be a milestone for two additional

reasons. First, determining the drivers of patch contrast and patch

size may enhance the understanding of ecosystem functioning and

its contribution to biodiversity (e.g. patch richness and the number

of ecological niches are positively correlated). Second, spatial

dependence of parameters has to be considered to avoid the

introduction of a systematic bias which may lead to false

interpretations [19]. Autocorrelated and thus spatially dependent

parameters must not be judged as independent and should

therefore not be used in statistical ‘‘standard’’ tests that assume

independence. Ignoring spatial autocorrelation can lead to wrong

declaration of significance based on an under-estimation of

confidence levels [20].

The objectives of this study were to (i) quantify the spatial

variability (patch contrast and patch size) of the hyporheic zone of

different stream reaches and its temporal variation, (ii) determine

the drivers of spatial variability, and thus (iii) give recommenda-

tions how to conduct sampling in the hyporheic zone. For this

purpose, data was collected on two occasions on six stream reaches

to analyze the spatial variability in the hyporheic zone. The

resulting model was verified at two additional stream reaches after

one year.

Results

Characterization of Investigated Stream Reaches
The stream reaches (Fig. 1) comprised a wide variety of

conditions within the given focus of small streams, which are

typical for the majority of temperate regions. Stream reaches with

calcareous bedrock geology (M, W, G) had significantly (p,0.001)

greater mean values for specific conductance and pH than reaches

with siliceous bedrock geology (O, R, P, Table 1). Additionally,

each stream reach was significantly (p,0.01) different to all other

stream reaches for specific conductance and pH. At least three

parameters at each stream reach were clearly different between

sampling dates. Two of the stream reaches (M, W) had a high

macrophyte cover (higher than 15%), three (O, R, P) had a low

cover (lower than 10%) and one (G) had no macrophytes. Where

present, macrophytes formed several patches within the investi-

gated reaches (Fig. 2). Their locations and frequencies remained

constant from June to September, though an increase in plant

biomass was apparent. Comparing the streams’ sinuosities

deduced from the stream courses 1.5 km upstream of the

investigated stream reaches, M was minor meandering, almost

representing a straightened channel (sinuosity: 0.06), whereas the

streams from W (0.2) to G (0.3), O (0.6), P (0.7) and R (1.0) had

increasing values of meandering.

Within stream reaches, sampling sites with submerged macro-

phytes had significantly (p,0.01) higher mean values of specific

conductance and significantly (p,0.001) lower mean values of

dissolved oxygen and pH. The tests were only performed for M

and W. For the reaches O, R, P and G testing was not possible,

because the numbers of sampling sites with submerged macro-

phytes were too low. Furthermore, surface current speed was

significantly (p,0.01) higher at sampling sites with macrophytes

(e.g., for stream M surface current speed was on average

0.23 m s21 at sampling sites with macrophytes and 0.17 m s21

at sites without). This can be expected from the Venturi effect

caused by the narrowing of the flow cross-sectional area by the

macrophytes. In contrast, the current speed above the substratum

within one reach (bare sites vs sites with macrophytes) was

significantly (p,0.01) slower at sampling sites with macrophytes

due to the increase in hydraulic roughness within the macrophyte

assemblages (e.g. for stream M, the current speed above the

substratum was on average 0.11 m s21 at sampling sites with

macrophytes and 0.16 m s21 at sites without).

Analysis of Spatial Variability
Stream ecosystems are highly heterogeneous regarding abiotic

properties. Here, the range (maximum – minimum value) for each

parameter within a stream reach was of similar amplitude as the

range among the stream reaches’ averages. For example, the range

in pH was 1.54 within the stream reach O, while it was 1.58

between all stream reaches, despite the fact that the streams

drained siliceous and calcareous catchments, respectively.

In all stream reaches at both dates, all parameters were spatially

autocorrelated with one exception (specific conductance in G did

not exhibit spatial autocorrelation at both sampling dates). This is

illustrated for the hyporheic parameters of two contrasting streams

in Fig. 3. The patch sizes (range of autocorrelation) varied between

1 m and 15 m. After normalization, all hyporheic parameters

within stream reaches revealed essentially identical patterns

regarding autocorrelation (Fig. 3). Though, sampling dates differed

in their autocorrelation at stream reach M, there was no consistent

difference in autocorrelation between sampling dates over all

stream reaches, despite the change of absolute values (Fig. 4). For

investigated scales (pool/riffle and reach), no patterns of hierar-

chical patch structures were detected, which would have been

evident as nested variograms.

