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Abstract

The production of mature sperm is reliant on androgen action within the testis, and it is well established that androgens act
on receptors within the somatic Sertoli cells to stimulate male germ cell development. Mice lacking Sertoli cell androgen
receptors (AR) show late meiotic germ cell arrest, suggesting Sertoli cells transduce the androgenic stimulus co-ordinating
this essential step in spermatogenesis. This study aimed to identify germ cell proteins responsive to changes in testicular
androgen levels and thereby elucidate mechanisms by which androgens regulate meiosis. Testicular androgen levels were
suppressed for 9 weeks using testosterone and estradiol-filled silastic implants, followed by a short period of either further
androgen suppression (via an AR antagonist) or the restoration of intratesticular testosterone levels. Comparative
proteomics were performed on protein extracts from enriched meiotic cell preparations from adult rats undergoing
androgen deprivation and replacement in vivo. Loss of androgenic stimulus caused changes in proteins with known roles in
meiosis (including Nasp and Hsp70-2), apoptosis (including Diablo), cell signalling (including 14-3-3 isoforms), oxidative
stress, DNA repair, and RNA processing. Immunostaining for oxidised DNA adducts confirmed spermatocytes undergo
oxidative stress-induced DNA damage during androgen suppression. An increase in PCNA and an associated ubiquitin-
conjugating enzyme (Ubc13) suggested a role for PCNA-mediated regulation of DNA repair pathways in spermatocytes.
Changes in cytoplasmic SUMOT1 localisation in spermatocytes were paralleled by changes in the levels of free SUMO1 and of
a subunit of its activating complex, suggesting sumoylation in spermatocytes is modified by androgen action on Sertoli
cells. We conclude that Sertoli cells, in response to androgens, modulate protein translation and post-translational events in
spermatocytes that impact on their metabolism, survival, and completion of meiosis.
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Introduction includes regulation of paracrine factors and cell-surface protein
expression, reviewed in [1].

Quantitatively normal sperm production requires the action of
both androgens and follicle-stimulating hormone (FSH), reviewed
in [2-4]; FSH is particularly important for establishing a normal,
functional Sertoli cell population, whereas androgen action is
needed for the completion of germ cell development. Androgens
can influence testis function via effects on Leydig cells, peritubular
myoid cells and Sertoli cells, but are not considered to act directly
on germ cells, reviewed in [5]. Transgenic mouse models show
that the stimulation of spermatogenesis by androgen requires a
direct action on androgen receptors (AR) in Sertoli cells [6,7]. AR
action in other testicular somatic cells, including peritubular myoid
cells [8] and Leydig cells [9] 1s also essential for normal
spermatogenesis, indicating that germ cell development depends

The production of sperm, known as spermatogenesis, requires
androgen action. Spermatogenesis takes place in the seminiferous
tubules, where the somatic Sertoli cells co-ordinate the develop-
ment of germ cells though the various phases of development. The
most immature germ cells, the diploid spermatogonia, proliferate
prior to their entry into meiosis. Spermatocytes then proceed
through meiosis where genetic information is exchanged via
homologous chromosome recombination, and the final meiotic
divisions produce haploid spermatids. Spermatids then undergo
complex remodelling during spermiogenesis to produce the
mature streamlined spermatid form. Sertoli cells provide structural
and nutritional support to the developing germ cells by
establishing a unique microenvironment within the tubules; this
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on androgen signalling via a number of different somatic cell types
[5,10]. It 1s well established that germ cell development is highly
sensitive to small changes in testicular androgens, and that there
are different “thresholds” for androgen action [11]. For example,
low levels of testicular androgens that support the completion of
meiosis cannot support the completion of spermiogenesis [12], a
finding supported by observations in mice expressing a hypomor-
phic AR in Sertoli cells [13]. A better understanding of the
molecular mechanisms by which androgens regulate spermato-
genesis is needed, as current approaches to hormonal male
contraception in part rely upon full suppression of intratesticular
androgen action.

The completion of meiosis is well known to require androgen
action transduced via Sertoli cell AR, reviewed in [5] and to be
uniquely sensitive to testicular androgen levels [12]. Meiosis begins
when spermatogonia divide into preleptotene spermatocytes which
replicate their DNA during S phase, reviewed in [14]. Prophase I
proceeds with the initiation of double strand breaks in DNA
followed by homologous chromosome pairing in leptotene and
zygotene spermatocytes, respectively, and then follows a long
period (more than 2 weeks in the rat) of chromosomal crossover in
pachytene spermatocytes, which ensures genetic diversity of the
gametes. Desynapsis of chromosomes occurs during the diplotene
phase, and thereafter the first meiotic division (Meiosis I) proceeds
rapidly to produce secondary spermatocytes. These spermatocytes
then quickly (~15 hr) enter the second meiotic division (Meiosis II)
to produce haploid round spermatids.

Pachytene spermatocytes initiate the transcription of genes
involved in the completion of meiosis in the mid-spermatogenic
stages VII and VIII [15,16], when Sertoli cell AR expression is
highest, reviewed in [2,3]. Androgen action on the Sertoli cell is
well known to influence the survival of pachytene spermatocytes. A
small proportion of the pachytene spermatocyte population is lost
via apoptosis, reviewed in [17], in stages VII and VIII during
suppression of gonadotropins and/or intratesticular androgen
[18-20]. Mice lacking AR in Sertoli cells (SCARKO mice) show a
progressive loss of pachytene spermatocytes between stages VI-
XII, a reduced number of spermatocytes entering the diplotene
phase [6], and few post-meiotic cells (<0.5% of wildtype) are
produced [21], suggesting that if spermatocytes survive the
pachytene phase, they are largely unable to undergo normal
meiotic division.

