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Abstract
Recently, an increasing body of evidence suggests that developmental abnormalities related to
schizophrenia may occur as early as the neonatal stage. Impairments of brain gray matter and
wiring problems of axonal fibers are commonly suspected to be responsible for the disconnection
hypothesis in schizophrenia adults, but significantly less is known in neonates. In this study, we
investigated 26 neonates who were at genetic risk for schizophrenia and 26 demographically
matched healthy neonates using both morphological and white matter networks to examine
possible brain connectivity abnormalities. The results showed that both populations exhibited
small-world network topology. Morphological network analysis indicated that the brain structural
associations of the high-risk neonates tended to have globally lower efficiency, longer connection
distance, and less number of hub nodes and edges with relatively higher betweenness. Subgroup
analysis showed that male neonates were significantly disease-affected, while the female neonates
were not. White matter network analysis, however, showed that the fiber networks were globally
unaffected, although several subcortical-cortical connections had significantly less number of
fibers in high-risk neonates. This study provides new evidences in support of the disconnection
hypothesis, reinforcing the notion that the genetic risk of schizophrenia induces alterations in both
gray matter structural associations and white matter connectivity.
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1. Introduction
Schizophrenia is a chronic, severe, and disabling mental disorder characterized by diverse
clinical presentations, such as hallucinations, delusions, anhedonia, avolition and impaired
cognitive functions (Schultz and Andreasen, 1999). It is commonly accepted that
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schizophrenia is not a result of regionally isolated pathologies, but is due to the alteration of
interactions between two or more regions (Friston, 1998). However, the vast majority of
studies on schizophrenia involved only adult subjects, and the impact of genetic risk of the
illness on infants is still poorly understood.

The symptoms of schizophrenia usually start to present at late adolescence and early
adulthood, and persist for a lifetime in one percent of the population (Regier et al., 1993).
Interestingly, our recent work suggested that the precursor of developmental disorder may
occur as early as infancy (Gilmore et al., 2010). We found structural abnormalities, such as
significantly larger intracranial, CSF, and lateral ventricular volumes, in (especially male)
offspring of schizophrenic parents. No significant differences in diffusion properties,
however, were reported for major white matter fiber bundles. Note that having an affected
relative increases the risk for schizophrenia. For example, 20–50% of children born to
schizophrenic mothers have been found to exhibit developmental abnormalities (Marcus et
al., 1993). Their risk of developing schizophrenia is about 10 times higher than that of the
general population (Sullivan, 2005). High-risk neonates, with minimal exposure to
environmental influences, are ideal candidates for understanding the genetic effects of
schizophrenia at a very early stage.

Recent advances in graph-based network analysis techniques allows for a systems-level
evaluation of brain interregional interactions (Watts and Strogatz, 1998). The brain can be
modeled as a complex network composed of a collection of nodes that are connected by
edges. The nodes represent the anatomical regions of interest (ROIs), and the edges encode
the interaction between the nodes. For T1-/T2-weighted images, the structural associations
between different GM regions can be evaluated via the correlations of morphological
descriptors, such as gray matter (GM) volumes, cortical thickness, and surface areas (Bassett
et al., 2008; Gong et al., 2009b; He et al., 2007). Brain morphological networks, formed by
collections of such associations, have been successfully employed in many studies, such as
asymmetry analysis of normal aging (Zhu et al., 2012) and brain alteration analysis in
relation to multiple sclerosis (He et al., 2009). Of note, Bassett et al. constructed a
morphological network on brain multimodal association areas using interregional gray-
matter volumes, and reported the loss of frontal and the emergence of nonfrontal hubs, and
increased connection distance in schizophrenia adults (Bassett et al., 2008). Diffusion-
weighted imaging, on the other hand, captures local microstructural information of brain
tissues via water diffusion, and allows tracing of neuronal fibers in vivo. Fiber connections
between each pair of brain regions can be used to construct a so-called brain white matter
network (Gong et al., 2009a; He and Evans, 2010; Sporns et al., 2005). Zalesky et al.
(Zalesky et al., 2010) constructed the white matter network of schizophrenia adults and
found evidences of disruption of axonal connections comprising medial frontal, parietal/
occipital, and the left temporal lobe.

The disconnection hypothesis has gathered increasing support from neurophysiological and
neuroimaging studies, suggesting that the core symptoms of schizophrenia are related to
aberrant connectivity between distinct brain regions. However, the actual cause of
dysconnectivity in schizophrenia is still controversial. Dysconnectivity may be a result of (1)
aberrant synaptic plasticity, and/or (2) the “miswiring” of axonal fibers in white matter
(WM) (Friston, 1999; Stephan et al., 2006). Recent studies reveal that synaptic plasticity
contributes to macro-scale volumetric changes and thus can be measured by using gray
matter volumes in MR brain images (Anderson, 2011; Zatorre et al., 2012). Several
structural imaging studies on adults (Glahn et al., 2008; Thompson et al., 2001) provide
additional evidence in support of the occurrence of gray matter abnormalities in association
with the illness. This motivates us to investigate the impairment of structural associations/
interactions in gray matter (i.e., morphological network) for exploring the disconnection
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hypothesis. On the other hand, the integrity of axonal fibers can be assessed more directly
with diffusion-weighted imaging by tracing the white matter connections between brain
regions. Combining morphological and white matter networks takes into account the two
possible causes of disconnection hypothesis and allows us to perform a more comprehensive
examination of the pathologies associated with schizophrenia.

