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Abstract
Expression of the sodium iodide symporter (NIS) is required for efficient iodide uptake in thyroid
and lactating breast. Since most differentiated thyroid cancer expresses NIS, β-emitting
radioactive iodide is routinely utilized to target remnant thyroid cancer and metastasis after total
thyroidectomy. Stimulation of NIS expression by high levels of thyroid-stimulating hormone is
necessary to achieve radioiodide uptake into thyroid cancer that is sufficient for therapy. The
majority of breast cancer also expresses NIS, but at a low level insufficient for radioiodine
therapy. Retinoic acid is a potent NIS inducer in some breast cancer cells. NIS is also modestly
expressed in some non-thyroidal tissues, including salivary glands, lacrimal glands and stomach.
Selective induction of iodide uptake is required to target tumors with radioiodide. Iodide uptake in
mammalian cells is dependent on the level of NIS gene expression, but also successful
translocation of NIS to the cell membrane and correct insertion. The regulatory mechanisms of
NIS expression and membrane insertion are regulated by signal transduction pathways that differ
by tissue. Differential regulation of NIS confers selective induction of functional NIS in thyroid
cancer cells, as well as some breast cancer cells, leading to more efficient radioiodide therapy for
thyroid cancer and a new strategy for breast cancer therapy. The potential for systemic radioiodide
treatment of a range of other cancers, that do not express endogenous NIS, has been demonstrated
in models with tumor-selective introduction of exogenous NIS.
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1. Introduction
Sodium iodide symporter (NIS, or SLC5A5, solute carrier family 5, member 5)(Dai et al.,
1996; Smanik et al., 1997) is expressed at the highest level in the thyroid and lactating breast
(Dohan et al., 2003). Since NIS confers highly efficient iodide accumulation in cells, its
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expression in cancer cells allows for the diagnostic and therapeutic application of
radioactive substrates of NIS, such as iodide (123I, 124I, and 131I) and pertechnetate
(99mTcO4

−). A majority (68–86%) of thyroid cancer retains functional NIS expression
(Castro et al., 2001; Wapnir et al., 2003). β-emitting radioiodide-131 (131I) is, therefore,
routinely used for ablation of remnant tumors after total thyroidectomy. In thyroid cancer,
the native NIS expression and radioiodide uptake is reduced. Stimulation of NIS expression
by increasing the serum levels of thyroid-stimulating hormone (TSH), is required, prior
to 131I administration. Most differentiated thyroid cancer responds to these high levels of
serum TSH with an increase in NIS expression and iodide uptake (Schlumberger, 1998). The
elevation of serum TSH can be achieved either by withdrawal of thyroid hormone
supplement after thyroidectomy or administration of recombinant TSH (thyrogen)
(Ladenson et al., 1997).

The majority of breast cancer (70–80%) also expresses NIS (Tazebay et al., 2000; Wapnir et
al., 2003), although iodide uptake is usually reduced or absent (Moon et al., 2001; Wapnir et
al., 2004). Enhancement of the endogenous NIS expression in breast cancer has been
proposed as an approach that would allow 131I therapy (Boelaert & Franklyn, 2003). NIS,
however, is expressed in the thyroid gland and other sites, such as stomach and salivary
glands (Dohan et al., 2003), so selective induction of NIS in the target cancer is required.

The efficacy of 131I to destroy target tumors is dependent on the tissue-selective NIS gene
induction, but also the effective translocation of NIS protein to the cell membrane and
correct membrane insertion. 131I retention in the target tumors, and the biological half-life
of 131I in the body, also influence treatment efficacy. Normal thyroid tissue incorporates the
trapped iodide into thyroglobulin (Tg), referred to as organification, resulting in longer
iodide retention. Iodide in most thyroid cancer, as well as breast cancer, however, is not
efficiently incorporated into proteins and hence more easily discharged from cancer tissues
(Schlumberger et al., 2007).

In this review, we will describe recent findings of pathways and agents that stimulate
endogenous NIS gene expression, as well as intracellular NIS translocation, in thyroid cells
and breast cancer cells. Dissection of signal transduction pathways for NIS regulation
confers novel potential targets to increase the efficacy of radioiodide therapy and expand its
application to radioiodide-refractory thyroid cancer, as well as breast cancer and other NIS-
expressing tumors.