Taken together, the above studies suggest that Sertoli cells, upon
androgen stimulation, secrete factors and/or express cell surface
proteins that influence pachytene spermatocyte survival and ability
to complete meiosis. Progress has been made towards understand-
ing how androgens act on their receptors in Sertoli cells, reviewed
in [3,22] and identifying genes that are modulated in these cells in
response to AR modulation, such as Rhox5 [23] and genes
involved in retinoic acid metabolism and cellular adhesion,
reviewed in [24]. It is clear that androgens support numerous
Sertoli cell processes that are essential for germ cell development,
including the function of the blood testis barrier and the
development of a functionally mature Sertoli cell phenotype
necessary to support germ cells [25,26]. However the mechanism
by which the Sertoli cells “transduce” the androgenic stimulus to
germ cells, and what processes in germ cells respond to this
stimulus, is unclear. Previous studies have shown that germ cells
exhibit complex cell- and stage-specific transcriptional changes in
response to androgen and FSH suppression [16], however the
effects on proteins in these cells is unknown. We hypothesised that
androgens act on AR expressing cells in the testis, particularly
Sertoli cells, which in turn modulate pachytene spermatocyte gene
transcription, translation and post-translational protein modifica-
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tion to ensure spermatocyte survival and completion of meiosis.
This study aimed to investigate the proteomic changes occurring
in meiotic cells during testicular androgen suppression and
replacement in vivo, in order to better understand the response
of meiotic cells to somatic cell-mediated androgen action. The
results demonstrate that meiotic spermatocytes respond to changes
in testicular androgens, indirectly, by modulating the expression
and post-translational modification of proteins involved in
oxidative metabolism, DNA repair, RNA processing, apoptosis
and meiotic division.

Results and Discussion

Rationale for Androgen Suppression and Replacement
Treatments

For an overview of the experimental design and study rationale,
see Figure 1. Testicular androgen suppression was achieved by 9
weeks of testosterone and estradiol (TE) treatment [27,28]. We
have previously shown that this treatment suppresses gonadotro-
pin secretion and lowers intratesticular testosterone (I1T) levels to
~3% of control [27,28]. TE treatment decreased testis weights as
expected to 36% of control [control; 1.92%0.16 g,/ TE;
0.63*0.12 g, (mean = SD, n =4, (P<<0.001)]. We have previously
shown that TE treatment impairs the survival of pachytene
spermatocytes in stages VII and VIII leading to a small reduction
in the number of pachytene spermatocytes in the later stages (IX-
XIV) of spermatogenesis [18,19]. However, with this treatment,
the conversion of spermatocytes into haploid round spermatids (a
measure of meiotic division) is not significantly altered [19]. Thus
TE treatment is expected to induce some degree of pachytene
spermatocyte apoptosis, but the final meiotic division is preserved.
More complete androgen suppression was achieved by the
addition of the AR antagonist, flutamide, during the final 4 days
of TE treatment (TE+Flut) [19,29]. This treatment blocks the
residual androgen action in the TE-treated testis and as expected
reduced testis weight to 26% of control (TE+Flut, 0.50£0.05 g,
n=4, NS compared to TE). We have previously shown that the
addition of flutamide does not change testicular testosterone levels
[19]. This treatment causes more profound effects on pachytene
survival [19,29], and also significantly impairs the final meiotic
division at the end of the spermatocyte phase, as assessed by the
conversion of pachytene spermatocytes in stages IX-XIV to round
spermatids [29]. The restoration of testicular androgen action in
TE animals was achieved by the administration of high dose
testosterone (124 cm) (TE+T124) for 4 days. We have previously
shown that this dose of testosterone, when given to TE-treated
animals, significantly restores testicular testosterone levels (to
~12% of control) as well as late pachytene spermatocyte and
round spermatid populations [27,30] and, subsequently, sperm
production to near-normal levels [31]. This treatment thus restores
pachytene spermatocyte survival and allows the successful
completion of meiotic division.

Enriched meiotic cell preparations were prepared from control
(untreated rats), androgen-suppressed rats (from TE alone and
TE+Flutamide groups) and androgen-replaced rats (TE+T24).
Cell were enriched from whole testis lysates and subjected to
elutriation, which separates cells on the basis of size. Because all
stages of spermatocytes are represented in each treatment group
[18,19,27,28] and whole testis lysates were used, we expect
minimal differences in the types of spermatocytes between each
preparation. After protein extraction, equivalent protein concen-
trations from each group were loaded onto the gels in order to
correct for cell number.

July 2012 | Volume 7 | Issue 7 | e41718



Treatment groups

Treatment Lowdose T & E TE for 9wks then
implants for flutamide for 4d
9wks, to to acutely block
suppress LH androgen action

via AR

iTT levels 3% control 3% control

Effects on All spermatocyte All spermatocyte

meiotic types present, types present,

cells some apoptosis some apoptosis

of spermatocytes
in stages VIl and
VIII

of spermatocytes
in stages VIl and
VI, final division

at end of
spermatocyte
stage impaired

3 J

Androgen Responsive Proteins in Male Meiotic Cells

TE for 9wks, then
high dose T for 4d
to acutely restore
androgen action

12% control

All spermatocyte
types present. This
doseof T can
restore sperm
production to near-
normal and thus
can support all
aspects of meiosis

3

Meiotic cells enriched and total protein extracted

Equivalent amounts of protein subjected to 2D-DIGE

J

Differentially expressed spots selected
(significant difference between TE+Flut and TE+T24)

Differentially expressed spots picked and identified by

mass spectrometry

Figure 1. Schematic diagram of study design and rationale. Three treatment groups (TE, TE+Flut, TE+T24) were utilised in this study, as well as
an untreated control group. Each group consisted of 4-5 adult rats. These treatments have been used previously, and their effects on intratesticular
testosterone levels (iTT) and spermatogenic cell populations have been described, see Results. At completion of treatment, enriched meiotic cell
preparations were prepared from each animal and total protein was isolated. Equal amounts of protein from each rat was subjected to 2-dimensional
Difference In-Gel Electrophoresis (2D-DIGE) analysis. Protein spots were considered to be differentially expressed in response to in vivo androgen
manipulation if they showed a statistical (p<<0.05) difference between the TE+Flut and TE+T24 groups. For full details, see Materials and Methods.

doi:10.1371/journal.pone.0041718.g001

Overview of Proteomic Changes in Meiotic Cells in
Response to in vivo Androgen Manipulation

Comparative proteomics were performed on enriched meiotic
cell preparations from each of the four treatment groups (see
Materials and Methods). Image analysis of the 7 2D-DIGE gels
revealed a total of 738 protein spots present on all gels (Iigure 2A)
which could be evaluated statistically. Unsupervised statistical
examination of the expression patterns of all 738 spots using
principle component analysis (PCA, Figure 2B) showed four
distinct clusters of spots which corresponded to the four treatment
groups, thus providing an independent measure that each
treatment group contained differentially expressed proteins. It is
noteworthy that groups with high androgen (control, TE+T124)
were well separated from low androgen groups (TE, TE+Flut) in
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the PCA (Figure 2B). In order to identify proteins that were
significantly changed during androgen suppression and replace-
ment, we analysed significant differences between spots in the high
androgen (TE+T24) versus low androgen (TE+Flut) groups. A
comparison with controls, which also have high testicular
testosterone levels, was not used in this instance, to avoid potential
confounding effects due to the presence of more mature spermatid
populations in the testis compared to the TE+T24 group.