Considering the hyporheic parameters, stream reaches with

different bedrock geology (M, W, G vs O, R, P) were not

significantly different in patch contrast and patch size. However,

stream reaches M and W had significantly (p,0.01) higher patch

contrasts (by about factor 2) compared to G, O, P and R (Fig. 4 A).

M had significantly (p,0.001) larger patch sizes (approx. 6.5 m)

compared to all other stream reaches and W had significantly

(p,0.05) larger patch sizes (approx. 3 m) compared to O, P and R

(approx. 2 m, Fig. 4 B).

Regarding flow parameters, patch contrasts and patch sizes

(mean 4.8 m) showed neither a significant difference between

geochemistry units, nor between stream reaches, nor a clear

difference between sampling dates and any other grouping.

Hence, spatial variability of flow parameters is relatively uniform

among the given range of stream conditions. It has to be noted

that sampling was carried out during base flow conditions as it was

not intended to capture peak flow or low water conditions.

Factors Affecting the Spatial Variability
The following parameters were tested as potential drivers for the

spatial variability (patch contrast and patch size) but showed no

significant correlation: mean width and width variance, mean

current speed and current speed variance (both currents, 5 cm

below the water surface and 5 cm above the streambed), mean

depth and depth variance. Instead, the spatial variability in the

hyporheic zone was affected by two other factors, biotic and

abiotic. The biotic factor was the macrophyte cover, which

Drivers and Extent of Patch Variation
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significantly (p,0.001) increased patch contrasts of hyporheic

parameters as indicated by the linear regression model (p,0.001,

r2 = 0.95, Fig. 5 A).

y ~ 0:26z0:07x ð1Þ

with y representing the dimensionless patch contrast and x

representing the macrophyte cover. The linear regression model

was suggested by the AICc as the optimum model. The regression

shows that the patch contrasts (and thus the variance) increased by

more than factor 2 if the macrophyte cover increased from 5 to

15%. This was apparently true for all hyporheic parameters,

which did not differ clearly in this respect.

Sinuosity upstream of the sampling sites strongly influenced the

spatial variability in the hyporheic zone. Correlations were

significant between the sinuosity for linear distances of 0.5 km

(r2 = 0.67), 1 km (r2 = 0.82) and 1.5 km (r2 = 0.86) and the patch

sizes, whereas the sinuosities calculated for 0.2 km (r2 = 0.17) and

2 km (r2 = 0.25) linear distances did not correlate significantly. The

model of the linear distance with the strongest correlation

(sinuosity of the stream course 1.5 km upstream of the investigated

stream reach) was (p,0.001, r2 = 0.86, Fig. 5 B)

y ~ 1:6x{0:4 ð2Þ

with y representing the patch size and x representing the sinuosity.

The power function was suggested by the AICc as the optimum

model. Eqn 2 indicates that the patch sizes decreased with

increasing sinuosity. Remarkably, the rather small difference in

sinuosity between W and M caused the patch size to increase more

than twofold (from 3 to 6 m), whereas the rather big difference in

sinuosity between W and O, P and R caused only a minor

decrease in patch size (from 3 to 2 m). The sinuosity also

correlated closely (r2 = 0.975) with the Reynolds number, as

calculated from kinematic viscosity, annual discharge, wetted

perimeter and flow cross-sectional area as given by the data in

Tables 1, 2 and Fig. 2, indicating the hydrodynamic relevance of

sinuosity.

Both models (Eqn 1 and Eqn 2) were calculated from the

development data. The validation data (open circles in Fig. 5),

which were not used to calculate the regressions, confirmed the

Figure 1. Map and sampling design of the investigated stream reaches. Map of Central Europe comprising the locations of the investigated
stream reaches (left panel), their plan view morphologies 2 km upstream of the sampled reach (middle) and a scheme of the nested sampling design
(right panel). Open symbols in the right panel denote the reach scale grid (distances of 1 m), closed symbols denote the pool/riffle scale grid
(distances of approx. 17 cm). Codes for the stream reaches are M = Moosach, W = Wiesent, G = Guenz, O = Grosse Ohe, P = Perlenbach,
R = Suedliche Regnitz.
doi:10.1371/journal.pone.0042046.g001

Table 1. Physico-chemical properties of the study sites.

