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Abstract

Third party species, which interact with one or both partners of a pairwise species interaction, can shift the ecological costs
and the evolutionary trajectory of the focal interaction. Shared genes that mediate a host’s interactions with multiple
partners have the potential to generate evolutionary constraints, making multi-player interactions critical to our
understanding of the evolution of key interaction traits. Using a field quantitative genetics approach, we studied phenotypic
and genetic correlations among legume traits for rhizobium and herbivore interactions in two light environments. Shifts in
plant biomass allocation mediated negative phenotypic correlations between symbiotic nodule number and herbivory in
the field, whereas positive genetic covariances suggested shared genetic pathways between nodulation and herbivory
response. Trait variance-covariance (G) matrices were not equal in sun and shade, but nevertheless responses to
independent and correlated selection are expected to be similar in both environments. Interactions between plants and
aboveground antagonists might alter the evolutionary potential of traits mediating belowground mutualisms (and vice
versa). Thus our understanding of legume-rhizobium genetics and coevolution may be incomplete without a grasp of how
these networks overlap with other plant interactions.
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Introduction

Though we often study the evolution of species in isolation,

organisms in nature engage simultaneously in interactions with

multiple species [1–3]. The ecological and evolutionary implica-

tions of complex, multi-player interactions are only beginning to

be explored [4]; however, it has become clear that multi-player

interactions have significant potential to alter ecological and

evolutionary processes, and that these effects are impossible to

estimate by studying pairwise species interactions [1,4–6]. Third-

party species, which in combination with a focal pairwise

interaction constitute tripartite interactions, have been shown to

change the ecological costs or benefits in interactions [7], alter the

strength or direction of natural selection [8–10], or even

categorically shift an interaction from mutualism to parasitism

[11]. We cannot fully understand how organisms adapt to such

multi-player interactions without studying the genetic architecture

of the relevant interaction traits, since these traits are likely

underpinned by complex and overlapping genetic response

networks and thus might not evolve independently. Such

investigations can shed light on variation in coevolutionary

interactions and the resulting geographic mosaics [12].

Legume-rhizobium-insect interactions provide a tractable sys-

tem with which to investigate the evolutionary and ecological

effects of tripartite interactions, in part because they can be

manipulated in the greenhouse and field [13,14]. Rhizobia are soil

bacteria that, when in symbiosis, are housed in specialized organs

called nodules on the roots of legume plants. While in the nodules,

rhizobia convert nitrogen to plant-available forms in return for

carbon from plant photosynthesis. The interaction is typically

mutualistic, and results in increased fitness for both partner

species, though rhizobia can become parasitic if plants are shaded

[15]. A previous study that manipulated the presence of a

generalist insect herbivore (Spodoptera exigua) on the model legume

Medicago truncatula in symbiosis with the rhizobium Sinorhizobium

meliloti showed that herbivory increased nodule numbers and,

therefore, increased mutualism benefits to rhizobia [14]. Moreover

there was evidence that the strength of this effect was genetically

variable among plant populations [14].

Although Heath & Lau [14] found a strong and consistent

positive effect of herbivores on nodulation, the mechanism(s)

driving this response remained unclear. One potential mechanism

might be changes in plant allocation. Herbivory often increases

belowground carbon allocation [16,17], which might indirectly

increase nodule numbers. If carbon allocation mediates the

herbivory-nodulation response, then one would expect that: 1)

any herbivory-nodulation relationship would occur via changes in

root biomass, and 2) the availability of plant carbon would alter

the strength or even direction of these responses. Specifically,

shading plants would be expected to lessen any positive

relationship between herbivory and nodulation by decreasing the

carbon pools available for belowground allocation.