Using the above approach, 263 spots were shown to be
statistically different between the highest and lowest androgen
groups with false discovery values (q) <0.03 and power values
>0.75; both parameters indicative of high quality data (Table S1
and $2). Differences in fold changes in expression varied from 0.56
(spot#57) to 2.56 fold (spot#1, Table S2). Of the 263 spots, 116
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Figure 2. Proteomic analysis of enriched meiotic cell preparations. A. Representative 2D-DIGE image of rat spermatocyte proteins (first
dimension pH 4-7, second dimension 8-16% polyacrylamide gradient). The image shown is the Cy2-labelled internal standard which was added to all
gels, and was prepared by mixing equal amounts of all samples (see Materials and Methods for details). Proteins shown to be significantly different
(p<<0.05) between groups by image analysis and subsequently identified by mass spectrometry are indicated (see Table 1 for details of spot identity). B.

Principle component analysis of the expression patterns of all 738 spots identified four separate clusters corresponding to the four treatment groups.
doi:10.1371/journal.pone.0041718.g002
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were able to be analysed by mass spectrometry, and 82 spots were
identified, with average sequence coverages of 33-40% for peptide
mass fingerprinting and MS/MS analyses, and 15% for LC-MS/
MS analyses (Tables S2 and S3). Some spots mapped to multiple
IDs indicative of i) protein isoforms that were not distinguishable
based on the identified peptide sequences (see for example spot 47
containing various tubulin beta chains), or ii) multiple proteins of
similar isoelectric point (pI) and molecular weight found within a
single spot (see for example spot 9 in Table S2). For these
examples, verification of androgen-dependency of individual
proteins would require additional experimentation, for example
by western blot (see below). The total number of proteins with
unique accession numbers identified was 88 (Table S1, S2). For
some proteins, various isoforms of the same gene/protein were
identified (for example see fmmt in Table 1).

To identify biological processes in spermatocytes that might be
changed during testicular androgen manipulation, protein acces-
sion numbers (Table S1) were analysed using Metacore 5.0
software (GeneGo), and processes (based on GO ontology and
GeneGo annotations) showing significant (p<<0.05) associations
were examined. Processes of relevance to meiotic cells were
significantly enriched in the dataset (Table S4), and included cell
division, microtubule-based movement and spindle assembly,
regulation of apoptosis, spermatid development and nuclear
mRNA splicing.

In order to shed light on the likely role of each protein in the
context of spermatocyte function, literature searches were
performed to examine known cellular function(s) and whether a
role in spermatocytes has been described (Table 1). Many of the
proteins had not been previously described in pachytene
spermatocytes, although there was evidence of mRNA expression
in these cells (Table S1). Based on previously published
information and protein annotations, at least 37 of the proteins
identified (Table 1) are likely to play roles in apoptosis and/or cell/
meiotic division, and could thus be involved in the survival of
pachytene spermatocytes and/or meiotic division. Throughout the
Results and Discussion, gene names as well as protein names are
given, so as to avoid confusion with different protein nomencla-
tures.

Androgen-responsive Proteins Associated with Cellular
Stress and Apoptosis

It was noted that many of the proteins showing significant
changes between the high and low testicular androgen groups had
roles in metabolism and response to cellular stress (Table 1 and
Table S4). Androgen manipulation caused changes in several
protein disulfide-isomerases (P4hb1/Pdial, Pdia3 and Pdiab,
Table 1), and heat shock proteins (Hspd1, Hspa2, Hspa9, Table 1),
which are modulated in other models of cellular stress (e.g.[32—
34]). GeneGo analysis demonstrated a significant association of
these proteins with various processes related to cell stress,
including oxidative stress, unfolded protein response and DNA
damage (Table S4), suggesting that androgen-deprivation is
associated with the induction of cellular stress in meiotic cells.

Testicular testosterone suppression has been shown to adversely
influence antioxidant activity in testicular cells [35], and various
proteins implicated in managing oxidative stress were identified in
the current study (Table 1). For example, androgen deprivation
was associated with an increase in heavy and light ferritin subunits
(Fthl, Fil, Table 1). Both heavy and light chains of the ferritin
complex are induced in response to oxidative stress in HeLa cells,
and overexpression of these proteins reduces reactive oxygen
species (ROS) generation after oxidative stress challenge [36].
Hspdl (Hsp60 protein, see Table 1) is a well known molecular
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chaperone with a multitude of functions, including roles in
response to oxidative stress [34] and apoptosis, was also induced
during androgen suppression. This finding is consistent with a
previous study showing it is increased in the testis in response to
flutamide [37].

Proteins with known roles as protectors of oxidative stress were
identified in spermatocytes, and were lower during androgen
deprivation (Aldh2, Prdx6, Gstm5, Table 1). Deficiencies
mitochondrial aldehyde dehydrogenase (4/dh2) are associated with
an increased susceptibility to oxidative stress [38], whereas
peroxiredoxin 6 (Prdx6) is a member of a family of antioxidant
proteins which protect cells from oxidative stress. Gstm5 is a
member of the glutathione S transferases (GSTs) that inactivate
various metabolites produced during oxidative stress. Gstmd is a
divergent member of the GST family expressed primarily in testis
and may serve to protect spermatogenic cells from oxidative stress
[39]. Thus testicular androgen suppression caused an increase in
meiotic cell proteins known to be induced during oxidative stress
and a decrease in proteins known to protect against oxidative
stress.