Stream pH

Specific
conductance

Dissolved
oxygen Depth

Current at
surface

Current at
substratum

(mS cm21) (mg L21) (cm) (m s21) (m s21)

M 7.6b 60.2 793b 657 5.2b 63.3 55b 616 0.20b 60.11 0.12b 60.10

W 7.7c 60.2 762c 661 6.1a 63.4 38c 615 0.28ad 60.25 0.19ac 60.18

G 7.8a 60.2 608a 622 6.0a 61.7 28a 624 0.31a 60.20 0.19ac 60.14

O 6.4d 60.2 141d 630 5.8a 62.0 41c 612 0.27cd 60.17 0.21c 60.16

P 7.1e 60.1 255e 617 4.5c 62.3 27a 616 0.24c 60.15 0.17ad 60.16

R 7.4f 60.1 327f 6113 3.8d 62.6 39c 614 0.25cd 60.15 0.15bd 60.13

Means and standard deviations of measured parameters to characterize streams Moosach (M), Wiesent (W), Guenz (G), Grosse Ohe (O), Perlenbach (P) and Suedliche
Regnitz (R). Mean values followed by the same letter within a column are not significantly different. The parameters indicated as current represent the current speed
measured either 5 cm below the water surface (‘‘current at surface’’) or 5 cm above substratum (‘‘current at substratum’’).
doi:10.1371/journal.pone.0042046.t001

Drivers and Extent of Patch Variation
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models, as they did not show substantial deviation from the

models.

Discussion

To our knowledge, this is the first study which comprehensively

quantified the spatial variability of a series of standard parameters

which are used to characterize the physico-chemical substratum

conditions in the hyporheic zone. The results indicate that a

prediction of the spatial variability of a stream reach is possible

prior to sampling. To this end, easily determinable variables

(sinuosity and macrophyte cover) which drive spatial variability are

required to deduce recommendations for sampling. Since driver

properties and the spatial variability vary between stream reaches

within one stream and between streams, sampling designs have to

be adapted to the unique local situation of the spatial variability of

each stream reach. It is likely that the suggested geostatistical

approach applied herein will also be useful for determining

sampling strategies in other habitat types and ecosystems as well.

Drivers of Spatial Variability
The spatial variability, as represented by patch contrast and

patch size, is driven by biotic and abiotic factors. In this study

patch contrasts (and thus also the variance) of hyporheic

parameters increased with the macrophyte cover. This is in line

with results by Schulz and Guecker [21] and Svendsen and

Kronvang [22], who found that submerged macrophytes have a

considerable effect on the spatial variability. Submerged macro-

phytes reduce the current speed above the substratum (within the

assemblages of submerged macrophytes) and thus enhance

nutrient and sediment retention. In particular, submerged

macrophytes should favor deposition of fines and slow down the

exchange of interstitial pore water with the free-flowing water

body. This explains our result that samples within macrophyte

assemblages had significantly higher specific conductance, but

significantly less dissolved oxygen and lower pH values compared

to samples outside macrophyte assemblages. The bacterial

decomposition of seceded plant material will additionally enhance

these effects [23]. It is remarkable that the highly significant

correlation between macropyhte cover and patch contrast (Eqn 1)

explains more than 90% of the variation of patch contrast data,

irrespective of individual macrophyte species, growth types or

growth stages. The parameter macrophyte cover can easily be

measured and is thus a sufficient indicator for an a priori estimation

of the stream reach specific patch contrast. Patch contrasts and

macrophyte cover cannot increase to an infinite degree; as the

patch contrast is based on a co-occurrence of different patch types,

it is to some extent speculative up to which degree of macrophyte

cover Eqn1 holds true. However, it is unlikely that a stream will

ever be completely covered by macrophytes, and most natural

stream habitat types should lie within the range of macrophyte

cover for which the equation was developed.

Figure 2. Detailed sampling design and macrophyte cover. The adjusted sampling designs according to stream widths (circles at 1 m
distance represent sampling sites of the reach scale grid). Solid circles indicate sampling sites with submerged macrophytes, open circles indicate
sampling sites without submerged macrophytes. The area of the pool/riffle scale grid is denoted in grey (the 49 sampling sites of the pool/riffle scale
grid are not explicitly shown here, but see Fig. 1). The stream reaches are M = Moosach, W = Wiesent, G = Guenz, O = Grosse Ohe, P = Perlenbach,
R = Suedliche Regnitz.
doi:10.1371/journal.pone.0042046.g002