2. Physiology of iodide metabolism and NIS
The thyroid must trap ~60 μg iodide/day from the bloodstream to produce adequate thyroid
hormone. The thyroid contains 70–90% of the iodide in the body (9–10 mg) (Riggs, 1952),
and this iodide accumulation is dependent on NIS (Dai et al., 1996), expressed on the
basolateral membrane of thyroid follicular cells (Fig. 1). NIS is a glycosylated protein with
13 trans-membrane domains, transporting 2 Na+ and one I−, dependent on the Na+ gradient
maintained by Na+/K+ ATPase (Dohan et al., 2003). NIS activity produces the iodide
concentration gradient from blood to NIS-expressing cells, up to 30-fold. Iodide taken up
into the thyroid follicular cell by NIS, is released to the lumen via pendrin, oxidized by
thyroid peroxidase (TPO) with hydrogen peroxide (H2O2) produced mainly by dual
oxidase-2 (DUOX2), and binds to tyrosine residues of Tg accumulated in the lumen (Fig. 1).
The process of iodide incorporation into Tg is termed “organification”. The iodized tyrosine
residues are then used for thyroid hormone synthesis. The transport of iodide into and
through the thyroid gland is tightly regulated by TSH from the pituitary gland (Dohan et al.,
2003; Kogai et al., 2006; Pesce et al., 2012). TSH stimulates NIS transcription (Kogai et al.,
2000a; Kogai et al., 1997; Saito et al., 1997), prolongs NIS protein half-life, and stimulates
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translocation of NIS into the cell membrane (Riedel et al., 2001), maximizing iodide uptake
in thyroid cells.

Infants need ~90 μg/day of iodide to produce thyroid hormone, essential for normal brain
development. Lactating mammary glands efficiently accumulates iodide so that breast milk
contains 150–180 μg/L iodide (Semba & Delange, 2001). NIS is expressed on the
basolateral membrane of lactating mammary alveolar cells (Cho et al., 2000), and
accumulates iodide from the bloodstream into milk. Expression of breast NIS is induced by
oxytocin secreted from the posterior pituitary, and this action is enhanced by the elevated
levels of serum prolactin and estrogen present in the postnatal period (Cho et al., 2000;
Tazebay et al., 2000).

Several other extra-thyroidal tissues express NIS, including salivary glands, stomach,
intestine, and lacrimal glands (Dohan et al., 2003). In the gastrointestinal system, salivary
ductal cells, as well as gastric mucosa, express NIS on the basolateral membrane (Altorjay et
al., 2007; Josefsson et al., 2002), while epithelium of the small intestine expresses NIS on
the brush border membrane (apical side)(Nicola et al., 2009a). The iodide in food and water
taken orally is absorbed in the intestines through the apical NIS (Nicola et al., 2009a), and
transferred into circulation (Fig. 2). In contrast, the salivary glands (mainly parotid glands)
and stomach take iodide from the bloodstream and release it into gastrointestinal tract
(Brown-Grant, 1961). The kidneys excrete more than 90% of ingested iodide (Cavalieri,
1997). Renal clearance of iodide is mainly dependent on glomerular filtration rate and not
re-absorption by renal tubules (Bricker & Hlad, 1955). The iodide secretion by salivary
glands and stomach into the gastrointestinal tract, followed by re-absorption through
intestine, is likely a mechanism to conserve iodide (Fig. 2), as demonstrated in the cow
(Miller et al., 1975). The factors that regulate NIS expression and function in the
gastrointestinal system, however, have not been identified (Josefsson et al., 2006).

NIS-expressing extra-thyroidal tissues, such as lacrimal glands, salivary glands, stomach,
and lactating breast tissues, also express the lactoperoxidase system, a natural antimicrobial
system (Bosch et al., 2000). Its bactericidal activities are dependent on generation of H2O2,
hypoiodite (IO−), and/or thiocyanate (SCN−). A fraction of iodide in those tissues is
oxidized to the antibacterial compound IO− by endogenous lactoperoxidase, a possible
function of iodide in these tissues (Majerus & Courtois, 1992).

3. Radioiodide therapy in thyroid cancer treatment
131I is widely used in patients with differentiated thyroid cancer for ablation of the remnant
of normal thyroid tissue after a total thyroidectomy and for residual or metastatic thyroid
cancer. Ablation of the thyroid remnant, following the removal of the primary tumor, may
decrease recurrence of differentiated thyroid cancer (Sawka et al., 2004). If the 131I uptake is
observed in distant metastases, 131I treatment is highly effective and markedly increases the
survival rate, especially in younger patients with small metastases (Durante et al., 2006).