Whether oxidative stress occurs in spermatocytes during
androgen withdrawal i vivo was examined using immunostaining
for 8-hydroxydeoxyguanosine (80OHdG) which labels oxidised
DNA adducts (Figure 3A). Very few cells with positively stained
nuclei were apparent in controls, however they were frequently
observed during androgen deprivation. The morphology of the
labelled cells was consistent with pachytene spermatocytes
undergoing apoptosis. This suggests that spermatocytes are
subjected to oxidative DNA damage during androgen withdrawal,
and that such damage may result in apoptosis. Of relevance was
the demonstration that Ndufsl protein was decreased during
androgen suppression (see Ndufs/ in Table 1, spot #334 in Tables
S1, S2). This protein, as well as playing a role in oxidative
metabolism, is integrally involved in the initial apoptotic response
of mitochondria [40]. Cleavage of mitochondrial Ndufsl by
caspases leads to the production of ROS and subsequent
permeabilisation of the mitochondrial membrane. There have
been no descriptions of Ndufsl in the testis, however its mRNA 1is
maximally expressed in pachytene spermatocytes (Table S1) and
thus it is possible that cleavage of Ndufsl may participate in the
apoptotic and oxidative stress response in these cells.

Consistent with the fact that androgen-suppression causes
apoptosis of pachytene spermatocytes, androgen-responsive pro-
teins with roles in apoptosis were identified (Table 1, Table S4).
Testicular androgen suppression was associated with down-
regulation of a 19 kDa protein identified as Diablo (or Smac)
(Table 1). Diablo is produced as a 29 kDa form and N-terminally
processed to a 23 kDa protein resident in the mitochondria; upon
an apoptotic stimulus 23 kDa Diablo is released into cytoplasm
where it binds to and inhibits IAPs (inhibitors of apoptosis)
preventing their inhibitory interaction with caspases and facilitat-
ing apoptosis [41]. Consistent with this, androgen and FSH
suppression causes an induction of Diablo protein in testis cytosolic
fractions, and translocation from the mitochondria to the nucleus
in pachytene spermatocytes [20], indicating that Diablo translo-
cation is involved in androgen-dependent apoptosis of pachytene
spermatocytes. Smaller molecular weight, alternatively spliced
forms of Diablo/Smac that are functionally distinct yet pro-
apoptotic have been described in humans, Smacf (21 kDa) [42]
and Smac3 (19 kDa) [43]. It remains to be determined whether
the androgen-responsive 19 kDa form of Diablo observed in the
current study (spot #68, Table S2) is an as-yet undescribed
alternatively spliced variant of rat Diablo, whose function may
differ from the 23 kDa form.

in
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Signalling proteins with known roles in apoptosis were changed
in meiotic cells during @ wvwo testicular androgen manipulation.
Two spots were identified as Pebp! (Table 1), commonly known as
Raf kinase Inhibitory Protein (RKIP). RKIP negatively regulates
Raf-MEK-ERK by binding to Rafl, and also regulates the NFkB
and G protein-coupled receptor signalling pathways depending on
its phosphorylation state. RKIP-mediated modulation of these
signalling pathways in turn regulates various cellular processes,
most notably apoptosis, reviewed in [44]. RKIP has been
implicated in sperm capacitation [45], but a role in other testicular
cells has not been described. That RKIP pl isoforms were changed
significantly during androgen manipulation was confirmed by 2D
Western, with 3 out of the 5 charge isoforms showing significant
differences between the low and high androgen groups (Figure 3C).
RKIP mRNA is expressed in both pachytene spermatocytes and
round spermatids, however the protein is more abundant in
spermatids compared to spermatocytes [46], as confirmed by
immunohistochemistry in the current study (Figure 3B), suggesting
that the protein is subjected to post-translational control [46].
While RKIP mRNA levels were not changed when Leydig cells
were depleted from the testis [46], a marked increase in
immunostaining was seen during androgen deprivation i vivo
(Figure 3B). Taken together, the results suggest that RKIP
translation and/or post-translational modification in germ cells is
changed during testicular androgen manipulation.

Five spots showing significant changes during testicular andro-
gen manipulation i vivo were identified as 14-3-3 proteins (Ywhab,
Ywhae, Ywhag, Ywhaz, see Table 1). These are phospho-serine/
threonine proteins that interact with numerous binding partners,
in a phosphorylation-dependent manner, to modulate cell growth,
survival and differentiation. They play multiple roles in mediating
the balance between survival and apoptosis, and can suppress cell
cycle progression in response to DNA damage [47]. 14-3-3
proteins are abundant and have been immunolocalised to germ
cells including pachytene spermatocytes [48]. 14-3-3-interacting
proteins have been recently identified in mouse testis [49], and
these included several proteins identified in this study: Ddx4, Fabp9,
Gstmb, Hnrpk, Hspa2, Ipo5, Lizfll, Ldhb, Ldhc, Nasp, Pebpl, Pptl,
Pdia3 and Pdia6. The current findings suggest that changes in 14-3-
3 proteins, probably via post-translational modifications such as
phosphorylation, are involved in androgen-mediated regulation of
spermatocyte function.