Drivers and Extent of Patch Variation

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e42046



The definition of a patch is the maximum diameter of an area

differing more from its surroundings than inside. Keller and

Melhorn [24] described that patch sizes increase with increasing

stream width. In contrast, the stream width was no driver for patch

size in this study, which is likely based on the fact that the stream

width variation between investigated stream reaches was minor in

this study. Remarkably, our study revealed a second driver for

patch sizes. For streams similar in width (all ,10 m), in mean

annual discharge (all ,1 m3 s21) and current speeds (mean

0.25 m s21), we found that the patch sizes of hyporheic

parameters decreased with increasing sinuosity. Patch sizes were

smaller for stronger meandering streams and larger for minor

meandering streams. Since our analysis did not reveal nested

variograms, patch-in-patch structures could not be shown for the

investigated scales. The high hyporheic patchiness revealed in this

study (i.e. maximum patches sizes of 2 m in stronger meandering

rivers) implies that the physico-chemical characteristics of the

substratum change frequently in 5 cm substratum depth. Macro-

scopically, this is evident by a close succession of different patch

types, e.g. mud pack and gravel runs, which are characterized by

different substratum compositions affecting the substratum

permeability and thus the exchange with the free-flowing water.

Whether similar rules for the patch patterns also apply in other

depths than in 5 cm still needs to be analyzed. However, since the

drivers for the pattern suggest a connection with the sedimentation

process, we may expect similar properties of the pattern also at

greater depths as long as these sediments were deposited under

similar flow regimes as those in 5 cm depths. This does not imply

that different depths are similar in absolute terms but they can

Figure 3. Geostatistical analysis: variograms of contrasting
stream reaches. Normalized semivariances of the hyporheic param-
eters specific conductance, dissolved oxygen and pH as a function of
distance between sampling sites for two contrasting stream reaches (R
and M). A spherical variogram model (solid line is only for illustration;
for analysis, models were fitted individually for each parameter)
quantifies the geostatistical parameters sill (here denoted patch
contrast and representing the maximum value, horizontal dashed line)
and range (here denoted patch size and representing the distance at
which the patch contrast is reached, vertical dashed line). Markers show
the mean of both sampling dates from the development data set.
R = Suedliche Regnitz, M = Moosach.
doi:10.1371/journal.pone.0042046.g003

Figure 4. Results of geostatistical analysis: Patch contrasts and
patch sizes. Results of the geostatistical analysis of all stream reaches
at both dates of the development data: patch contrasts (A) and patch
sizes (B) of hyporheic parameters. Dashed lines (y = x) indicate no
temporal variation. Patch contrast is shown as normalized value, where
1 represents the mean for each parameter. Markers are coded with a
capital letter for the stream reach. M = Moosach (without validation
data), W = Wiesent, G = Guenz, O = Grosse Ohe, P = Perlenbach, R =
Suedliche Regnitz.
doi:10.1371/journal.pone.0042046.g004
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exhibit large contrasts (e.g. [6]). It even does not imply that the

positionings of the patterns in different depths are identical.

In accordance with the beads-on-a-string concept [25] there can

be less autocorrelation (strong gradients) between two adjacent

sites that correspond to ‘‘two beads’’, which receive exfiltration

water from different source regions, compared to two subsurface

sites that are connected within the hyporheic corridor without

additional inflow. Such ‘‘beads’’ probably involve zonation of the

hyporheos [25]. Although they may occur throughout the

hyporheic corridor at different spatial scales they are presumably

too large to be captured by our sampling strategy if they do not

form potholes that were not evident in our rivers.

According to our model, hyporheic patch sizes of 2 m can be

expected in stronger meandering rivers (sinuosity: 0.6). In contrast,

patch sizes of 4 m can be expected in more channel-like rivers

(sinuosity: 0.1). Although there is some difference between both

geochemistry units regarding sinuosity and thus also patch size, the

relation between sinuosity and patch size also holds within one

stream (see validation) and within one geochemistry unit. Hence,

we are confident, that sinuosity and not the geochemistry unit is

the main driver for patch size. In line with Lorenz et al. [26], we

assume that higher hydrodynamic variability (which is induced by

stronger meandering) leads to a more heterogeneous sorting of

stream substratum and thus to smaller patch sizes. This is

supported by our result that Reynolds numbers increased

significantly with increasing sinuosity. Increasing turbulences, as

indicated by increasing Reynolds numbers, should cause decreas-

ing eddy sizes (swirls of turbulent water) and thus reduce patch

sizes. This is also supported by findings of Davis and Barmuta

[27], who associated high patchiness with high Reynolds numbers.

Additional studies that prove the link between hydrodynamics, in

particular the Reynolds number, and ecological processes are

given by [28,29,30]. Even though hydrodynamic parameters like

Reynolds numbers better describe the physical influences on patch

sizes, sinuosity is easier to apply for planning of a sampling design.