Our aim in the current work is to identify possible neurological alterations in terms of inter-
regional interactions in high-risk neonates. We hypothesize that the high-risk neonates may
be susceptible to neurological alterations at a systems level. To test this hypothesis, we
investigated both morphological and white matter brain networks in neonates who were at
genetic risk for schizophrenia. Network properties were extracted, and comparisons were
made between 26 high-risk neonates and 26 matched healthy neonates. Details of methods
and experiments are described in the following sections.

2. Materials and Methods
2.1 Participants and MR image acquisition

This study was approved by the institutional review board of the University of North
Carolina School of Medicine. New mothers with schizophrenia or schizoaffective disorder
were recruited and underwent a Structured Clinical Interview for DSM-IV Axis I Disorders
(SCID). Past psychiatric records were obtained and a final consensus diagnosis was
assigned. The matched control subjects were selected from a companion study of normal
brain development. Potential control mothers were screened for psychiatric illness by using
a modified SCID. Written informed consent forms were obtained from all the parents. The
presence of abnormalities on fetal ultrasound, or major medical or psychotic illness in the
mother, was taken as exclusion criteria. All infants were free of congenital anomalies,
metabolic disease, and focal lesions. Control infants were matched on gender, age in terms
of time since last menstrual period at birth, and also age since the last menstrual period at
MRI (Table 1). Note that the mothers with schizophrenia had significantly less education
years (10.0, SD 3.6) than that of control mothers (14.2, SD 2.7). Also, they were more likely
to take antipsychotic and antidepressant medications as well as smoke during pregnancy.
Detailed recruiting information can be found in (Gilmore et al., 2010).

MR images were collected using a Siemens head-only 3T scanner. None of the neonates was
sedated for MRI. Before the subjects were imaged, they were fed, swaddled, and fitted with
ear protection. For each neonate, T1 images with 160 axial slices were obtained with a 3D
MP-RAGE sequence using imaging parameters: TR=1820 ms, TE=4.38 ms, Flip Angle=7°,
and resolution=1×1×1 mm3. T2 images of 70 axial slices were obtained with a turbo spin
echo sequence using parameters: TR=7380 ms, TE=119 ms, flip angle=150°, and voxel
resolution=1.25×1.25×1.95 mm3. Diffusion-weighted images were obtained for 45 axial
slices using parameters: TR=5200 ms, TE=73 ms, and resolution=2×2×2 mm3. 7 images
were acquired, one without diffusion gradient (b=0) and the remaining six with non-
collinear diffusion gradient directions (1, 0, 1), (−1, 0, 1), (0, 1, 1), (0, 1, −1), (1, 1, 0), and
(−1, 1, 0) at b=1,000 sec/mm2. For each neonate, five sets of images (with each set as an
average of two scans) were acquired to improve the signal-to-noise ratio.

As summarized in Table 1, 26 high-risk neonates (12 males and 14 females) and 26 control
neonates (12 males and 14 females) were used in the morphological network construction
and analysis. The gestational age of the high-risk neonates was 38.1±3.1 weeks at birth and
43.2±3.3 weeks at MRI. The gestational age of the control neonates was 38.5±2.3 weeks at
birth and 42.6±2.4 weeks at MRI. No significant difference was found for both gender and
age of the two groups.
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By removing 7 subjects with insufficient quality of diffusion tensor images, a subset of
subjects, including 21 high-risk neonates (7 males and 14 females) and 25 control neonates
(11 males and 14 females), were used in the subsequent white matter network construction
and analysis. The gestational age of the high-risk neonates was 37.9±3.3 weeks at birth and
43.1±3.6 weeks at MRI. The gestational age of the control neonates was 38.1±2.6 weeks at
birth and 42.8±2.2 weeks at MRI. No significant difference was found for both gender and
age of the two groups.

2.2 Overview of network construction and analysis
Schematic diagram of the network construction and analysis procedure is shown in Fig. 1.
Upon computing the inter-regional GM structural associations and WM fiber connections,
we constructed morphological networks and white matter networks for both high-risk and
normal neonates. Graph-theoretic network analysis was then applied for analysis of these
networks to determine between group differences. Network property metrics such as
clustering coefficient, path length, network efficiency, small-worldness, and centrality were
computed for comparison purposes. Details on structural and diffusion image processing and
network construction were provided in the following subsections.