Proteins with Known Roles in Meiosis

A number of proteins identified in this study have previously
been shown to have roles in cell division, and could thus be
mvolved in meiotic division and be responding to androgen-
mediated signals from AR-expressing somatic cells. For example,
components of the dynactin complex were identified as androgen-
responsive in enriched meiotic cell preparations (Capzal, Capza2,
Actgl and Actrla, see Table 1). The dynactin complex has an
essential role in cell division, including nuclear envelope break-
down and mitotic spindle organisation, by virtue of its interaction
with the motor protein dynein [50]. Maprel (Table 1), known as
EB1 protein, has various roles in cell division and spindle
dynamics, and interacts with dynactin [51]. Ruvbll (Table 1) and
a number of tubulin isoforms (Tubalc, Tuba3a and TubbZe, sce
Table 1) were identified as changed in response to testicular
androgen manipulation; Ruvbll is also involved in cell division
and colocalises with tubulins in the mitotic spindle [52].
Interestingly, spots mapping to Capzal/Capza2 Actrla, Actgl,
Maprel, Ruvbll and tubulins all showed similarity in their fold
changes (1.02—1.76 fold upregulated with high androgen, Table 1).
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Two proteins known as Hsp 70-2 (Hspa2, Table 1) and NASP
(Masp, Table 1) were identified in meiotic cells. Hspa70-2 is a
molecular chaperone expressed specifically in spermatogenic cells
that 1s essential for the G2-M phase transition in meiosis I [53],
whereas NASP is a linker histone chaperone required for normal
cell division [54]. Testicular NASP and Hsp70-2 co-localise at
synaptonemal complexes, where NASP modulates the ability of
Hsp70-2 to bind to CDC2, in turn modulating the formation of
the active CDC2/cyclin Bl complex required for the G2-M phase
transition [55]. NASP binds to Hsp70-2 and increases its ability to
bind to CDC2, thereby preventing formation of the active CDC2/
cyclin Bl complex; the authors speculate that over-expression of
NASP would inhibit progression of meiosis [55]. Of interest is the
fact that we observed a 1.6 fold up-regulation (see spot #83 in
Table S1) of NASP during AR blockade (TE+Flutamide
treatment), when meiotic division would likely be compromised.
Further studies are needed to elucidate whether the NASP-Hsp70-
2 interaction is a key mechanism by which androgenic signals from
Sertoli cells regulates meiotic division.

Proteins with Roles in RNA Splicing and Processing

Several proteins that are components of the spliceosome and are
involved in RNA splicing were identified as changed in response to
testicular androgen manipulation. $f3a/ and $f3a3 (Table 1) are
components of the trimeric SF3A complex which functions during
early pre-mRNA splicing [56]. Prpf19 (known as SNEV), Sfrs7
(known as 9G8), Hurnph3 (known as hnRNP H) and Hnmpk (known
as hnRNP K)) are also present in the spliceosome [57,58] and were
changed during testicular androgen manipulation (Table 1).
Alternative splicing is particularly prevalent in the testis and the
expression of ubiquitous, tissue- and cell-type specific nuclear
RNA binding proteins is modulated during germ cell development
[59]. Pachytene spermatocytes show a peak in mRNA transcrip-
tion from stage VII onwards [15,60] and transcribe mRNAs
associated with meiotic division [16]. Pachytene spermatocytes in
these stages also show a peak in immunostaining of small nuclear
ribonucleoproteins, central components of the spliceosome [61].
Taken together, this suggests that pachytene spermatocytes
produce mRNAs needed for the completion of meiotic division,
and that splicing of these RNAs may be modulated during
testicular androgen manipulation.

Ddx4 encodes a protein known as DDX4 (Table 1) or mouse
vasa homologue (Mvh) and DDX4 protein was identified to be
statistically different between the low and high androgen groups
(Table 1). 2D Western showed that 14 pl isoforms were present in
enriched meiotic cells, and confirmed that one of these was
significantly increased during androgen suppression (Figure 4C).
This result is supported by a previous proteomic study suggesting
that DDX4 is increased during androgen suppression in human
testis biopsies [62]. Immunohistochemical analysis confirmed that,
during normal spermatogenesis, DDX4 localises to pachytene
spermatocyte cytoplasm and chromatoid body precursor structures
in the perinuclear region of these cells (Figure 4A), as previously
described [63]. Androgen suppression ¢ viwvo caused a marked
increase in the immunostaining of DDX4 in pachytene spermato-
cyte cytoplasm (Figure 4B). It is well known that DDX4/Mvh is
required for early meiotic prophase [64] and that it is a key
component of the chromatoid body in pachytene spermatocytes
and spermatids [65]. The chromatoid body is thought to co-
ordinate different translational regulation pathways in male germ
cells, such as miRNA-mediated post-transcriptional regulation,
and DDX4/Mvh interacts with Dicer and Argonaute/Piwi
proteins involved in miRNA processing, reviewed in [65]. Thus
it is possible that Sertoli cells, or perhaps other AR-expressing
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Figure 3. Localisation of oxidised DNA adducts and RKIP during androgen manipulation /n vivo. A. Inmunohistochemical localisation of
oxidised DNA adducts as detected by 80HdG (green) labelling in testis from Control and - Androgen (androgen suppressed, TE+Flutamide) rats. A
negative control for the primary antibody is also shown (7 °Ab Control) in a TE+Flutamide-treated testis. Positively labelled pachytene spermatocytes
were only apparent during androgen suppression (arrowheads). B. Immunohistochemical localisation of RKIP (green) in testis from Control and -
Androgen (androgen suppressed, TE+Flutamide). A negative control for the primary antibody is also shown (7 “Ab Control). In controls, staining was
most apparent in Sertoli cells (SC) and elongating spermatid cytoplasm (eST), but was faintly present in pachytene spermatocyte cytoplasm
(arrowheads). During androgen suppression (- Androgen) a marked increase in immunostaining for RKIP was noted throughout the epithelium, with
cytoplasmic staining more obvious in pachytene spermatocytes (arrowhead). In A and B, nuclei are labelled blue (TOPRO). C. Confirmation of changes
in expression of androgen-responsive RKIP isoforms; the left panel shows representative images of the 2D-Western during androgen blockade (-
Androgen, TE+Flutamide) compared to androgen replacement (+ Androgen, TE+T24). Blots were performed on pooled samples from the same
individual animals used for the 2D-DIGE proteomics. Five distinct isoforms (#1- # 5) were resolved. Results of the densitometric analysis (right panel)
from 2D western blots revealed that 3 isoforms showed significant (* p<0.05, ** p<<0.01) differences between the —~Androgen and + Androgen
groups. Data is shown as mean = SD (n=4 separate experiments).

doi:10.1371/journal.pone.0041718.g003

testicular somatic cells, under the influence of androgens, regulate identified, along with another two proteins, in spot #108 (Table
germ cell expression of DDX4/Mvh isoforms which in turn could S2). This protein is essential for the dimethylation of spliceosomal
influence RNA processing and post-transcriptional regulation. components [66] and of Piwi proteins in the chromatoid body