More than 70% of differentiated thyroid cancer, including papillary cancer and follicular
cancer, expresses NIS and actively take up 131I. The de-differentiation of thyroid cancer,
however, influences the regulation of NIS and reduces functional NIS expression (Kogai et
al., 2006). As a result, the tumor is visualized on a radioiodide imaging study as a relatively
“cold” nodule with reduced tracer uptake, compared to the surrounding normal tissue.
Differentiated thyroid cancer usually retains expression of the TSH receptor (TSHR),
although less differentiated thyroid cancer has reduced expression of TSHR (Mizukami et
al., 1994; Ohta et al., 1991). The majority of well-differentiated thyroid cancers respond to
TSH stimulation with an increase in endogenous NIS expression and 131I accumulation.
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The increase in serum TSH level to stimulate NIS after total thyroidectomy, is achieved by
the withdrawal of thyroid hormone treatment, which increases secretion of endogenous TSH
from the pituitary due to reduced feedback of circulating thyroid hormone. The resulting
hypothyroidism reduces the renal clearance of 131I (Maruca et al., 1984; Meier et al., 1994;
Riggs, 1952), and may increase efficacy by prolonging the retention of 131I in target cancer.
The hypothyroidism, however, is associated with fatigue, weakness, cognitive impairment,
and mood disorders. In addition, the thyroid hormone withdrawal is not well tolerated in
patients with advanced cancer, heart failure, as well as renal failure. Administration of
recombinant human TSH is utilized as an alternative and has similar efficacy to thyroxine
withdrawal, but without significant side effects (Haugen et al., 1999; Ladenson et al., 1997).

To achieve sufficient effective dose of 131I (>80 gray (Gy)) in target tumor(s), a high dose
(>95 mCi) of 131I is frequently ingested, resulting in 0.1 to 27% of administrated 131I taken
up by tumor tissues (Maxon et al., 1983). Iodide uptake in the stomach and salivary glands is
often observed in whole body scans with radioiodide, but absorbed radiation dose in 131I
therapy is significantly smaller than thyroid (less than 0.1%)(MIRD, 1975). This is likely
due to modest NIS expression and rapid release of 131I into the gastrointestinal tract.
Moderate side effects in salivary glands and lacrimal glands, however, are still relatively
common (10 to 60%) after 131I treatment (Van Nostrand, 2009), including sialoadenitis, dry
mouth, dry eyes, and conjunctivitis. These are usually temporary, but become permanent
with increasing lifetime cumulative dose. Agents to promote saliva flow, such as lemon
candy, have been recommended, but are not clearly shown to reduce salivary gland damage.
Pilocarpin, a M3 muscarinic acetylcholine receptor agonist, was also utilized to stimulate
salivation but was not effective (Alexander et al., 1998).

In the normal thyroid, the retention time of organified iodine in follicles is significantly
longer than that of free iodide, which is readily discharged from thyroid glands, likely by
simple diffusion. Iodine organification, however, is reduced in thyroid cancer (Field et al.,
1973; Valenta, 1966; Wolff et al., 1959), due to reduced activity of the TPO enzyme and/or
DUOXs (Gerard et al., 2003; Ohye & Sugawara, 2010; Takamatsu et al., 1992). As a result,
the effective half-life of 131I in tumors (0.5–3 days) is significantly reduced compared to that
in normal thyroid tissue (3–7 days)(Menzel et al., 2003; Schlumberger et al., 2007).
Radioiodine therapy, however, remains very effective in patients with differentiated thyroid
cancer, even without extensive organification.

A significant fraction of metastatic thyroid cancer, in the range of 30–40%, does not respond
to 131I therapy, even in the presence of an elevated TSH (Maxon & Smith, 1990). Greater
NIS expression in thyroid cancer is associated with greater uptake of radioiodide (Castro et
al., 2001), as well as a better prognosis (Ward et al., 2003). Increased NIS expression is
desired to improve the efficacy of 131I. The regulation of NIS in thyroid follicular cells and
thyroid cancer cells, therefore, has been intensively studied, and is summarized in Table 1.

4. Transcriptional regulation of NIS in thyroid
TSH is the primary regulator of NIS expression in thyroid glands. Stimulation of TSHR
activates adenylyl cyclase through the Gs-protein, resulting in cyclic AMP (cAMP)
accumulation in thyroid cells. The elevation of endogenous cAMP induces NIS transcription
by stimulating several signal pathways of cis-regulatory elements in a NIS locus (reviewed
in (Kogai et al., 2006), including the NIS upstream enhancer (NUE), the most potent TSH-
responsive enhancer contained in the NIS promoter (Ohno et al., 1999; Taki et al., 2002).
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4.1 NIS gene regulation via NUE
The NUE in the human genome is located 9242 to 9300 base-pairs upstream of the coding
region of NIS, overlapping with the RPL18A gene (Fig. 3A), due to a high density of coding
sequences in NIS-encoding chromosome 19 (Grimwood et al., 2004). The human NUE
consists of one Pax8 (thyroid-specific transcription factor) binding site and one cAMP-
response element (CRE)-like site (Fig. 3B), both of which are required for the full activity of
NUE (Taki et al., 2002). The NUE sequence is conserved among several species, although
the surrounding sequences are quite different (Kogai et al., 2006).