It does not depend on a priori measurements of variable flow

velocities and hydraulic radii but it can easily be derived from

readily available aerial photos. As evident from the correlation

values between sinuosity values of different upstream section

lengths and patch sizes (see results) a length of 1 to 1.5 km

upstream of an intended sampling site is ideal for this purpose.

Shorter distances may not characterize the degree of flow

turbulence, induced by meandering, while longer distances may

no longer be relevant for the sampling site. This supports the

assumption that relatively small areas (in the scale of pool/riffle

and reach) in stream ecosystems are influenced by progresses of

landscape scales upstream (up to 1.5 km) of the investigated reach.

As a consequence, successful stream restoration implies that

improvements of even small stream reaches need to consider the

catchment scale.

Recommendations for Habitat Assessments
Basically, there are three cases regarding the investigation of a

stream reach:

(i) The first is to infer mean and/or total of a population

(including physico-chemical parameters) in a given section.

A statistical test on significant differences between means

(e.g. ANOVA) is not intended. In contrast, investigation of

co-variance between means of different sections that are not

autocorrelated may be intended. For this, a design-unbiased

sampling (e.g. random sampling) is adequate even when

applied to populations that exhibit spatial autocorrelation

[31]. The estimator might not be the minimum variance

unbiased estimator compared to an estimator from model-

based sampling (which may be based on geostatistics), but

there is not necessarily a bias in the point estimates [32].

Some designs explicitly make use of spatial autocorrelation.

Adaptive cluster sampling designs, along with many designs

derived from this basic design, all seek to exploit clustering

that is inherent to a population in order to improve estimates

of rare characteristics or events. Again, the estimators have

been derived to provide unbiased estimates of mean and

total (see [32] for a detailed discussion). Such unbiased

Figure 5. Models to predict patch contrast and patch size.
Correlations of normalized patch contrast of hyporheic parameters with
the submerged macrophyte cover (A) and correlation of mean patch
size of hyporheic parameters with the sinuosity for a 1.5 km long
stretch upstream of the sampling site (B). Note the logarithmic scale for
(B). Means of patch contrasts and patch sizes were calculated for each
stream over both sampling dates and three (pH, specific conductance,
dissolved oxygen) parameters (n = 6). Vertical bars show the respective
standard deviation. Horizontal bars in (B) display the range in sinuosity
for 0.5 to 2 km long stretches. Closed circles denote the development
data, open circles denote the validation data. Statistics have been
calculated without validation data.
doi:10.1371/journal.pone.0042046.g005

Drivers and Extent of Patch Variation
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estimators (e.g. mean) are unbiased for the sampled data, but

do not compulsorily represent the river section adequately.

If the estimator should represent a wider area, e.g. the reach

(101 m), care needs to be taken by defining the area to be

sampled. The sampled area should be wide enough to

capture the full range of values for the measured parameters

and thus be representative, e.g. if we want to compare the

hyporhoes with the fish population in a reach. Predicting

patch sizes according to Eqn 2 may help to select an

adequate area for this purpose.

(ii) The second case is to infer means and/or totals from

different sections and to compare them statistically (e.g.

ANOVA) or to investigate the co-variance (e.g. regression)

between the measurements of point samples. In this case,

spatial autocorrelation needs to be addressed, since data

obtained within a spatial pattern are not independent, which

is a critical assumption in statistical standard tests [31]. To

achieve this, there are two possibilities: avoid or correct

spatial autocorrelation. In the first case, samples that are not

autocorrelated are mandatory to avoid pseudoreplication

(i.e. underestimation of variance) [33]. To this end, sampling

distances should be larger than the maximum patch sizes.

Following Eqn 2, this requires sampling distances of 2 m in

stronger meandering streams (sinuosity: 0.6) and sampling

distances of 4 m in minor meandering streams (sinuosity:

0.1). These suggestions are meant to avoid the introduction

of a bias caused by sampling of spatially autocorrelated data

and are thus valid for all possible sampling designs (random

sampling or any kind of systematic sampling design). In the

second case sampling distances smaller than the patch size

can be chosen. Hence basing the sampling distances on

sinuosity is recommended again. At distances of one fourth

of the expected maximum patch size, most patches and

gradients within should be covered. Following Eqn 2, such

an approach requires sampling distances of 0.5 m in

stronger meandering streams (sinuosity: 0.6) and sampling

distances of 1 m in minor meandering streams (sinuosity:

0.1). Whilst this approach provides more detailed spatial

resolution, effects of autocorrelation need to corrected, e.g.

by including into the error variance of the statistical model

(for a brief methodological overview see [34]) or by adapting

the degrees of freedom [35]. Consequently, if autocorrela-

tion is to be included in a statistical model, at least 100 but

better around 200 samples are needed for a precise

estimation of the autocorrelation structure [36].