Alternatively, herbivores might increase nodulation via shared

signaling networks operating independently from plant carbon

status. If shared networks underlie both traits, then variation at
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these genes would be expected to generate genetic correlations

between nodulation and herbivory, regardless of changes in root

biomass. For example, jasmonic acid (JA) levels increase after

herbivore damage [18,19], and endogenous JA can increase

nodule numbers [20,21], suggesting shared signaling networks in

nodulation and herbivory. In fact, recent experimental work has

demonstrated the potential for JA signaling to mediate plant-

fungal symbiosis, since exogenously-applied JA can increase

mycorrhizal colonization [22,23]. Importantly, these two alterna-

tive mechanisms (carbon allocation and shared signaling networks)

are not mutually-exclusive; an organism’s environmentally-influ-

enced condition has the potential to alter the strength or even

direction of genetic correlations among traits.

Here we use a quantitative genetics approach to study the

context-dependence and genetic architecture of plant interactions

with aboveground herbivores and belowground mutualists. Plant

genotypes from multiple natural Medicago truncatula (barrel medic)

[24] populations were grown in the field in either full sun or partial

shade. Growth, insect herbivory level, and nodule number were

measured in order to: 1) address whether natural levels of

herbivory and nodulation are correlated in the field, 2) determine

the extent to which changes in root biomass explain herbivory-

nodulation correlations, 3) explore the genetic architecture of this

suite of plant interaction traits, and 4) ask whether this genetic

architecture depends on the light environment.

Materials and Methods

Experiment
To assess how the light environment affects the tripartite

interactions between plants, their aboveground herbivores, and

belowground rhizobium mutualists, we grew 55 plant genotypes in

a split-plot design with 30 plots (for 1650 individuals), with either a

sun or shade treatment applied at the whole-plot level, and

genotypes assigned new randomized locations within each plot.

Plant genotypes corresponded to inbred maternal families

(hereafter ‘‘families’’) from eight natural populations in France,

in the native range of M. truncatula. Each family contained the

offspring of a single field-collected maternal individual propagated

in the greenhouse for at least one generation in order to minimize

maternal environmental effects. Because M. truncatula is highly self-

fertilizing in nature, individuals from a single maternal family are

expected to be nearly genetically uniform [25]; therefore, families

are similar to inbred lines. Previous studies of M. truncatula have

shown among-population and among-family genetic variation for

symbiosis with rhizobia [26,27].

M. truncatula seeds were manually scarified and surface-sterilized

by dipping briefly in 100% ethanol followed by 7 minutes in

commercial bleach, then were glued to individual sterile toothpicks

to facilitate planting and seedling identification. Genotypes were

randomized into each 2.5 m2 experimental block in a freshly tilled

agricultural field in Urbana IL, with ,30 cm spacing between

plants. The experiment was watered immediately after planting

and approximately thrice per week thereafter, with the exception

of rainy days. Blocks in the shade treatment were covered by

2.5 m62.5 m square of 50% shade cloth suspended 45 cm off the

ground by a PVC scaffold. Light levels (PAR) averaged

1277.1653.5 umol/m2s (mean 6 SD) in sun, versus

522.3648.4 umol/m2s in shade blocks, as measured using a

quantum flux meter (model MQ-200, Apogee Instruments, Logan

UT). Shade treatments also decreased soil and leaf temperature

(e.g. from an average of 41.862.2 C to 32.363.0 C for soil and

from 32.362.1 C to 30.161.7 C for leaf), as measured using an

infrared thermometer (model 574-CF, Fluke Co., Everett WA) on

12 August, 2010. Probably as a result of the frequent watering

necessary to maintain the experiment, soil moisture content did

not differ between plots (experiment-wide mean volumetric water

content 6 stdev = 39.7% 62.8), as measured using a soil moisture

probe (Field Scout TDR 300, Spectrum Technologies, Inc.,

Plainfield IL) on 17 August, 2010.