cAMP stimulates the NUE through both protein kinase-A (PKA)-dependent and -
independent pathways in thyroid cells (Fig. 3B) (Chun et al., 2004; Ohno et al., 1999; Taki
et al., 2002). PKA phosphorylates the cAMP-responsive element binding protein (CREB)
and other basic-leucine zipper (B-ZIP) proteins, such as activating transcription factor-1
(ATF-1) and CRE-modulator (CREM), leading to recruitment of these B-ZIP proteins by the
CRE-like element in NUE (Chun et al., 2004; Taki et al., 2002). Over-expression of a
CREM activator, τ2α, enhances the NUE activity in FRTL-5 rat thyroid cells when treated
with forskolin (Fenton et al., 2008), indicating an important role of the CREM activator in
the PKA-dependent activation of NUE.

Pax8 is a key transcription factor for thyroid development and differentiation (Mansouri et
al., 1998). Transcription of thyroid specific genes, including TSHR, Tg, TPO, and NIS, is
dependent on PAX8 activity. Binding of PAX8 to the NUE, in response to TSH stimulation
(Costamagna et al., 2004), is the primary requirement for significant activation of NUE
(Ohno et al., 1999; Taki et al., 2002). The TSH signaling facilitates the reduction of PAX8
(Kambe et al., 1996) through redox effector factor-1 (Ref-1), which stimulates PAX8
binding to its cis-elements (Fig. 3B)(Tell et al., 1998).

4.2 NIS expression and NUE regulation in thyroid cancer cells
The RET proto-oncogene encodes a receptor tyrosine kinase (RTK) which mediates
extracellular neurotrophin signaling to intracellular signal transduction pathways, including
the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase)
pathway. The activation of the RET-RAS -BRAF-MEK (MAP/ERK kinase)-ERK pathway
is critical for tumor initiation and/or promotion in papillary thyroid cancer (Fagin, 2004).
Constitutively active mutants of RET, RET/PTC rearrangement, and BRAF V600E are
hallmarks of papillary thyroid cancer. Activating mutations in BRAF are most common in
sporadic papillary thyroid cancer in adults, while RET/PTC rearrangement is expressed
more frequently in pediatric and radiation-induced cancers. The RET/PTC rearrangement is
a characteristic finding in well-differentiated papillary thyroid cancer without aggressive
behavior (Ricarte-Filho et al., 2009). In contrast, BRAF activating mutations are often
observed in radioiodide-refractory thyroid cancer, especially clinically aggressive papillary
thyroid cancer with metastasis (present in more than 95%)(Ricarte-Filho et al., 2009). Other
genetic modifications in thyroid cancer, such as mutations of N-RAS (Volante et al., 2009),
a catalytic subunit of phosphatidylinositol 3-kinase (PI3KCA), and AKT (Ricarte-Filho et
al., 2009), are also associated with a poor prognosis.

An experimental model with constitutive expression of RET/PTC in PCCL3 rat thyroid cells
has been utilized for several studies. The exogenous RET/PTC significantly suppresses the
expression of Pax8 (De Vita et al., 1998) and the activity of PKA (Venkateswaran et al.,
2004), leading to reduced NIS expression (Trapasso et al., 1999; Venkateswaran et al.,
2004). The reduced PKA activity is associated with down-regulation of B-ZIP proteins.
Indeed, expression of B-ZIP proteins that bind to NUE was significantly decreased in BHP
2–7 cells, variants of RET/PTC-positive TPC1 papillary thyroid cancer cells (Schweppe et
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al., 2008), resulting in reduced NUE activity (Taki et al., 2002), as well as low NIS
expression (Kogai et al., 2001; Ohta et al., 1997).

BRAF mediates the inhibitory effects of RET/PTC on NIS expression through the MEK-
ERK pathway (Mitsutake et al., 2006). The activating mutation in BRAF induces
transforming growth factor (TGF)-β secretion from thyroid cancer cells, resulting in its
paracrine action in tumor tissues (Riesco-Eizaguirre et al., 2009). Increased TGFβ is
associated with tumor invasion, stimulation of cell mobility, as well as suppression of NIS
expression through SMA- and MAD-related protein (SMAD)-3 (Costamagna et al., 2004)
(Figure 3). The BRAF mutation, therefore, contributes to the down-regulation of NIS via
both the MEK-ERK pathway and the TGFβ-SMAD3 pathway (Riesco-Eizaguirre et al.,
2009), which negatively affect the PAX8 action on NUE activation. The expression of
PAX8 is significantly decreased in ~70% of thyroid cancers, along with reduced NIS
expression, especially in poorly differentiated thyroid cancers (Fabbro et al., 1994; Puglisi et
al., 2000). These observations indicate that the constitutive activation of RET-BRAF
signaling reduced NIS expression in papillary thyroid cancer cells, at least in part by
suppressing the two major regulators of NUE, PAX8 and B-ZIP proteins.