(iii) If a sampling procedure is destructive, but measurements

from the same location are needed, e.g. analysis of co-

variance between in situ redox-potential measurements and

ex situ oxygen concentration measurements, we need to

obtain the second sample from neighboring points. Further,

a geostatistical analysis is mandatory, e.g. space interpola-

tion (kriging). The same is true if we are interested in small-

scaled pattern analysis of a property itself. Since Kerry and

Oliver [18] suggest sampling distances less than half of the

local patch size, the same distances as in (ii) can be

recommended.

The number of necessary samples increases with required

accuracy. The accuracy may be quantified as confidence interval

of the mean, which is for normal distributed data given by:

�xx+
s
ffiffiffi

n
p |tdf ;1{a=2 ð3Þ

where �xx is the mean, s the standard deviation, n the number of

measurements, t the tabulated t value depending on n and the

desired probability of error a and df are the degrees of freedom

which can be adapted according to the degree of spatial

autocorrelation [35,37]. With increasing macrophyte cover and

patch contrast, sample numbers need to be increased.

There was no consistent difference between the two sampling

dates in patch contrasts and patch sizes in all stream reaches for all

parameters of a stream reach, despite of the differences in absolute

values. This suggests that the same sampling design may be used

throughout the year (excluding influential hyporheic events such as

flooding). This is also supported by the fact that sinuosity does not

change over the year and at least during the growing season, no

change in the macrophyte cover could be observed. In contrast,

the seasonal timing of sampling can be important for quality

assessments, especially when limiting factors (e.g. a minimum

discharge) are part of habitat functionality or suitability for certain

species. Typically, low-flow conditions during summer and fall

Table 2. Characteristics of the study sites.

Stream Code Latitude, Bedrock Drainage Discharge Sinuosity
Substratum
characteristics

longitude geology (m3 s21)

Moosach M 48u23933.9099N
11u43934.9899E

calcareous Danube 0.42 0.06 predominantly muddy

Wiesent W 49u58922.6799N
11u11929.4099E

calcareous Rhine 0.38 0.2 compacted coarse gravel

Guenz G 48u16916.3899N
10u19931.5299E

calcareous Danube 0.5 0.3 loose coarse gravel

Grosse Ohe O 48u43948.0599N
13u15914.3799E

siliceous Danube 0.61 0.6 sandy

Perlenbach P 50u1391.2199N
12u696.7099E

siliceous Elbe 0.5 0.7 loose fine gravel

Suedl. Regnitz R 50u1797.8599N
11u59934.1699E

siliceous Elbe 0.88 1.0 sandy

Characteristics of the investigated stream reaches: code, geographical position (latitude, longitude), associated bedrock geology (calcareous or siliceous), drainage
system, mean annual discharge, sinuosity calculated for 1.5 km linear distance upstream of the investigated stream reach, and substratum characteristics.
doi:10.1371/journal.pone.0042046.t002
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coincide with worst-case conditions of low oxygen supply in the

hyporheic zone, which can be crucial for the survival of freshwater

species [6]. It remains to be tested, whether the approach can also

be applied to other stream types in different environmental

settings.

Conclusions
Spatial variability, as represented by patch contrast and patch

size, was driven by biotic (submerged macrophytes) and abiotic

(sinuosity) factors. While the patch contrast of hyporheic

parameters increased with macrophyte cover at the investigated

stream reach itself, patch sizes decreased with increasing sinuosity

of the stream course upstream of the investigated reach. These

relationships were remarkably similar among different physico-

chemical parameters of the hyporheic zone and among different

times in the year. For unbiased assessment of the hyporheic

parameters, we recommend sampling distances be inversely

related to sinuosity 1.5 km upstream, while relating the total

number of samples to submerged macrophyte cover of the stream

reach.

Materials and Methods

Stream Reaches and Sampling Procedure
Despite the fact that no specific permits were required for the

described field studies, water authorities were informed about the

sampling procedure and dates in the specific streams.