Of the initial June 26 planting, 90% of seeds did not emerged,

and these individuals were replaced with a second planting on July

16. Because we were interested in how natural levels of herbivory

interacted with shade treatments to impact plant growth and

nodulation, herbivory was scored as the proportion of damaged

leaves (damaged leaves/total leaves) at seven weeks after initial

planting. This metric should be correlated with total leaf area

removed and moreover should not be biased across treatments.

Caterpillars of two lepidopteran species, Spodoptera ornithogalli and

Colias eurytheme, were routinely observed causing the type of

herbivore damage typical of experimental plants (P. Knapik,

personal observation). Blocks were harvested between September

11 and September 24, 2010. For each plant, the entire root system

was dug up, soaked in a bucket of water to loosen and remove all

soil, and scored for the total number of nodules present.

Aboveground and belowground biomass were then clipped apart,

dried, and weighed separately. Because nodules in the field senesce

before fruits are ripe, direct estimates of plant reproductive fitness

were not feasible.

Germination and survival in the field were low. Planting date

(June 26 versus July 16) was not a significant source of variation for

any traits and thus was not included in final analyses. Despite the

second planting, only 27% of the 1650 planted survived to harvest.

To encourage mixed models to converge in order to estimate

genetic effects, we included only plant genotypes that were

represented by at least two or more individuals per treatment (i.e.,

at least N = 4 replicates per family) in the analyses. Of the 55

families initially planted, 46 met this criterion; thus although light

treatment affected mortality (see Results), differences were not

severe enough to lead to heterogeneity in the families represented

in the two light treatments. Seedling mortality might have been

non-random among families; therefore, the remaining subset

might represent a biased sample of the genetic variation, though in

what way cannot be known.

Data Analysis
Except where indicated, analyses were implemented in SAS

software (version 9.2, SAS Institute, Cary NC). We used both

MANOVA in PROC GLM (all effects treated as fixed) and

univariate PROC MIXED to test for the fixed effects of plant

population, light treatment, and treatment 6 population and the

random effects of plant maternal family nested within population,

treatment 6 family, and block nested within treatment on each of

the four dependent variables. We did not model interactions with

block. Pairwise Pearson (phenotypic) correlations were computed

among all four traits (nodule number, herbivory, root and shoot

biomass) using PROC CORR. Transformations did not dramat-

ically alter the results, but can alter the biological interpretation of

data [28]; therefore, we present results of analyses performed on

untransformed data.

We used structural equation modeling [29,30] to tease apart the

direct and indirect effects of herbivory on nodule number and how

these effects might be altered by light treatment. We created

a hypothesized a priori model in which herbivory could affect

nodule number directly as well as indirectly via root and shoot

biomass, using AMOS version 7 [31]. We included a double-

headed arrow between root and shoot biomass errors because

these two variables are strongly positively correlated with one

Genetic Architecture of Tripartite Traits
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another, likely due to unmeasured environmental heterogeneity.

We also constrained their covariance to be equal between light

treatments because the relationship between roots and shoots

should be similar in the two environments. We assessed the

adequacy of our hypothesized model to describe two types of data

(confirmatory analyses sensu [29]). First, we examined the

phenotypic data on all individuals, ignoring family structure

(hereafter referred to as the ‘phenotypic’ structural equation model

or SEM). Second, we examined the population means (hereafter

referred to as the ‘population’ SEM; described below). Within

each of these two models, we compared how the paths between

plant interaction traits differed between the two light treatments

(sun and shade) using the critical ratios between the regression

coefficients. We did not remove any nonsignificant relationships

from the hypothesized models. All data were multivariate normal.

The ‘phenotypic’ SEM fit the individual-level data adequately (i.e.,

was not rejected; x2 = 0.42, d.f. = 1, p = 0.517). Fit indices also

suggested that this model fit the data (CFI = 1.0; RMSEA = 0.0

[32].