4.3 Regulation of NUE by TSH-independent signaling pathways
Recent studies have demonstrated regulation of the NUE in thyroid cells by TSH-
independent mechanisms that affect the PAX8 binding to the NUE (Fig. 3B).

The NUE is negatively regulated by the pituitary tumor-transforming gene-1 product
(PTTG1)(Boelaert et al., 2007). PTTG1 was originally identified as a proto-oncogene
product expressed in pituitary tumors (Pei & Melmed, 1997), functioning as a transcription
factor for cell cycle-regulating genes, and some differentiation-related genes (Tong &
Eigler, 2009). A selective cofactor is required for PTTG1 to function in regulation of its
respective target genes. The cofactor for the suppression of NUE is the PTTG1-binding
factor (PBF or PTTG1-interacting protein, PTTG1-IP) (Boelaert et al., 2007). The PAX8
element, as well as an overlapping element of upstream transcription factor (USF)-1 (Fig.
3B), in the NUE is important for negative regulation by the PTTG1/PBF complex. Abundant
expression of PTTG1 (Saez et al., 2006), as well as PBF (Stratford et al., 2005), has been
observed in most thyroid cancer samples, suggesting contribution of those factors to the
reduced NIS expression in thyroid cancer. In addition, high PTTG1 expression is associated
with the reduced efficacy of radioiodide therapy in thyroid cancer (Saez et al., 2006). A
recent in vivo study with a transgenic mouse model of PBF has demonstrated that the
thyroid-selective over-expression of PBF reduces functional NIS expression in thyroid
glands, and induces thyroid enlargement with macrofollicular lesions (Read et al., 2011).

Several in vitro studies have demonstrated that TGFβ suppresses the differentiated function
of thyroid cells, including iodide uptake (Pang et al., 1992) and iodide organification
(Pisarev et al., 2009). TGFβ significantly decreased NIS mRNA expression in FRTL-5 rat
thyroid cells (Kawaguchi et al., 1997; Pekary & Hershman, 1998). The suppressive effects
are partially due to interaction between PAX8 and SMAD3, a downstream modulator of
TGFβ signaling, negatively affecting NUE activity (Costamagna et al., 2004).

Bacterial and viral infection, followed by activation of innate immune response through
Toll-like receptor (TLR) signaling, is a proposed link between infection and autoimmune
thyroid diseases (Harii et al., 2005; Yamazaki et al., 2007). The Gram-negative bacterial
endotoxin, lipopolysaccharide (LPS), a ligand of TLR-4, significantly enhanced the TSH-
stimulated NIS mRNA expression and iodide uptake (~2.0 fold) in rat thyroid cells, by
activating the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)(Nicola et
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al., 2009b). A member of the class II NF-κB, p65, directly interacts with Pax8, and activates
the NIS transcription via the rat NUE (Nicola et al., 2010).

4.4 PI3K inhibition stimulates NIS expression in thyroid cells
Insulin, as well as insulin-like growth factor (IGF)-1, significantly decreases iodide uptake
in rat thyroid cells in vitro (Kogai et al., 2008b; Saji & Kohn, 1991). Signaling pathways of
RTK, including insulin receptors, are frequently mediated by PI3K. Inhibition of PI3K by
LY294002, as well as Wortmannin, has been shown to significantly induce NIS mRNA
expression and iodide uptake (~3.0-fold) in rat thyroid cells (Garcia & Santisteban, 2002;
Kogai et al., 2008b). The NIS induction by LY294002 is dependent on newly synthesized
protein(s), including Pax8, in PCCL3 rat thyroid cells (Fig. 4). LY294002 also increased
iodide uptake in exogenous NIS-expressing BHP 2–7 cells, likely due to stabilization of NIS
mRNA (Kogai et al., 2008b).