Six streams, situated in the three major drainage systems of

Central Europe (Elbe, Danube, Rhine), were studied (Fig. 1,

Table 1, 2). These were Moosach (M), Wiesent (W), Guenz (G),

Grosse Ohe (O), Perlenbach (P) and Suedliche Regnitz (R). They

represent relatively small (width ,7 m, depth ,1 m and mean

annual discharge ,1 m3 s21) streams in a relatively cool, humid,

sub-oceanic climate. In each stream, one stream reach (approx.

15 m long) was chosen to obtain the maximum between – reach

variance in properties that likely govern hyporheic heterogeneity.

These properties included bedrock geology (calcareous and

siliceous), plan view morphology and presence of macrophytes.

A summary of statistically significant differences between stream

reaches is shown in Table 1. To include temporal variation,

sampling was predominantly carried out on two sampling dates, in

spring (June 2010) and in fall (September 2010). These data were

used to develop statistical models for the spatial variability

(development data). Two additional subsamples were taken in

August 2011 in stream M at distinct stream reaches for model

validation (validation data).

Samples were collected using a nested sampling design (Fig. 1);

this is particularly recommended if the scale of variation is

unknown [38], as different degrees of variance may be observed

depending on the scale of sampling [39]. Since a nested sampling

design allows to sample at multiple scales across the habitat, it can

account for multiple degrees of variation. Thus, we nested two

rectangular sampling grids to comprise two spatial scales, pool/

riffle (100 m) and reach (101 m, as defined by [40]). At the pool/

riffle scale, 49 samples per m2 were collected in a 17617 cm grid.

They were nested in the 12 to 15 m long, by 3 to 6 m wide reach

scale sampling areas (45–90 m2). Stream reaches were sampled in

a 161 m grid (113–161 samples). Reach length and width varied

because they were adapted to the local situation of the stream

reach (Fig. 2). The location of both, reach and pool/riffle scale grid

remained constant between sampling dates.

At each sampling site, a series of standard parameters were

measured to characterize the flow conditions in the water body

and the physico-chemical conditions in the hyporheic zone. Flow

conditions were characterized by 1) water depth, measured with a

graduated rod (61 cm) and 2) current speeds 5 cm below water

surface and 5 cm above substratum, measured with a HFA flow

measuring instrument (60.01 ms21, Höntzsch Instrumente, Wai-

blingen, Germany). Current speed was measured for 10 s and the

mean value was derived. To characterize the physico-chemical

substratum conditions of the hyporheic zone, interstitial pore

water from 5 cm depth was extracted using an aluminum pipe

(internal diameter 6 mm) inserted into the substratum. A syringe

(volume 100 mL, Braun, Melsungen, Germany) attached to a

plastic hose (internal diameter 8 mm) was connected to the

aluminum pipe; the syringe was used to create negative pressure.

Extracted water was transferred into Falcon tubes (ROTH,

Karlsruhe, Germany) to measure pH, specific conductance

(corrected to 25uC) and dissolved oxygen using handheld Multi-

3430 G equipment (WTW, Weilheim, Germany). To enable

correction for a diurnal trend, the time of each measurement was

recorded. To verify that a diurnal trend was not misinterpreted as

a spatial gradient along the sampled stream reach, samples of the

free-flowing water were collected at one position and measured

(every 30 min to accomplish approx. 12 samples) in the same way

as the interstitial pore water. Additionally, the presence or absence

of submerged macrophytes at each sampling site was recorded

(Fig. 2).

The plan view morphology of the stream courses upstream of

the sampled stream reaches (Fig. 1; middle panel) were charac-

terized regarding the degree of meandering as indicated by the

sinuosity. The sinuosity was calculated as the ratio of flow length to

linear distance minus one. A sinuosity of 0.3 thus indicates that the

flow path is 30% longer than a hypothetical linear distance

between two points. Since the sinuosity of a stream may change,

depending on the linear distance taken into account, we calculated

and compared sinuosity for 0.2 km, 0.5 km, 1 km, 1.5 km and

2 km of linear distances. Data were available from the state

surveying office (Landesvermessungsamt Bayern, www.geodaten.

bayern.de/BayernViewer2.0/).

Data Analysis
Step A: Correcting temporal trends. In order to quantify

spatial variability, additional temporal variation caused by diurnal

trends during the day-long sampling (e.g. changing dissolved

oxygen values caused by changing algal photosynthetic activity)

had to be separated from the spatial variability. Such diurnal

trends are typical for stream ecosystems [41] and lead also to an

apparent temporal autocorrelation which disguises the spatial

autocorrelation. To this end, we examined the data for a temporal

trend, using linear regression. Therefore, linear regression was

calculated between time of sampling (independent variable) and

corresponding values of the measured parameters (dependent

variable). A temporal trend was assumed if the slope of the

regression was significantly different from zero, and could be

confirmed by the data of the free-flowing water. Consequently, the

trend was removed by subtracting the slope of linear regression

model from the data.