The family-level (i.e. among-line) genetic variance-covariance

(G) matrix describes the broad-sense genetic variances and

covariances of traits in each light environment, and thus can

illuminate how trait correlations might be expected to influence

the outcome of selection on individuals within populations under

different light environments. To obtain G matrices, we used

repeated measures mixed model analysis of variance implemented

in PROC MIXED to model the fixed effects of trait (nodules,

herbivory, root biomass, shoot biomass), light treatment (sun or

shade), population, population 6 light treatment, block nested

within treatment, and the random effect of plant maternal family

nested within population on all phenotypic observations by

specifying the ‘‘type = UN’’ solution statement [33,34]. A grouping

term [35] was used in the random statements to estimate separate

among-family G matrices for the sun and shade treatments. In

order to facilitate model convergence, all traits were first scaled to

a mean of 1 by dividing all values by the experiment-wide trait

mean (SAS User’s Guide, Version 9.2). All SAS code is available

upon request.

We tested for differences in genetic architecture between the

two light environments in multiple ways. First, we dropped the

grouping term in both random statements and calculated

likelihood ratio tests for the null hypothesis of no significant

decrease in model fit [35,36]. Similarly, since we were interested a

priori in the response of the herbivory-nodulation covariance to

light environment, we tested this by comparing the full model (with

the grouping term) to one in which this particular covariance was

constrained to be equal in the two environments. We tested

whether responses to multivariate selection would be expected to

change depending on the light environment using the random

skewers method of Cheverud [37], but modified for the null

hypothesis of matrix equality, implemented in R (version 2.9.0)

using a custom program kindly provided by C. Goodnight (raw

standardized skewers option, with 1000 bootstrap replicates [38].

Briefly, random skewers multiplies the two matrices by a set of

1000 random vectors and then computes the average correlation

of the resulting response vectors, which is then compared to a

bootstrap distribution created by randomizing individuals across

families for significance testing. Finally, we compared G matrices

using a Flury hierarchical analysis implemented in CPCrand using

the "jump-up" approach [39]. In the "jump-up" approach,

alternative hypotheses about matrix similarity (e.g., whether the

matrices share principal components, are proportional to each

other or are equal to each other) are each tested against a null

model of unrelated matrix structure. CPCrand compares the

results of the likelihood-ratio tests between the models to the

distribution generated by randomly reassigning families to either

sun or shade 1000 times and estimates the probability of obtaining

such a test statistic by chance [39].

Because we found significant among-population trait variation,

among-population genetic correlations for all traits were also

approximated by performing correlations and structural equation

modeling (described above) using lsmeans for each population in

each treatment (output by the multivariate model described

above). The ‘population’ SEM fit the population-level data

adequately (x2 = 0.63, d.f. = 1, p = 0.429; CFI = 1.0;

RMSEA = 0.0). In contrast to the family-level G matrix, the

population-level correlation matrix describes the among-popula-

tion genetic component of trait variances and covariances [40],

and therefore can illuminate how populations from different

geographic locations might differ in terms of multivariate trait

evolution as a result of spatial genetic structure. It should be noted,

however, that a sample size of eight populations is quite small for

estimation of among-population variance and covariance; there-

fore, population-level effects should be interpreted with appropri-

ate caution.

Results

Phenotypic Analyses
Univariate ANOVAs and MANOVA indicated that plant

population, light treatment, block, and plant maternal family

contributed to variation in the dependent variables (Table S1).

Mortality was slightly but significantly higher in the sun (74%,

versus 70% in the shade; x2
df = 1 = 4.21; p = 0.0402). Plants in the

shade environment were larger and produced significantly more

nodules (mean 6 SE; number of nodules: shade = 12.761.4;

sun = 2.561.5), root biomass (shade = 0.2360.04 g;

sun = 0.1660.04 g) and shoot biomass (shade = 2.060.34 g;

sun = 1.3260.35 g) than plants in the sun treatments. In addition

to being larger, plants in the shade also experienced less insect

damage on a per-leaf basis (proportion of damaged leaves:

shade = 0.2960.02; sun = 0.4560.02). All traits were phenotypi-

cally correlated in this experiment (Table S2). Within both sun and

shade environments, nodule number, root biomass, and shoot

biomass were positively correlated, while herbivory was negatively

correlated with all three remaining variables. Thus smaller and

less-nodulated plants also experienced more herbivory in both

light environments.