2.3 Structural MR image processing and morphological network construction
All structural MR images were processed with a standard pipeline, which included
resampling, skull stripping, tissue segmentation, spatial normalization, and ROI volume
calculation. Specifically, images were resampled to have an isotropic 1×1×1 mm3 resolution
and then skull-stripped. The skull stripping results were further manually edited to ensure
clean skull and dura removal. Tissue segmentation was performed using a coupled-level-sets
based algorithm that is dedicated to neonatal segmentation (Wang et al., 2011). The
segmented images were spatially normalized (Shen and Davatzikos, 2002) to a template
with 90 anatomically labeled cortical and subcortical regions (see Table T1 in the
supplemental material). Note that this template was adapted from (Tzourio-Mazoyer et al.,
2002) to a neonatal space (Shi et al., 2011) to avoid the subject-template registration errors
resulting from substantial infant-adult anatomical variances. Using the estimated
deformation fields, local brain volume changes relative to the template were computed as
voxel-wise tissue density maps. Based on these maps, GM volume measurements for 90
cortical and subcortical regions were then computed for all subjects. For each ROI, linear
regression was used to remove the effects of total brain volume, gender, and age from the
volume measurements. The residuals resulting from the regression was used as the corrected
GM volume estimates.

The across-subject volumetric correlation was computed for each pair of ROIs using the
Pearson correlation and a 90×90 correlation map was thus obtained for each population (Fan
et al., 2010; Zhu et al., 2012). Correlation coefficients r of the correlation map were then
converted to z values, which are approximately normally distributed: z = 0.5[ln(1 + r) − ln(1
− r)]. The respective z maps for two populations are shown in the top row of Fig. 2. By
binarizing the correlation maps using a series of sparsity thresholds that will result in a
certain percentages of connections, a series of unweighted and undirected graphs were
obtained for subsequent network analysis.

Statistical Analysis—A non-parametric permutation test was employed to assess the
statistical difference of brain network properties between two groups (He et al., 2008). First,
a network property measure (e.g., efficiency, clustering, path length, or small-worldness)
was computed separately for high-risk neonates and control neonates. Then, we randomly
assigned the regional cortical thickness measures of each subject to either group. Correlation
matrix was recomputed for each of the 2 randomized groups and a new value for the
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network property measure was then obtained. This randomization procedure was repeated
1,000 times and significance is reached if less than 5 percentile of between-group difference
in the permutation distribution was greater than the observed group difference. The
procedure was repeated for each sparsity threshold.

2.4 Diffusion-weighted MR image processing and white matter network construction
After skull-stripping, the diffusion tensors were constructed using a weighted-least-squares
estimation algorithm (Zhu et al., 2007). Whole-brain streamline fiber tractography (Leemans
et al., 2009) was then performed for each image with minimal seed-point FA of 0.20,
minimal allowed FA of 0.10, minimal fiber length of 20mm, and maximal fiber length of
200mm. The motivation for a low FA value allowance was to ensure that the fibers be
reasonably tracked in the neonatal images, which generally have relatively lower image
contrast, compared with adults. Usually, tens of thousands of fibers were tracked for each
subject. The resulting fiber tracts were reviewed in ParaView (Kitware,
http://www.paraview.org/), and subjects with images that were too noisy or with no
diffusion-weighted MR images were excluded from the study. For each subject, the T2-
weighted image was rigidly aligned to the b0 image, so that the ROIs in the T2 image space
could be propagated to the DTI image space. For each pair of ROIs, the number of fibers
passing through the two ROIs was counted as an indication of anatomical association
between the two ROIs (Gong et al., 2009a; Sporns et al., 2005; Zalesky et al., 2010),
resulting in a 90 by 90 connection map for each individual subject.

Statistical Analysis—The variability of network properties in a group was assessed
through the mean and standard deviation. Statistical significance of network property
differences between two groups was evaluated by using the non-parametric permutation test.
Besides global measurements such as efficiency, clustering, path length, or small-worldness,
local connections can also be investigated. Region pairs with significant differences in the
number of connecting fibers can be identified through permutation tests. Note that the
statistical analysis was only performed on node pairs that had larger than average fiber
connections (Zalesky et al., 2010c). The effects of age, gender, and total number of fibers
were regressed out before statistical analysis. False discovery rate (FDR) with p<0.05 was
employed for multiple comparison correction.

2.5 Graph-based network analysis
An excellent summary of network measures can be found in (Rubinov and Sporns, 2009).
We used the Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.net) to
compute these network measures.