Consistent with the hypothesis that androgen modulation causes [67], and mutation of the Drosophila homologue Dart5 causes
changes in proteins involved in RNA processing, Prmtd was arrest of spermatocyte development [66].
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Figure 4. DDX4 during androgen manipulation. A. Immunohis-
tochemical localisation of DDX4 (green) in control testis. Staining is
observed in late pachytene spermatocyte (PSC) cytoplasm and
chromatoid body precursor structures in the perinuclear region
(arrowheads). Inset shows control for the primary antibody. B. During
androgen blockade (TE+Flutamide), DDX4 immunostaining intensity
increased in late pachytene spermatocyte (PSC) cytoplasm. In panels A
and B, cell nuclei were visualized with TOPRO (red). C. Evaluation of
androgen-responsive pl isoforms of DDX4; the upper panel shows a
representative image for the 2D-Western during androgen blockade (-
Androgen, TE+Flutamide) compared to androgen replacement with T24
(TE+T24, +Androgen). Fourteen distinct pl isoforms were resolved.
Results of the densitometric analysis of pooled samples (lower panel)
from —Androgen and +Androgen groups (for details see Figure 3 legend)
revealed that one isoform showed a significant (p<<0.05, t-test)
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difference between these groups (asterix), however the other isoforms
showed trends to increase or decrease with androgen replacement.
Data is shown as mean = SD (n=3 separate experiments).
doi:10.1371/journal.pone.0041718.9g004

Proteins involved in post-translational processing

SUMO activating enzyme subunit 1 (Sael) was lower during AR
blockade (TE+Flut) (Table 1). SUMOI-3 are small proteins that
are covalently attached to other proteins; this reversible post-
translational modification known as sumoylation modifies protein
function and is involved in regulating various cell functions. The
Sael subunit dimerises with Sae2 to form the El activating
enzyme, the first in a three-step cascade leading to sumoylation of
a protein. Sumoylation pathways in male germ cells have been
well described, and sumoylation may play an important role in
meiosis [68], however the protein targets of sumoylation in germ
cells are not well understood.

In order to investigate whether SUMO proteins may be
modulated in meiotic cells during testicular androgen suppression,
immunohistochemical analysis of SUMOI performed
(Figure 5). The results confirmed the previously described
localisation of SUMOI1 in pachytene spermatocyte nuclei,
including a concentration in the XY body [69]. Specific
cytoplasmic staining was also observed in these cells (Figure 5A);
this was most obvious in stages V-VIII. Consistent with previous
studies [68,69], SUMOL staining disappeared from spermatocytes
during meiotic division (not shown). During androgen suppression,
nuclear localisation including XY body immunostaining appeared
preserved however there was a marked reduction in cytoplasmic
staining (Figure 5B). Since immunohistochemistry does not
distinguish between free SUMOI1 and sumoylated proteins,
Western blot analysis was performed to investigate changes in
free SUMOI. In this case, 1D western blots were sufficient as
SUMOI only gave a single spot in the 2D western format (data
not shown). SUMOI1 was significantly (p=0.008) decreased
between control and TE+Flut groups (Figure 5C), whereas
androgen replacement with 124 restored SUMOI to control
levels (TE+flut vs TE+T24, p=0.005) (Figure 5C). These
observations are consistent with the demonstration of a reduction
in free SUMOI1 protein during androgen suppression in prostate
[70].

Taken together, the above results suggest that testicular
androgen suppression may cause changes in sumoylation within
meiotic cells, both by decreasing the levels of free SUMO and/or
decreasing enzymes involved in the sumoylation process. A recent
study showed that sumoylation, and the level of free SUMOI, is
modulated in meiotic cells in response to oxidative stress induced
by hydrogen peroxide or to exposure to tobacco smoke [71]. Thus
the data suggest that meiotic cells respond to cellular stress,
including stress induced by androgen deprivation, by modulating
protein sumoylation.

was

Proteins Involved in DNA Repair

Double strand breaks in DNA are initiated and subsequently
repaired during homologous chromosome recombination in
meiosis, and thus meiotic cells are well equipped with DNA repair
enzymes [14,72]. Given that spermatocytes during androgen
suppression showed changes in stress response proteins and
evidence of oxidised DNA adducts (Figure 3A), it is possible that
other forms of DNA damage occur in these cells during androgen
deprivation. Consistent with this proposition, the process network
‘DNA damage checkpoint’” was significantly associated with the
differentially-regulated proteins as identified by bioinformatic
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Figure 5. SUMO1 during androgen manipulation. A. Imnmunohistochemical localisation of SUMO1 (green) in control testis. Staining is observed
in the cytoplasm of pachytene spermatocytes (PSC) in this stage VIl tubule, whereas no staining was observed in the primary antibody control (inset).
Cell nuclei were visualized with TOPRO (red). B. SUMO1 immunostaining in pachytene spermatocyte (PSC) cytoplasm was reduced during androgen
suppression, however staining associated with the nuclei and the XY body (arrowheads) was preserved. C. Densitometric analysis of 15 kDa SUMO1
(i.e. free’ SUMOT1) in 1D-western blots with n=4 separate animals/group from the four different treatments. Different letters denote statistical
differences (p<<0.01) between groups. During androgen blockade (TE+Flut), there was a significant decrease in free SUMO1 compared to control.

Data is shown as mean =+ SD.
doi:10.1371/journal.pone.0041718.g005

analyses (Table S4), and proteins with roles in DNA repair were
identified (Table 1).

Prpf19 (SNEV, see Table 1) has a role in RNA splicing (see
above), but is also known to have a direct role in DNA repair, and
a loss of Prpf19 expression in lymphoid cells causes an accumu-
lation of double strand breaks and apoptosis [73]. Upon DNA
damage, SNEV is ubiquitylated and forms a higher molecular
weight oligomeric complex that binds to chromatin [74]. This
protein has not been described in the testis, however its mRNA is
expressed in Sertoli cells and germ cells (Table S1).