We used ANOVA paired with structural equation modeling

(SEM) to tease apart the effects of these correlated traits on nodule

number. Most importantly, the non-significant direct effects of

herbivory on nodulation in both sun and shade (Table 1;

Figure 1A,B; see Figure S1 for unstandardized regression weights)

indicated that the overall negative phenotypic correlations

between herbivory and nodulation were mediated entirely through

plant biomass. Not surprisingly, both root and shoot biomass were

negatively influenced by herbivory in both environments, and the

directions of downstream effects of biomass on nodule number

were consistent between sun and shade environments

(Figure 1A,B). The standardized total effect (indirect and direct)

of herbivory on nodule number was 20.153 in the sun and

20.116 in the shade. Nevertheless significant interactions of root

and shoot biomass with light treatment in the ANOVA (Table 1),

as well as significant differences in the biomass-nodule number

paths in the sun versus shade SEM (comparing paths in sun and

shade: shoot to nodules, z-value = 25.837, P,0.0001; root to

nodules, z-value = 9.545, P,0.0001; Figure 1A,B), indicated that

the slopes of the root-nodule number and shoot-nodule number

Genetic Architecture of Tripartite Traits
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relationships differed between light environments. In particular,

neither shoot nor root biomass significantly affected nodule

number in the sun treatment (Figure 1A), while both significantly

affected nodule number in the shade treatment (Figure 1B).

Genetic Analyses
In order to assess the genetic architecture underlying this suite

of correlated plant traits in the field, we first estimated G matrices

representing the among-family (inbred line) genetic component

(i.e. broad-sense genetic variation; Table 2).

We used multiple approaches to test whether the genetic

architecture of these traits differed significantly between light

environments, with differing results. Model fit was improved

when G matrices were estimated separately for each light

treatment (x2 = 252.1, df = 20, p,0.0001). Nevertheless, the

main covariance of interest, that between herbivory and

nodulation, was equal in the two light environments; specifically,

a model in which sun and shade covariances were estimated

separately was not significantly more likely than a model in

which they were constrained to be equal (x2 = 0.3, df = 1,

Figure 1. Path diagrams showing the standardized regression weights and the amount of variation in each variable explained by
the input arrows (R2). Straight arrows reflect causal paths, with the strength of the relationship designated by arrow thickness. Curved arrows
designate correlations. Asterisks denote statistically significant paths: *p,0.02, **p,0.001. Paths that are significantly different between sun and
shade treatments are indicated with {. Results of the ‘phenotypic’ SEM on all individuals are shown in panels A (sun, N = 682) and B (shade, N = 681);
those of the ‘population’ SEM on population means are shown in panels C (sun, N = 8) and D (shade, N = 8).
doi:10.1371/journal.pone.0041567.g001

Genetic Architecture of Tripartite Traits

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e41567



p = 0.2919). Responses to multivariate selection in the sun

versus shade environment were not predicted to differ signifi-

cantly using the null hypothesis-corrected random skewers

method (r = 0.56, p = 0.86). Finally Flury hierarchical analysis

indicated that, although the matrices were not equal or even

proportional (likelihood ratio = 3.3991, p,0.0001), their eigen-

structure was similar (i.e., we could not reject the model of

common principle components, likelihood ratio = 1.9645,

p = 0.0606). In sum, these results provide little evidence that

responses to selection on these interaction traits in M. truncatula

would differ drastically between light environments.