Network Sparsity—The brain network is represented by a graph G, composed of N nodes
and L edges. The degree of each node Ki(1 ≤ i ≤ N) is defined as the number of edges
connecting the node i. Sparsity, also called the network cost, measures the percentage of the

number of existing edges in all possible connections: , 0 ≤ Ksparsity
≤ 1. Thresholding based on sparsity can be performed to convert the graph into an
unweighted and undirected graph, facilitating subsequent network-property analysis and
comparison. A small sparsity threshold generates sparsely connected network, while a large
sparsity threshold results into a densely connected network. Since there is no definitive way
to select a single threshold, we thresholded the correlation matrices over a wide range of
sparsity (10–25%) and then estimated the properties of the resulting graphs at each threshold
value (He et al., 2008). A fixed sparsity was however used for simplifying the investigation
of the modular structure of the network. This sparsity was chosen to be the lowest value that
produced a fully connected network with 90 nodes.
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Small-world Properties—Global efficiency considers global information processing and

transfer from each region to all other regions in the brain: ,
where Li,j is the shortest absolute path length between the ith node and the jth node. Local
efficiency of each region i describes the mean transfer efficiency of the region with its

neighbors, , where Eloc(i) is the local efficiency for the ith
node, Gi is a subgraph comprising nodes directly connected to node i, and NGi is the node
number of the subgraph Gi. By averaging over all regions, the average local efficiency for

the whole brain can be obtained, , where G is the whole graph.

Clustering coefficient of a network, measuring the whole brain segregation, is the average of

the absolute clustering coefficients of all nodes: , where  and
Ei is the number of edges in the subgraph Gi. The shortest absolute path length of a network,
measuring the whole brain functional integration, is the average of the shortest absolute path

lengths between the nodes: , where  and Li,j is the
shortest absolute path length between the ith node and the jth node. A small-world network
has similar absolute path lengths but higher absolute clustering coefficients than that of
random networks with the same numbers of nodes and edges, which can be represented by

the two parameters, namely normalized clustering , and normalized path

length  (Watts and Strogatz, 1998). These two parameters can further be
summarized as small-worldness σ = γ/λ. For reference, comparable regular lattice and
random graphs were also generated over the same range of network sparsity thresholds. In
particular, lattice network is constructed by composing a ring network with the same number
of edges, i.e., same network sparsity, according to the real network. Random network is
obtained by iteratively rewiring a pair of random edges of the existing brain network.
Random network is obtained by iteratively rewiring a pair of random edges of the existing
brain network. For example, two existing edges (i1,j1) and (i2, j2) are randomly selected and
rewired into (i1,j2) and (i2,j1) if both of the new edges do not already exist. Random
permutation is repeated until the topological structure of resulting graph is randomized. 1000
random networks are constructed and the results are averaged (Liu et al., 2008).

Connection distance—The connection distance of each edge was estimated by the
Euclidean distance between the centroids of the connected regions in standard neonatal
stereotactic space (Bassett et al., 2008). Defined as the average connection distance (in
millimeter) over all edges in a network, the mean connection distance, d, captures the spatial
characteristics of the network.

Modularity and centrality—A network is usually composed of several modules, e.g.,
community structures, which is more densely connected inside the modules than in-between
the modules. A module is a subset of nodes and the modularity of a network is defined as:

, where m is the configuration of modular organization with nm
modules; L is the total number of edges of this graph; in module s, hs is the total number of
edges, and Ts is the sum of the degrees of the nodes. Similarly, the modularity can be
evaluated as a function of network sparsity.
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In network, the nodes highly connected to others and traversed by many paths are named
hub nodes, which play an essential role for controlling the information flow in the entire
network (Achard et al., 2006; He et al., 2007). Betweenness centrality is defined as the
fraction of the shortest paths between any pairs of nodes that travel through the node

(Freeman, 1977): , where σj,k is the number of the shortest paths from
node j to k, and σj,k (i) is the number of these paths that pass through node i. Nodes with the
node betweenness values larger than the mean plus standard deviation are classified as hub
nodes, i.e., Bc(i) > mean (Bc) + std (Bc); others are classified as non-hubs (Gong et al.,
2009a). Similarly, by extending the notion of betweenness centrality from nodes to edges,
hub edges are those with edge betweenness larger than the mean plus standard deviation
betweenness.

3. Results
3.1 Morphological network properties

Small-world network organization—For each subject, a 90 by 90 correlation matrix
was computed via the Pearson correlation of the corrected gray-matter volumes between all
ROI pairs (top row of Fig. 2). The absolute values of the correlations were taken as
indicators of connections (He et al., 2008). As shown in Fig. 3, both high-risk neonates and
control neonates demonstrate small-world network properties, such as intermediate network
efficiency in between degree-matched random and lattice networks (Fig. 3A–B), and
considerably larger clustering coefficients and path lengths than those of degree-matched
random networks (Fig. 3C–E). Statistical analysis indicates that high-risk neonates have
significantly lower global efficiency, and higher local efficiency, clustering coefficient, and
patch length. Further investigation indicates that the mean connection distance is
significantly higher (36.1 mm at sparsity 12%) in high-risk neonates than control neonates
(34.7 mm at sparsity 12%) (See Fig. S1 in supplementary material).

Subgroup analysis for gender effects—In adults, males were reported to be more
likely affected by schizophrenia, with more severe symptoms (Seeman, 1986). To
investigate the gender effects in our population, we subdivided both neonatal groups into
males and females and analyzed them separately, with results shown in Fig. 4. The male
high-risk neonates demonstrates significantly reduced global efficiency and increased local
efficiency. Female high-risk neonates are less affected and surprisingly show even higher
global efficiency and lower local efficiency than those of female control neonates. Our
results also suggest that male neonates are more susceptible to the effects of the genetic risk.