Step B: Characterizing stream reaches. The stream

reaches were characterized according to flow conditions in the

water body and to physico-chemical conditions in the hyporheic

zone. Significant differences in the mean values of these

parameters were investigated between stream reaches. To avoid

pseudoreplication, we used an ANOVA based on generalized least

squares, which allowed to simultaneously quantify and to correct

for spatial autocorrelation. Computation was done in R 2.11.1

[42] with the auxiliary package nlme [43].
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Step C: Determining patch contrast and patch size. The

spatial autocorrelation was analyzed by calculating variograms for

each parameter of each stream reach, and each sample date. The

variograms allow investigating the elements of spatial variability

[44,45], which are (i) the sill (subsequently denoted patch contrast, as

indicated by the maximum of the model) representing the patch to

patch variance and (ii) the range (subsequently denoted patch size,

as indicated by the distance at which the patch contrast is

reached), representing the extent of spatial autocorrelation

synonymously with spatial dependence (Fig. 3). To retrieve patch

contrast and patch size, a spherical variogram model was fitted to

the variogram data, since the transition to the sill (the spatial

dependence) often follows the shape of a sphere (see Fig. 3) [19].

Patch contrast and patch size do not describe an individual patch

but integrate all patches within the sampled stream reach. For

further details of geostatistics see [46] and references therein. The

variograms were calculated in R 2.11.1 with the auxiliary package

gstat [47]. Goodness of fit was evaluated as r2 and was always

greater than 0.85.
Step D: Normalizing patch contrasts. Since semivariances

and hence also their maximum, the patch contrasts, of different

parameters had different units (e.g. mS cm21 for specific

conductance and mg L21 for dissolved oxygen), they had to be

normalized. Normalization was done by dividing the individual

patch contrasts of each parameter by their squared global mean.

This yielded dimensionless patch contrasts that could be quanti-

tatively compared between parameters.
Step E: Determining differences between stream

reaches. Patch size and normalized patch contrast were tested

on equal means with ANOVA. To control for type one error rate

in case of significance and categorical factors with more than two

levels, Fisher’s LSD post hoc test was applied. Significance levels of

p,0.05, p,0.01 and p,0.001 were used. Data and residuals were

checked for normality and homogeneity of variance. The ANOVA

was computed in STATISTICA 8.0 [48].
Step F: Correlating patch contrast and patch size to

drivers. The ANOVA showed that the patch size and the

dimensionless patch contrast of all hyporheic parameters differed

between stream reaches (Fig. 3, compare R and M). Regressions

with stream properties that were assumed as potential drivers of

the spatial variability were then calculated. To accurately fit the

data, different statistical models were calculated for each potential

driver and compared: These were linear model, power function

and saturation model. In case of significance, the AICc values of

these models were compared [49]. Finally, we present the model

with the lowest AICc for the correlation with patch contrast and

patch size, since these are supposed to be the optimum models

among all other significant models. The obtained models should

allow the prediction of the autocorrelation, based on the driver

properties (within the defined range of streams).

Step G: Validation. For validation of the models (Fig. 5), two

additional stream reaches in stream M were sampled and

analyzed. These two reaches differed in their driver properties

(sinuosity and macrophyte cover) from those previously sampled in

this stream. Sampling design and statistical treatment for the

validation data set was identical to the development data set but

included a reduced set of parameters (specific conductance and

pH) limited to the hyporheic zone. The stream M was selected for

the validation study because it constituted one extreme reach in

terms of sinuosity and macrophyte cover compared to that of the

development data set. The question arose whether less extreme

reaches within the same stream would follow our models or

whether they would deviate (showing similar values as the extreme

reach in M), thus indicating that the relations would not be general

but stream-specific. The data set was reduced to hyporheic

parameters, because they are characterized by a high sensitivity to

the driver properties. Within the hyporheic parameters, dissolved

oxygen measurement (which was strongly correlated to pH) was

excluded, because we found that the models should hold for any of

the tested physico-chemical parameter in the hyporheic zone.

Validations were carried out in a different year and month (August

2011) to test the independence of the relations from the annually

and seasonally varying conditions.

Step H: Deducing recommendations for sampling

design. Recommendations for sampling designs can be predict-

ed through the development of relational models (Eqn 1–3)

resulting from the above analysis.
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