PCNA is involved in DNA replication and as such is well known
to be expressed in proliferating cells in the testis (e.g. [75]),
however it is also pivotal in the activation of particular DNA repair
pathways, reviewed in [76,77]. PCNA’s ability to modulate DNA
repair is controlled by post-translational modifications, including
ubiquitylation and sumoylation of a lysine residue at position 164
[78]. Models in yeast suggest that mono-ubiquitylation of lysine
164 of PCNA initiates the translesion synthesis DNA repair
pathway, whereas multi-ubiquitylation of this residue directs the
initiation of the error free DNA repair pathway [76-78]. Previous
studies in mice demonstrated PCNA protein in the nuclei of
spermatocytes in prophase I, suggesting it may play a role in DNA
repair during homologous chromosome recombination [79]. This
proposition has been recently supported by studies in yeast, where
PCNA plays an essential role in mismatch repair pathways during
meiotic recombination [80]. Transgenic male mice expressing
PCNA mutated at amino acid 164, and unable to be ubiquitylated,
are infertile due to arrest of spermatogenesis at the early pachytene
stage [81]. Taken together, there is emerging evidence that PCNA,
and its post-translational modifications, participates in essential
DNA repair pathways during meiosis.

We showed that PCNA was changed during testicular androgen
suppression (Table 1), with a significant increase in expression
during androgen blockade compared to control confirmed by
Western blot (Figure 6C). The localisation of PCNA in meiotic
spermatocytes previously observed in mice [79] was confirmed
here in rats (Figure 6A), with PCNA observed in proliferating
spermatogonia and a sub-set of spermatocytes. Nuclear localisa-
tion was first observed in leptotene spermatocytes, when meiotic
double strand breaks are induced, and became progressively more
intense as spermatocytes proceeded through prophase I (data not
shown). Staining was most obvious in the nucleus and cytoplasm of
pachytene spermatocytes in stages ~I-V (Figure 6A). Pachytene
spermatocytes became abruptly immuno-negative in stages VII-
VIII (Figure 6A). During AR blockade, intense immunostaining of
these spermatocyte sub-populations was observed (Figure 6B).

Ube2N (known as Ubcl3 protein, Table 1) is the human
homolog of UBC13 in yeast, a ubiquitin-conjugating enzyme
involved in the error-free DNA post-replication repair pathway.
Specifically, Ubc13 is part of a complex that, upon DNA damage,
multi-ubiquitylates the lysine 164 reside of PCNA, resulting in a
switch from the translesion synthesis pathway to the error-free
DNA repair pathway [78], reviewed in [77]. A role for Ubcl3
during meiosis has not been established, however it is immuno-
localised in pachytene spermatocyte nuclei in mice [82]. It is
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tempting to speculate that the increase in Ubc13 observed during
androgen suppression may be due to an increased requirement for
ubiquitylation of PCNA and thus an enhanced ability to
participate in DNA repair; this proposition merits further study.

Conclusions

We conclude that androgen-dependent signals from Sertoli
cells, and/or other AR-expressing somatic cells such as peritubular
myoid cells, modulate key proteomic changes in meiotic cells,
which in turn impact on their survival and completion of meiosis.
Such changes are likely mediated by translational and post-
translational mechanisms. The results provide a “snap shot” of the
impact of this loss of androgen stimulus on meiotic cell function.
The findings suggest that, upon the loss of androgen-dependent
stimuli from somatic cells, meiotic cells undergo cellular stresses
such as unfolded protein response and oxidative damage, DNA
damage and apoptosis. Proteins with roles in cell survival and
meiotic division are responsive to this androgen stimulus and are
likely key intermediates in the androgen-dependent regulation of
the completion of meiosis. The results also provide hypotheses for
further testing, including the proposition that DNA repair
mechanisms and RNA splicing are modulated in spermatocytes
during testicular androgen suppression.

Materials and Methods

Animals

The rat model of testicular testosterone suppression used in this
study has been extensively validated [27,28], and employed
silicone-tubing implants filled with either testosterone (T) powder
(Sigma, St. Louis, MO) (3c m implant length) or estradiol (E)
powder (Sigma) (0.4 cm length). Adult male Sprague-Dawley rats
(80-100 days old) were obtained from Monash University Central
Animal House and housed under a 121:12D cycle with free access
to food and water. Animals (n =4-5/group) received one T plus
one E implant (TE implants) subcutaneously, or no implants
(control) for 9 wk [27]. At the end of the 9 wk period, all control
and 4 of the TE-treated animals were killed. A further 4 TE-
treated animals had their TE implants removed and replaced with
3x8 cm T implants (TE+T24) for 4 days to partially restore
testicular testosterone levels [27], while the remaining 5 animals
received daily injections of the androgen receptor antagonist,
flutamide, (20 mg/kg, s.c., n=25 animals) (TE+Flut) [29] for 7
days. Animals were then killed and left testes were removed for
immediate isolation of spermatocytes while the right testes were
processed for immunohistochemistry. Meiotic spermatocytes were
1solated and enriched by elutriation centrifugation as described
elsewhere [83]. For ploidy analysis, cells were fixed in ethanol
overnight at 4°C, washed with DPBS containing 1% FCS, and
stained with 250 ug/ml propidium iodide (Sigma) and 5 mg/ml
RNase A (Sigma) in 38 mM sodium citrate (Sigma) pH 7.0 at
37°C for 30 min. Flow cytometric analysis indicated that the
resultant germ cell preparation consisted mainly of tetraploid
spermatocytes (62%), diploid cells, which would also include
secondary spermatocytes (20%) and haploid round spermatids
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Figure 6. PCNA during androgen manipulation. A. PCNA immunostaining (green) in control testis. Representative images from stages I-lll and
VIl are shown, with visualization of cell nuclei using TOPRO (blue). Pachytene spermatocytes (arrowheads) were immuno-positive in the early stages,
but became immuno-negative around stages VII-VIIl. PCNA was also observed in proliferating spermatogonia (asterix), whereas no staining was
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observed in the primary antibody control (inset). B. PCNA immunostaining was more intense in pachytene spermatocytes (arrowhead) in stages I-VI
when androgen action was suppressed. C. Densitometric analysis of PCNA in 1D Western blots revealed a significant (p=0.001, asterix) increase in
PCNA protein during androgen blockade (TE+Flut) compared to control. Data is shown as mean = SD (n=5).

doi:10.1371/journal.pone.0041718.g006

(15%). Pachytene spermatocytes comprise the major proportion of
meiotic cells in the testis, and thus will comprise the major
component of the meiotic cell preparation. This study was
approved by the Monash Medical Centre Animal Ethics
Committee, ethics permit #MMCB 2006/19.