Modularity analysis—Brain network is composed of multiple modules working together
as a whole, governed by functional specialization and integration (Rubinov and Sporns,
2009). Such topology usually has more connections within modules than between modules.
A fixed sparsity of 0.12 was used, at which networks of both population reach fully
connection.

In Fig. 5, the spring-embedding visualization of networks shown in the left panel was
implemented with Kamada-Kawai layout algorithm using the Pajek (Batagelj and Mrvar,
1998) software package (pajek.imfm.si/doku.php). The nodes and intra-modular connections
are colored-coded based on the communities detected by the algorithm described in (Clauset
et al., 2004); and inter-modular connections are color-coded with light-gray. The sizes of the
vertices are weighted by the logarithmically-scaled node betweenness (Freeman, 1977). The
right panel shows a circular view of the network by arranging the 90 ROIs clockwise in a
circle based on their indices. From the top left panel of Fig. 5, we can observe that the
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network of high-risk neonates is roughly composed of three modules. The left module is
composed mainly of the frontal and temporal nodes, with the right module composed of the
motor and occipital areas, and the middle module composed of the orbitofrontal and
temporal regions. The information transfer between the left and right modules is mediated
by the middle module, causing lower information transfer efficiency between the two
modules. The middle and left modules in high-risk neonates are more integrated in the
control neonates. More inter-module connections (gray edges) can be observed in the control
neonates, indicating better connections for the two major modules.

Network hubs are the nodes with significantly more connections to other nodes, and hub
edges are the edges that are traversed by a relatively significant number of the shortest paths
connecting a pair of nodes. Hubs are important in a brain network and have direct
implications on its resilience to random and targeted attacks (Achard et al., 2006; He et al.,
2007). We identified the hub nodes and edges in all networks by using the betweenness
centrality measure as described in the method section. In Fig. 6, hub nodes are represented
by spheres, color-coded based on the modules they belong to. Hub edges are shown as lines
connecting a pair of brain regions, with the thickness proportional to the traffic load of
information transfer and processing. Note that the two ends of the hub edges are not
necessarily hub nodes. We also list the hub nodes and the top 5 weighted edges in Tables 2
and 3. Both neonatal populations have hub nodes in frontal and temporal lobes. High-risk
neonates have additional hub nodes in the occipital lobe, while the control neonates in the
parietal and subcortical regions (Table 2). Moreover, high-risk neonates have less number
(12) but higher average betweenness (4.4×102) of hub nodes than that of control neonates
with number (18) and betweenness (3.5×102), indicating that the network organization in
high-risk neonates prefer huge hubs that are more vulnerable to targeted attacks (Newman,
2006). We also classified the anatomical regions as Primary, Associations, Paralimibic, and
Subcortical as described by (Achard et al., 2006). Hub nodes in high-risk neonates are
mostly located in the association and paralimbic cortex, while control neonates have
additional hubs in the primary and subcortical cortex.

Hub edges in high-risk neonates are mostly located at the intra-frontal, frontal-temporal,
occipital, and temporal-limbic regions (Table 3). This indicates that high-risk neonates have
heavy traffic on the long distance connections to communicate spatially dispersed modules
for functional integration, resulting in less economic information flow. And possible
damages of the hub edges may remarkably affect the stability and efficiency of the network
(Achard et al., 2006).

Modular analysis indicates that a similar pattern is manifested in the subgroups (Fig. S2 in
supplementary material). High-risk subgroups generally have the dominating hub edges with
very large betweenness in contrast to other hub edges that have much smaller betweenness.
This observation is similar to the findings obtained from the whole high-risk group.
However, hub edges of the control neonates have a more balanced betweenness distribution,
and the number of hub edges is also higher with low average betweenness, indicating
possibly better support of brain connectivity and integration. The female high-risk subgroup
has a more similar pattern with the control subgroup than that of the male high-risk
subgroup, suggesting that the male neonates are more susceptible to the genetic risk.

3.2 White matter network properties
Fiber tractography—White matter fibers were tracked for whole brain and checked
manually to ensure anatomical correctness (see Fig. S3 in supplemental material for
representative fiber tracking results). Connectivity matrices were constructed for all subjects
based on the number of fiber connections between ROI pairs. The average connectivity
matrices for two populations are shown in the bottom row of Fig. 2.
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Small-world network organization—Figs 7(A–B) show the global efficiency and local
efficiency of high-risk and control neonates as functions of network sparsity. No significant
difference was found in global and local efficiencies between the two neonatal populations.
Mean connection distances were also non-significant (around 20.0 mm at sparsity 14%) as
shown in Fig. S1 in supplementary material. Neonates exhibit larger clustering coefficients
and comparable path length compared with the degree-matched random networks, while no
difference can be found between the high-risk neonates and control neonates (Fig. 7C–E).
This finding confirms that the small-world topologies are preserved in the white matter
networks of both populations.