The mechanisms of enhancement of iodide uptake by PI3K are distinct in rat thyroid cells
and thyroid cancer cells (Fig. 4). The effect of PI3K in NIS-expressing BHP human
papillary thyroid cancer cells was mimicked by an inhibitor of AKT, a major effector of
PI3K, indicating a contribution of the canonical PI3K-AKT pathway (Kogai et al., 2008b).
In contrast, the FRTL-5 rat thyroid cells did not respond to the AKT inhibitor (Kogai et al.,
2008b). In addition, modulation of IGF-PI3K signaling affects porcine NIS expression
opposite to the effect on rat thyroid NIS. IGF-1 significantly increases NIS mRNA
expression in porcine primary thyroid cells (Norden et al., 2007), while LY294002 reduces
iodide uptake (Kogai et al., 2008b). Additional studies with human thyroid cells, therefore,
are necessary to evaluate the impact of inhibitors of the PI3K pathway on NIS expression in
thyroid cancer.

Most RTK inhibitors, clinically used for treatment of non-thyroid cancers, induce
hypothyroidism in 20–50% of patients, by several mechanisms. These mechanisms include
attenuating thyroid blood flow and increased metabolism of thyroid hormone by type 3
deiodinase (Hamnvik et al., 2011). A multi-targeted RTK inhibitor, sunitinib, transiently
induces hypothyroidism, in part due to reduced iodide uptake in the thyroid (Mannavola et
al., 2007). The effect, however, does not likely require the suppression of NIS expression,
but other mechanisms, such as impairment of iodide organification (Salem et al., 2008). In
contrast, an in vitro study with BHP 2–7 papillary thyroid cancer cells demonstrated
stimulatory effects of sunitinib on NIS mRNA expression in the presence of an adenylyl
cyclase activator, forskolin (Fenton et al., 2010). Since sunitinib down-regulates the PI3K-
AKT pathway (Keefe et al., 2010), it likely mimics the effects of PI3K inhibition on NIS
expression, at least partially through PAX8 induction (Fenton et al., 2010).

4.5 Effects of HDAC inhibitors and combination treatments with signal transduction
inhibitors in less-differentiated thyroid cancer cells

Epigenetic modifications of chromatin, including histone deacetylation and
hypermethylation, are associated with poorly differentiated cancer cells. Histone deacetylase
(HDAC) inhibitors induce differentiation and expression of thyroid-selective genes in poorly
differentiated thyroid cancer cells (Furuya et al., 2004; Kitazono et al., 2001). A member of
the bicyclic peptide class of HDAC inhibitor, FR901228 (or depsipeptide), significantly
induces NIS mRNA expression and iodide uptake in thyroid cancer cell lines, including
BHP 18–21v papillary thyroid cancer cells (Furuya et al., 2004), FTC-133 follicular thyroid
cancer cells, and SW-1736 undifferentiated thyroid cancer cells (Kitazono et al., 2001).
Depsipeptide significantly induced expression of Tg and TPO, resulting in recovery of
iodide organification in BHP 18–21v cells (Furuya et al., 2004), favorable for increasing
radioiodide retention.
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Most papillary thyroid cancer expresses RET/PTC or BRAF mutants, which activate the
MAPK pathway of MEK-ERK. The PI3K-AKT signaling also plays a role in tumor
progression in thyroid cancer (Shinohara et al., 2007). Modulation of these signaling
pathways may reconstitute the thyroid-specific functions in poorly differentiated thyroid
cancer cells. Recently, combination treatments with an HDAC inhibitor, a MEK inhibitor,
and/or an AKT inhibitor have been tested in several thyroid cancer cell lines with successful
recovery of NIS expression (Hou et al., 2010), although the combination required for NIS
induction varied among the cell lines (Table 1). An HDAC inhibitor, SAHA, was required
for significant NIS induction in the tested cell lines, including K1 papillary cancer cells,
FTC-133 follicular cancer cells, and OCUT1 and C643 undifferentiated cancer cell lines.
Since TSHR was also induced by SAHA, treatment with TSH further enhanced the SAHA-
induced NIS expression in some cell lines. The addition of a MEK inhibitor RDEA119 and/
or an AKT inhibitor perifosine, variably affected the SAHA-induced NIS expression among
the tested cell lines. The triple combination of SAHA, RDEA119, and perifosine
significantly (4 to 8-fold) induced the iodide uptake in K1 cells, as well as two
undifferentiated cancer cell lines, C643 and KAT18.

These findings have raised the possibility of radioiodide therapy in some aggressive
radioiodide-refractory thyroid cancer after treatment with an HDAC inhibitor. The inhibition
of MAPK pathway and/or AKT possibly enhances the effects of HDAC inhibitor on the NIS
expression. K1 cells, harboring the BRAF mutation but not RET/PTC (Schweppe et al.,
2008), responded well to the MEK inhibitor RDEA119 to enhance the SAHA-induced NIS
expression (Hou et al., 2010). In contrast, another MEK inhibitor, PD98059, significantly
decreased the iodide uptake in the exogenous RET/PTC-expressing PCCL3 cells
(Vadysirisack et al., 2007). The difference of genetic background may confer the differential
responses to signal transduction inhibitors.