More genetic variation for nodulation was found among

populations than among plant families in this experiment (Table

S1). Both ANOVA and SEM approaches to address this

component of variance suggested that among-population differ-

ences in nodulation were driven by all three remaining traits

(herbivory, root biomass, and shoot biomass; Table 3;

Figure 1C,D). The ‘population’ SEM revealed no evidence for

among-population correlations between herbivory and shoot or

root biomass (Figure 1C,D). Like the ‘phenotypic’ SEM

(Figure 1A,B), root and shoot biomass were positively and

negatively (respectively) correlated with nodulation, and the

strength of both relationships increased significantly in the shade

(comparing paths in sun and shade: root to nodules, z-

value = 3.205, p = 0.001; shoot to nodules, z-value = 22.584,

p = 0.010; Figure 1C,D). In contrast to the phenotypic analyses,

however, but consistent with the family-level genetic covariances

(Table 2), herbivory had a positive and direct effect on nodule

number (Table 3), but only in the shade (comparing paths in

sun and shade: herbivory to nodules, z-value = 3.991,

p,0.0001; Figure 1D). An important consequence of the light

environment is that it altered the direction and magnitude of

the standardized total effect (sum of indirect and direct) of

herbivory on nodule number, from 20.208 in the sun to 0.596

in the shade. In sum, to the extent that these eight populations

represent the among-population component of genetic variance,

these results are consistent with a shared, but environmentally-

dependent, genetic component underlying nodulation and

herbivory.

Discussion

Plants participate simultaneously in numerous species interac-

tions, and these multi-player interactions have the potential to

alter both ecological and evolutionary outcomes in natural

populations. We used a quantitative genetics approach and

manipulated the light environment in the field to explore

environmental and genetic influences on plant traits that mediate

interactions with other species - both the aboveground interactions

with herbivore antagonists and the belowground interactions with

rhizobium mutualists. We found that shifts in plant biomass

allocation can affect indirect interactions between insect herbi-

vores and rhizobia. However positive among-family and among-

population genetic covariances between herbivory and nodulation

do suggest that shared genes might underlie plant responses to

both types of interactors. Finally, there was evidence that the

environment might alter the genetic architecture of these plant

interaction traits. We highlight potential ecological and evolution-

ary implications of these results below.

Plant Carbon Allocation Mediates Tripartite Interactions
We predicted that, if plant carbon allocation mediates the effects

of herbivores on nodulation, then any herbivory-nodulation

relationship would be explained by changes in root and/or shoot

biomass and would be affected by carbon availability (i.e., shade).

Although our results suggest a role for biomass allocation in

mediating these interactions, it is not in the expected direction.

More nodulated plants in this experiment had lower levels of

herbivory (both within and among light treatments), and this

phenotypic relationship between herbivory and nodulation was

entirely mediated via changes in plant biomass allocation. Other

authors have also found that larger plants experience less

herbivory, possibly because plants in more favorable conditions

have more resources to allocate to both growth and defense [41].

Given the apparent poor condition of plants in the current

experiment, this explanation seems feasible: whether it was the

imposed difference between sun and shade treatments or random

Table 1. ANOVA on phenotypic data for all individuals: the
effects of light treatment (sun or shade), herbivory, shoot
biomass, root biomass, and interactions with light treatment
on nodule number.

Nodule number

Source Mean square F1,404 p

Light Treatment 12.30 0.17 0.6787

Herbivory 1.70 0.02 0.8775

Root Biomass 7813.56 109.20 ,0.0001

Shoot Biomass 1919.59 26.83 ,0.0001

Light Treatment 6Herbivory 57.34 0.80 0.3712

Light Treatment 6Root Biomass 6607.60 92.34 ,0.0001

Light Treatment 6Shoot Biomass 2303.83 32.20 ,0.0001

doi:10.1371/journal.pone.0041567.t001

Table 2. Broad-sense genetic variances (diagonal, in italics) and covariances (off-diagonal) for nodule number, herbivory, root
biomass, and shoot biomass of field-grown M. truncatula plants in the two light treatments (sun or shade).