Subgroup analysis for gender effects—Gender effects were also investigated by
comparing the global and local efficiency for white matter networks (1) between male high-
risk neonates and male control neonates, and (2) between female high-risk neonates and
female control neonates. Few differences were found between each of two comparisons in
the small-world regime and none of them survived the multiple comparison correction
(FDR) for the 16 tests (each test for each sparsity from 10% to 25%). Results are shown in
Fig. S4 of supplemental material. These results indicate that gender does not influence
differently on the major white matter network metrics of both high-risk and control
neonates.

Modularity analysis—A fixed sparsity of 0.14 was used, at which the two networks were
fully connected. Results are shown in Fig. 8. The hub nodes can be found mostly in the
subcortical regions and the hub edges mainly connect the left and right brain. This may be
because the network is constructed based on fiber connections, and fiber length is generally
high for inter-hemisphere connections. The two groups have similar intra-connections in
subcortical regions. Control neonates have a more symmetric hub edge distribution with
additional hub edges between left and right hippocampus. High-risk neonates have a left-
subcortical-cortical hub edge connecting between left putamen (PUT-L) and right middle
cingulate gyrus (MCG-R). This pattern is also observed in subgroup modular analysis (Fig.
S5 in supplementary material).

Impaired local fiber connections—Although there was no significant global difference,
we found alterations of local fiber connections between the two populations. Of the total
(90×89)/2=4005 interregional connections, 6 connections were found to exhibit significantly
lower number of fibers in the high-risk neonates than the control neonates (p<0.05, FDR
corrected). As shown in Fig. 9, 4 out of 6 connections are between the right subcortical
regions and cortical regions such as paracentral gyrus, temporal lobe, and occipital lobe.
And, the other 2 connections are between the occipital lobe and limbic lobe. None of
connections have significantly higher number of fibers in the high-risk neonates.

4. Discussion
In this study, we investigated brain organization in terms of morphological and white matter
networks of the neonates at genetic risk for schizophrenia. These networks may reflect
different causes of schizophrenia in support of the disconnection hypotheses in association
with GM and WM. Both morphological and white matter networks demonstrate small-world
topologies. Results indicate that the high-risk neonates exhibit significantly altered structural
associations, such as reduced global efficiency, longer connection distance, and less hub
nodes and edges. White matter networks, however, were globally unaffected, although
several subcortical-cortical connections showed early sign of impairment with significantly
lower number of fibers. The findings verify our hypothesis that the morphological and white
matter networks of neonates are influenced by the high-risk but in varied degrees. Note that
having a first-degree relative with schizophrenia may increase the risk to 10 times higher
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than that of a normal population (Sullivan, 2005). Thus it is expected that about 10 percent
of high-risk neonates in this study may develop schizophrenia later in their lives. The
observed abnormalities may represent the intermediate phenotypes of the risk.

4.1 Altered morphological network in high-risk neonates
The GM density on MRI is a macroscopic and indirect measure of the complex brain
architecture of glia, vasculature, and neurons with dendritic and synaptic processes. Brain
regions related with a certain disrupted function may cause synchronous impairments in
gray matter, which can manifest as altered structural association in the morphological
network. GM structural association has been found to reflect neurological dysfunction
(Dazzan et al., 2004) and correlate with the functional connectivity (Bhojraj et al., 2010).

This study is the first to examine high-risk schizophrenia neonates for new evidences that
altered structural associations exist as early as in the neonatal stage. Specifically, high-risk
neonates show significantly reduced global efficiency, longer path length and connection
distance, suggesting lower communication, which is consistent with studies on
schizophrenia adults (Bassett et al., 2008). High-risk neonates also show increased local
efficiency and clustering coefficient, which can be explained by the findings that brain is
more modulated than that of control neonates.

Subgroup analysis shows that male subjects have a higher susceptibility to the genetic risk,
which is in agreement with a volumetric analysis (Gilmore et al., 2010) where male high-
risk schizophrenia neonates were found to have significantly larger intracranial, CSF, and
lateral ventricular volumes. Also males were reported to have higher incidence rate (1.4:1)
than females for schizophrenia (McGrath et al., 2008).

Aberrant modular structures in morphological network of high-risk neonates
—One of the most important features of complex systems, such as the large-scale brain
networks, is that they generally have a modular structure (Bullmore and Sporns, 2009).
Detecting modules in a network can help identify groups of brain nodes that perform
specific biological functions. Results from morphological network analysis (Fig. 5) shows
that the control neonates are generally better organized as functionally oriented modules,
and the pattern is consistent with the modules found in young healthy adults (Chen et al.,
2011). However, some regions were separated into different modules in the high-risk
neonates, i.e., regions associated with brain executive, sensorimotor, decision-making, and
other basic cognitive functions, which may affect their information processing efficiency
and further brain communication development.