Sample Preparation and Expression Analysis by 2D-
Difference In-Gel Electrophoresis (2D-DIGE)

Total proteins from enriched meiotic cell preparations were
extracted and solubilised in 30 mM Tris/HCL, pH 8.1, 7M
urea, 2 M thiourea,1% (w/v) C7 detergent (C7BzO, Merck,
Darmstadt, Germany) as previously described [84,85]. Reductive
alkylation and fluorescent protein labelling with minimal CyDyes
and 2D-PAGE were also carried out as described [84-86].
Briefly, 40pg protein aliquots from individual animals (n =4/
group) were labelled with either Cy3 (control or TE+T24
groups), Cyb (TE or TE+Flut groups) or Cy2 (mixed internal
standard) and combined to be run on a total of 8 gels as
recommended by the manufacturer. Isoelectric focussing was
carried out using 24 cm pH 4-7 IPG strips according to the
following parameters: constant 60pA/strip, 100V for 1.5 h,
300V for 1.5 h, gradient to 1000V over 4 h, gradient to 8000V
over 3 h, constant 8000V until 60,000Vh was reached. Second
dimension separation was carried out with 24 cm, 4-20%
gradient acrylamide gels cast with a Bind-Silane (GE Bioscienc-
es, Little Chalfont, UK)-treated back plate, and run overnight at
a constant voltage of 50V in a BioRad (Hercules, CA) Dodeca
electrophoresis tank. Gels were scanned using a Fuji FLA5100
laser scanner, and differential expression analysis based on
normalized spot volumes was performed using PG240 Same-
Spots software (Nonlinear Dynamics, Newcastle-upon-Tyne,
UK). One gel, containing one sample each from the TE+T24
and TE+Flut groups, failed at the isoelectric focusing stage, and
was excluded from subsequent analyses.

Protein Identification

Protein spots of interest were excised using a ProPicll robotic
spot picker (Digilab Genomic Solutions, Ann Arbor, MI) based on
the X-Y coordinates exported directly from PG240 SameSpots.
Protein identification (see Tables S2, S3) by MALDI-TOF MS
and MS/MS was as described [84], or was by LC-MS/MS using a
nano HPLC coupled on-line to an LTQ Orbitrap mass
spectrometer (Thermo Fisher, Waltham, MA) at the Joint
Proteomics Laboratory, http://www.ludwig.edu.au/Ludwig Insti-
tute for Cancer Research (Melbourne, Australia) [87].

Immunohistochemistry

Testes were fixed in Bouin’s-fixative and embedded in paraffin
wax. All immunohistochemical procedures were as previously
described [28]. Primary antibodies employed were: DDX4 (1:800;
Abcam #13840,Cambridge, UK), RKIP/PEBP1 (1:1000; Upstate
Biotechnology #07-137, Lake Placid, NY), and Sumo-1 (1:500;
Abcam #ab32058). Cell nuclei were visualized with either DAPI
(100uM) or TO-PRO-3 iodide (10uM) and sections were then
prepared for either light or confocal microscopy as detailed
elsewhere [28,88]. Specificity of primary antibodies was verified by
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substitution of the primary antibody with an equivalent dilution of
non-immune IgG.

Western Blotting

One dimensional SDS PAGE was used as described [89] to
validate expression differences between treatment groups, with the
same primary antibodies (PCNA, 1:500; SUMO-1, 1:1000) as used
for immunohistochemistry. Protein loads were normalised against
B-actin (1:15,000 for PCNA, 1:2000 for SUMO1; MP Biomedicals
#69100, Aurora, OH). Detection employed species-specific
secondary antibodies labelled with Alexa Fluor 680 (1:5,000;
Molecular Probes, Eugene, OR) or IRDye 800 (1:10,000;
Rockland, Gilbertsville, PA) and blots were quantified using a
fluorescent detection system (Odyssey, Li-Cor Biosciences, Lin-
coln, NE). To validate expression patterns of RKIP and DDX4
which were observed as isoforms in the 2D-DIGE data, 2D-
Westerns were employed. Briefly, 35ug of pooled protein from
either the TE+T24 or TE+flutamide groups were concurrently
processed onto 11 cm pH 4-7 strips, and focussed using similar
conditions as above, prior to second dimension SDS-PAGE using
11 ecm 8-16% Tris-HCI precast gels (BioRad). Proteins were
transferred onto PVDF membranes (Immobilon-P  0.45um,
Millipore, Billerica, MA) (200V, 40 min) in a Criterion Blotter
(BioRad), and then incubated with primary antibody for 1 hr at
room temperature; (DDX4; 1:240, PEBPI; 1:1000, -actin;
1:10,000]. Detection was as for 1D SDS-PAGE, and total
fluorescent volume for each spot was normalised to the summed
spot volume for all B-actin spots. Western blots were repeated 3—4
times for each primary antibody, and similar results were obtained
in each case.

Statistical Analysis

Statistical analysis of proteomic data was performed automat-
ically by the PG240 SameSpots software. Data are given as mean
normalised spot volume * standard deviation. Statistical analysis
of immunoblotting results was carried out using SigmaStat v3.5
(Systat Software, Inc.,San Jose, CA) with all data assessed for
normal distribution and equal variance, prior to ANOVA and
post-hoc Student Newman-Keuls testing. Results with p<<0.05
were considered significant, and are presented as mean =
standard deviation (SD) unless otherwise specified.

Supporting Information

Table S1 Differentially expressed proteins in meiotic cell
preparations.

(XLS)

Table 82 Differentially Expressed Proteins Identified by
MALDI-TOF MS+MS/MS, PMF/MALDI, LCMS/MS Scaffold
and LCMS/MS; detailed mass spectrometry data.

(XLS)
Table S3
(PDE)
Table S4 Bioinformatic analysis of androgen-responsive proteins
in enriched meiotic cell preparations.

(XLS)

Mass spectra for identified proteins.
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