Nodule number Herbivory Root biomass Shoot biomass

Nodule number 0.1195(3%) 0.0151(5%) 0.0419 20.0787 20.0494

Herbivory 0.0448 0(0%) 0(0%) 0.0021 20.0063

Root biomass 0.0303 0.0192 0.0565(100%) 0(0%) 0.0237

Shoot biomass 20.0003 0.0174 0.0396 0.0026(3%) 0.0871(22%)

Coefficients of variation for each trait are shown in parentheses. Shade variances and covariances are below the diagonal, and sun variances and covariances are above
the diagonal.
doi:10.1371/journal.pone.0041567.t002
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micro-environmental variation, plants in more favorable condi-

tions were larger, had more nodules, and were more resistant to

insect herbivores in both light environments. Very generally, this

result is consistent with models of mutualism [42,43] that predict

positive feedback between the condition or fitness of one partner

(here, the plant) and the population size of its partner species (here,

the rhizobium).

Plant Genotype Mediates Tripartite Interactions
In contrast to the negative phenotypic correlation between

herbivory and nodule number we observed here, a previous

manipulative study in this system found that herbivory increased

nodule numbers [14], and suggested that a shared genetic basis for

herbivore and rhizobium responses by M. truncatula could generate

such a pattern. Here we predicted that, if shared signaling

networks underlie both responses, then positive genetic correla-

tions should exist between herbivory and nodulation. The positive

genetic covariances/correlations between nodulation and herbiv-

ory found here at both the among-family and among-population

level – even after controlling for changes in plant size – are indeed

consistent with a shared genetic basis for plant responses to

herbivores and rhizobia. Importantly, because neither nodulation

nor herbivory was manipulated in this experiment, these results

could be driven by either interactor.

It is important to note that genetic covariance at any geographic

scale can be generated by three distinct causes: pleiotropy resulting

from shared genetic mechanisms, physical linkage, or linkage

disequilibrium resulting from historical evolutionary processes

[44,45]. Thus the extent to which nodulation-herbivory covari-

ance in this experiment is driven by overlapping response

pathways remains a mystery, though current molecular techniques

have the potential to unravel the molecular basis of context-

dependent trait correlations such as these [46,47]. The role of

phytohormones such as JA in regulating nodulation is still being

elucidated [21,48], and multiple genetic pathways might underlie

shared aboveground and belowground responses by plants.

Nevertheless given JA’s role in herbivory [18,19] and nodulation

[21], as well as recent empirical evidence that plant JA might

mediate tripartite interactions between pollinators, plants, and

arbuscular mycorrhizal fungi [23], the overlapping role of JA in

herbivore antagonism and rhizobial mutualism is likely a

profitable avenue for future work.

Genetic variance in nodulation was found among populations,

in addition to among families within populations, in this

experiment. Previous studies in this and other systems have found

population-level genetic variation in either nodulation or herbiv-

ory [27,49], though studies of M. truncatula have typically found

that most quantitative genetic variation exists within populations

[14,27,50]. Our results indicated that, among the eight popula-

tions studied here, those populations that produced more nodules

tended to be more susceptible to insect herbivores. This stands in

contrast to the phenotypic pattern, possibly because these traits are

simultaneously linked by the environment and underlying genes.

To the extent that these correlations do reflect shared plant genetic

mechanisms (JA signaling or otherwise, which remain to be tested),

results like ours suggest that the evolution of nodulation (and plant-

rhizobium coevolution) would not proceed independently from the

evolution of resistance (and plant-herbivore coevolution). Such

findings strengthen the argument for including multi-player

interactions, and community genetics in general, in ecological

and evolutionary studies [51].

Population-level genetic covariance, such as that found between

herbivory and nodulation in the current experiment, has long been

a subject of interest and debate in evolutionary biology. Analogous

to the effect of correlated traits on population evolution [44], traits

that are correlated among populations have the potential to alter

population-level (group) evolution by constraining the directions in

multivariate trait space that are available to evolution [40,52].