4.2 Globally unaffected but locally impaired white matter network in high-risk neonates
Although many studies suggest the white matter connectional architecture may be relatively
preserved in schizophrenia patients (Stephan et al., 2006), most investigations were not
based on the axonal fiber connectivity. Recently, schizophrenia adults were suggested
having disrupted axonal fiber connectivity (van den Heuvel et al., 2010; Zalesky et al.,
2010). The impaired connectivity involve a distributed network of nodes comprising medial
frontal, parietal, occipital, and left temporal lobes. Note that the brains of high-risk neonates
are under rapid development in both structures and functions and hence patterns of
abnormalities might not resemble exactly as those of adults. In the present study, we
employed a similar white matter network analysis and found that high-risk neonates showed
globally unaffected small-world topologies. Males and females also showed no significant
difference in their network organization. However, modular analysis found that high-risk
neonates had asymmetric hub distributions and left-subcortical-cortical hub edges. Local
fiber connection analysis indicates that the high-risk neonates suffered from impaired right-
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subcortical-cortical fiber connections, which in turn increases the information processing
and transfer load for left-subcortical-cortical connections. The impaired connections
involved some basic brain functions, such as motor, emotion, and vision (Andreasen, 1997;
Andreasen et al., 1998). This finding is also in agreement with the results in morphological
network analysis, where the high-risk neonates have less hub nodes in the subcortical
regions. In general, although the impaired connections are limited in number and do not
affect the whole brain topology, these results suggest that fiber connectivity alteration
already exists as early as the neonatal stage and may have critical impact on subsequent
brain development.

4.3 Relationships between brain networks constructed from different modalities
Brain networks constructed from different modalities may reflect different aspects of the
underlying brain architecture (see the review (He and Evans, 2010)). The morphological and
white matter networks employed in this study (also called structural networks as opposed to
functional networks) are related to brain interactions as characterized by gray matter and
white matter. A recent work demonstrates that there are considerable differences between
the morphological network constructed with cortical thickness correlations and the white
matter network constructed using DTI (Gong et al., 2012). In this study, the discrepancy in
the results between morphological and white matter networks may be due to the possibility
that different brain tissues are affected in a different manner or at different stage by the
genetic risk factor. Information gained from different modalities may help us better
understand the pathophysiology of schizophrenia.

4.4 Limitations
This study has several limitations. First, high-risk infants were more likely to be exposed to
medications such as antipsychotic, antidepressants, and cigarette smoking during pregnancy.
Previous studies have shown that the use of antipsychotics during pregnancy do not appear
to significantly increase the risk of birth defects or other adverse outcomes (Einarson and
Boskovic, 2009). Volumetric studies also do not find significant brain structure differences
between the high-risk neonates exposed to maternal smoking and those who were not
exposed (Gilmore et al., 2010). Based on this, we expect that the use of medicine and
cigarette smoking has only minor effects on the results of this paper. Second, the diffusion-
weighted images of neonates are usually noisier than these of adults, rendering the tracked
fibers less reliable. For this study, five sets of images (with each set as an average of two
scans) were acquired and averaged to improve the signal-to-noise ratio. The fiber tracking
results in this study was also manually reviewed and data with excessive noise were
discarded. Third, the number of connecting fibers was used to define the white matter
connectivity in this paper. Other measures, such as connection density, which corrects the
size of end-nodes, could be further investigated (Hagmann et al., 2008). Fourth, sample size
in this study is limited due to recruitment difficulties of neonates with high-genetic-risk. A
larger sample size is expected in the future. Lastly, comparisons on hubs and modularity
were currently made qualitatively on group-level networks. Further study may be required
for quantitative evaluation of the stability of hubs and modules using sampling methods.

4.6 Conclusion
To our knowledge, this is the first study to investigate the brain network organization in
neonates who are at high-risk for schizophrenia. We employed both morphological and
white matter networks for identifying possible alterations of brain connectivity as early as in
the neonatal stage. For high-risk neonates and control neonates, both networks exhibit small-
world topologies. High-risk neonates show impaired global efficiency, longer shortest path
length, and longer connection distance, suggesting reduced capacity of global information
integration. Subsequent modularity analysis further reveals that high-risk neonates have less
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inter-module connections, more intra-module connections, and less efficient frontal-occipital
connection. Aberrant modular structures may affect the further development of brain
executive, sensorimotor, decision-making, and other basic cognitive functions. White matter
network shows no global network difference between high-risk and control neonates.
However, several impaired subcortical-cortical connections were found, mainly those
associating the basic brain functions. In general, this study provides evidences of the
existence of brain alteration in neonates at genetic risk for schizophrenia, with varied
degrees of alteration in structural associations and fiber connections. Future work will be
focused on characterizing the dynamic network evolution of the infant brain using a
longitudinal design.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• We found that structural associations of the high-risk neonates are globally less
efficiently integrated.

• Males were significantly disease-affected in morphological network, while the
females were not.