5. Potential application of radioiodide therapy to non-thyroidal cancers
5.1 NIS gene therapy for non-thyroidal cancers

Due to the success of radioiodide therapy for thyroid cancer, the NIS gene has been
introduced into other cancers to achieve sufficient 131I accumulation for tumor shrinkage.
Early studies of the antitumor effects of 131I after NIS gene therapy, however, did not show
a consistent response of increased uptake (reviewed in (Riesco-Eizaguirre & Santisteban,
2006). This may have been the result of insufficient delivery or expression of NIS. Recent
improvements in NIS delivery systems, as well as the addition of radiation-sensitizing
agents and oncolytic treatments, has resulted in greater tumor shrinkage and significant
tumor growth inhibition in models of many types of cancer (summarized in Tables 2 and 3).

Previous studies of NIS gene therapy, without adjuvant therapies, has shown that the
antitumor efficacy of 131I is dependent on the magnitude of NIS gene expression. To
achieve complete tumor destruction, more than 20% of the injected radioiodide dose, per
gram of tumor (%ID/g), needs to accumulate in a tumor. A successful prostate cancer
xenograft model has been described that accumulates 25 to 30%ID/g in the tumors
(Spitzweg et al., 2000). For comparison, poorly differentiated thyroid cancer xenografts
accumulated only 4.9–9.3%ID/g and were not effectively treated with radioiodine (Shimura
et al., 1997). A NIS gene delivered with an adenovirus vector and a tissue specific gene
promoter, the prostate-specific antigen gene (PSA) promoter, confered efficient functional
NIS expression in prostate cancer xenografts (Dwyer et al., 2005; Spitzweg et al., 2001), and
phase 2 trials are currently being conducted in prostate cancer patients. Other tumor specific
promoters, such as the human telomerase reverse transcriptase (hTERT) promoter, the
carcinoembryonic antigen (CEA) promoter, and the alpha-fetoprotein (AFP) promoter, have
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also directed robust and selective NIS expression in the tumor, leading to remarkable
inhibition of tumor growth by 131I (Table 2).

To achieve synergistic or additive cytotoxic effects, combined treatments with NIS gene
therapy and a tumor targeting strategy, such as utilization of an oncolytic vector (Goel et al.,
2007; Hakkarainen et al., 2009; Li et al., 2010; Peerlinck et al., 2009), vaccination against a
tumor-specific antigen (Jeon et al., 2011), or inhibition of intracellular glucose metabolism
by knockdown of hexokinase II (J. E. Kim et al., 2011), have been studied, resulting in
significant growth inhibition or eradication of tumor (Tables 2 and 3). Inhibition of DNA
repair by the DNA-dependent protein kinase inhibitor (DNA-PKi) enhanced the antitumor
effects by combination treatment with 131I and external beam radiotherapy in colorectal
cancer cells, as well as head and neck cancer cells (Hingorani et al., 2010b).

Conventionally, NIS gene therapy has been performed with virus vectors. Results of initial
clinical studies of gene therapy for X-linked severe combined immunodeficiency (X-SCID),
however, have indicated a high incidence of leukemia due to unexpected integration of viral
DNA to the host genomes, raising safety concerns about the gene delivery by virus vectors.
The majority of recent experimental NIS gene therapies have been performed with
replication-defective adenoviruses (Table 3) preventing unfavorable genomic integration.
Some oncolytic viruses used for NIS gene therapy (Carlson et al., 2009; Dingli et al., 2004;
Goel et al., 2007; Hakkarainen et al., 2009) are negative-sense single-stranded RNA viruses,
not generally integrated into the host genomes. A plasmid vector conjugated with polyplex
targeted to EGF receptor (Klutz et al., 2009) is also a promising strategy for safe and highly
selective delivery of NIS into the targeted tumor.