Population-level correlations may also reveal the historical action

of geographically-variable selection for adaptive trait complexes

[53]; however, population-level trait covariance can also result

from neutral evolutionary processes like drift and gene flow [54].

Thus it is not possible to know the extent to which population-level

correlations between nodulation and herbivory in this experiment

are driven by shared genetic mechanisms, versus historical

evolutionary processes. The evolutionary dynamics of metacom-

munities, i.e. multiple interacting populations coevolving in a

spatial context, are underexplored [4]. We propose that trait

correlations among characters that mediate key interactions in

natural communities, such as those explored here, might play

important roles in the evolutionary trajectory of community

evolution at multiple spatial scales. Our experiment provides a

foray into among-population variance in tripartite interactions and

suggests testable hypotheses. Appropriate genetic designs that

maximize population-level sampling, while difficult experimental-

ly, will be critical for rigorous estimates of these variance

components in the future.

The Light Environment Mediates Tripartite Interactions
Because herbivores and rhizobia both utilize plant carbon, we

predicted that carbon limitation imposed by a shade treatment

might generate negative correlations (phenotypic or genetic)

between herbivory and nodulation. We found little evidence

supporting this prediction. Negative phenotypic correlations

between herbivory and nodulation in both environments were

mediated entirely via changes in root and shoot biomass,

probably reflecting a more general plant tradeoff between

aboveground and belowground allocation [55]. Indeed the only

significant direct relationship between herbivory and nodulation

was a positive among-population genetic correlation within the

shade treatment. More generally, the major axes of trait

variation in this experiment were largely consistent across light

environments, providing weak evidence that multivariate

responses to selection would differ between light treatments.

To the extent that interaction trait covariances/correlations

(such as the ones studied here) do differ among environments,

the strength and importance of the resulting indirect effects and

Table 3. ANOVA on population means: the effects of light
treatment (sun or shade), herbivory, shoot biomass, root
biomass, and interactions with light treatment on nodule
number.

Nodule number

Source Mean square F1,8 p

Light Treatment 0.11 2.5 0.1521

Herbivory 0.47 10.7 0.0114

Shoot Biomass 1.20 27.2 0.0008

Root Biomass 0.55 12.4 0.0078

Light Treatment 6Herbivory 0.55 12.5 0.0077

Light Treatment 6Root Biomass 0.31 7.0 0.0299

Light Treatment 6 Shoot Biomass 0.21 4.7 0.0621

doi:10.1371/journal.pone.0041567.t003
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metacommunity evolutionary processes would be expected to

vary with the environmental context.

Supporting Information

Figure S1 Path diagrams showing the unstandardized
regression weights and the amount of variation in each
variable explained by the input arrows (R2). Straight

arrows reflect causal paths, with the strength of the relationship

designated by arrow thickness. Curved arrows designate correla-

tions. Results of the ‘phenotypic’ SEM on all individuals are shown

in panels A (sun, N = 682) and B (shade, N = 681); those of the

‘population’ SEM on population means are shown in panels C

(sun, N = 8) and D (shade, N = 8).

(TIF)

Table S1 MANOVA and univariate mixed model ANOVA

(using REML) results for the effects of light treatment (sun or

shade), plant population, maternal family and block on nodula-

tion, insect herbivory, and root and shoot biomass of field-grown

M. truncatula. For MANOVA, Wilks Lambda is shown; in

univariate models, F-statistics are shown for fixed effects, and x2

statistics (df = 1) are shown for random effects, as well as percent

variance explained (PVE).

(DOCX)

Table S2 Phenotypic correlations (N) between dependent

variables in the two light treatments (sun or shade). Trait

correlations in shade are in grey below the diagonal; trait

correlations in sun are in white above the diagonal. *p,0.1;
**p,0.01;***p,0.001;****p,0.0001

(DOCX)
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