• Several subcortical-cortical fiber connections were impaired.
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Figure 1.
Conceptual diagram illustrating the construction of the cortical morphological network using
gray-matter volumes and the white matter tractography.
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Figure 2.
Illustration of correlation matrices of morphological networks for (a) high-risk neonates and
(b) control neonates, and connection matrices of white matter networks for (c) high-risk
neonates and (d) control neonates. (a–b) were obtained from all subjects, respectively. (c–d)
were obtained by averaging matrices from all individuals, respectively.
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Figure 3.
Network properties of (A) global efficiency, (B) local efficiency, (C) normalized clustering,
(D) normalized path length, and (E) small-worldness as functions of network sparsity for
morphological networks of high-risk neonates (red) and control neonates (blue). Mean and
standard deviation of network properties were illustrated at each sparsity level. Data points
marked with stars indicate significant differences (p<0.01 by permutation test) were
achieved within sparsity of 10–25%.
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Figure 4.
Global and local efficiency for morphological networks of (A–B) male and (C–D) female
high-risk neonates and control neonates as functions of network sparsity. Mean and standard
deviation of network properties are illustrated at each sparsity level. Data points marked
with stars indicate significant differences (p<0.01 by permutation test).
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Figure 5.
Left panel shows the spring-embedded visualization of the morphological networks. Nodes
are color-coded based on different modules. Intra-module edges are color-coded as the same
color with the nodes. Gray edges connect inter-modules. Right panel shows circular
visualization of the networks, where the nodes are arranged clockwise based on their
indices, dividing them into 6 major lobes: frontal, limbic, occipital, parietal, subcortical, and
temporal lobes. Note that all subjects in each population are used to construct the network,
and the network sparsity is set as 12%.
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Figure 6.
Hub nodes and edges for morphological networks of high-risk neonates (top) and control
neonates (bottom). Hub nodes are denoted as spheres and the colors represent different
modules. Thicker edges indicate larger betweenness values, implying that they are traversed
more frequently. Hub nodes are listed in Table 2, and the top 5 hub edges are listed in Table
3. Note that the two ends of the hub edges are not necessarily hub nodes, and non-hub nodes
are not shown in the figure.
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Figure 7.
Network properties of (A) global efficiency, (B) local efficiency, (C) normalized clustering,
(D) normalized path length, and (E) small-worldness as functions of network sparsity for
white matter networks of high-risk neonates (red) and control neonates (blue). Mean and
standard deviation of network properties are illustrated at each sparsity level. Few
differences were found significant (p<0.05 by permutation test, marked with a star) between
the two populations within sparsity of 10–25%.
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Figure 8.
Hub nodes and edges for white matter networks of high-risk neonates (left) and control
neonates (right). Hub nodes are denoted as spheres and the colors represent different
modules. Thicker edges indicate larger betweenness values, implying that they are traversed
more frequently. Note that the two ends of the hub edges are not necessarily hub nodes, and
non-hub nodes are not shown in the figure.
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Figure 9.
Visualization of connections with significantly lower number of fibers (p<0.05, FDR
corrected) in high-risk neonates, compared with control neonates. The left and right panels
show the axial and sagittal views, respectively. None of connections have significantly
higher number of fibers in the high-risk neonates.
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Table 1

Demographic characteristics and prenatal and perinatal conditions of the neonates at high genetic risk for
schizophrenia and the control neonates.

Characteristic, Prenatal and Perinatal Conditions a High-Risk Neonates Control Neonates

N % N %

Gender

 Male 12 46.2 12 46.2

 Female 14 53.8 14 53.8

Ethnicity

 Caucasian 17 65.4 12 46.2

 African American 9 34.6 13 50.0

 Other 0 0.0 1 3.8

Medication Exposure

 Antipsychotic * 0 0.0 23 88.5

 Antidepressant * 0 0.0 8 30.8

 Lithium 0 0.0 2 7.7

 Other Medications 16 61.5 18 69.2

Substance Exposure

 Tobacco Smoking * 1 3.8 12 46.2

 Alcohol 0 0.0 3 11.5

 Marijuana 0 0.0 4 15.4

Caesarean Section 7 26.9 12 46.2

Premature Birth (<37 weeks) 8 30.8 7 26.9

Stay in Neonatal Intensive Care Unit 2 7.7 6 23.1

Mean SD Mean SD

Maternal Age (years) 27.9 4.5 29.0 4.0

Maternal Education (years) * 14.2 2.7 10.0 3.6

Neonatal Age (weeks since mother’s last menstrual period)

 At birth 38.1 3.1 38.5 2.3

 At MRI 43.2 3.3 42.6 2.4

Apgar Score b

 1 minute 7.3 2.1 8.0 1.2

 5 minutes * 8.5 1.1 9.0 0.3

a
Detailed recruiting information can be referred to (Gilmore JH et al. 2010).

b
Apgar score is to assess the condition and prognosis of newborn infants, taken 1 and 5 minutes after birth. Apgar score ranges from 0 to 10, and

neonates scoring 7 or above are generally considered in good health.

*
Significant difference between groups (p<0.05)
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