5.2 Induction of endogenous NIS in breast cancer
The majority (70–80%) of breast cancers express NIS (Tazebay et al., 2000; Wapnir et al.,
2003), while only 20–30% take-up radioiodide, due to low functional NIS expression (Moon
et al., 2001; Wapnir et al., 2004). Induction of endogenous NIS may allow us to utilize
radioiodide therapy in breast cancer (Boelaert & Franklyn, 2003; Welcsh & Mankoff, 2000),
therefore, NIS inducible agents and their regulatory mechanisms have been well investigated
in breast cancer cells (summarized in Table 4). Among those agents, retinoic acid (RA) is
the most potent single-agent NIS inducer in breast cancer cells (Table 4). Treatment with
RA significantly increases the cytotoxicity of 131I in MCF-7 breast cancer cells (Kogai et al.,
2000b). An in vivo study demonstrated that systemic RA treatment achieves approximately
20–40%ID/g of iodide uptake in MCF-7 xenograft tumors (Kogai et al., 2004), which is in
the range of iodide uptake providing successful tumor shrinkage in prostate cancer
xenografts with exogenous NIS expression (Spitzweg et al., 2001). RA does not induce, but
reduces NIS in FRTL-5 rat thyroid cells (Schmutzler et al., 1997). The differential
regulation of NIS in thyroid glands and breast cancer confers selective NIS induction by RA
in breast cancer in mouse models (Kogai et al., 2004).

5.3 Retention of radioiodide in non-thyroidal cancer
In non-thyroidal tumors, trapped radioiodide is not organified, resulting in shorter iodide
retention, compared to thyroid glands. The biological half-life of radioiodide in NIS-
expressing non-thyroidal tumor, 5 to 6 hours in rodent models (Kogai et al., 2004; Shimura
et al., 1997; Spitzweg et al., 2001), is correlated to the half-life in serum and the whole body
(Shimura et al., 1997). Radioiodide retention in serum in human (~20 hours) (Maruca et al.,
1984) is much longer than that in rodents (~6 hours)(Shimura et al., 1997). Higher radiation
dose of 131I, thus, would be expected in humans with NIS-expressing tumors.
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6. NIS regulation by retinoic acid in breast cancer cells
RA significantly induces NIS in several breast cancer cell lines, including MCF-7, T47D,
and BT474 (Kogai et al., 2000b; Sponziello et al., 2010; Tanosaki et al., 2003), as well as
mouse models, including MCF-7 xenografts (Cheong et al., 2011; Kogai et al., 2004) and
the murine mammary tumor virus-polyoma virus middle T antigen (MMTV-PyVT)
transgenic breast cancer mouse model (Kogai et al., 2004). Since MCF-7 cells are most
responsive to RA treatment, this cell line has been primarily utilized for studies of
endogenous NIS induction in breast cancer (Kogai et al., 2006). All-trans RA (tRA)
(Tretinoin), 9-cis RA (Alitretinoin), 13-cis RA (Isotretinoin), as well as several synthetic
ligands of retinoic acid receptor (RAR), significantly induce NIS and iodide uptake (Fig. 5)
in MCF7 cells (Kogai et al., 2005; Kogai et al., 2000b; Tanosaki et al., 2003). The three
isomers of RA, tRA, 9-cis RA, and 13-cis RA, are enzymatically converted to tRA, a potent
agonist of RAR, as well as 9-cis RA, a potent agonist of retinoid-X receptor (RXR), by
endogenous isomerases (Fig. 6). Among the three RAR isoforms, α, β, and γ, RAR α and γ
are predominantly expressed in MCF-7 cells (Kogai et al., 2004; Titcomb et al., 1994).
RARβ is rapidly induced by RA treatment, providing a positive feedback mechanism for RA
stimulation (de The et al., 1990). Among several synthetic RAR-selective agonists and RXR
agonists, AGN 190168 (Tazarotene), a RARβ/γ agonist, is the most potent inducer of NIS
in MCF-7 cells (Fig. 5)(Kogai et al., 2005; Ohashi et al., 2009). A loss-of-function study has
validated a critical role of RARβ for NIS induction (Ohashi et al., 2009), although the
expression level of the RARβ isoform is relatively low (Kogai et al., 2004; Titcomb et al.,
1994).

RAR is a type II nuclear hormone receptor, localized mainly in the nucleus, does not bind
heat shock protein and makes a heterodimer with RXR (Mangelsdorf et al., 1995). The
RAR/RXR heterodimer binds to a cis-element on its target genes and stimulates
transcription (‘genomic effects’, see Fig. 6). RAR/RXR not bound to chromatin directly
activates some signal transduction pathways, including PI3K (‘non-genomic effects’, Fig.
6). In the case of NIS induction, both genomic and nongenomic actions have been proposed
to stimulate NIS gene expression by tRA (Alotaibi et al., 2010; Kogai et al., 2012; Kogai et
al., 2008a; Ohashi et al., 2009). RAR agonists, but not RXR agonists, induce NIS (Kogai et
al., 2005; Ohashi et al., 2009), while RXR selective antagonists, as well as knockdown of
RXRα, the predominant isoform of RXR in MCF-7 cells (Kogai et al., 2004; Titcomb et al.,
1994), block NIS induction by tRA (Ohashi et al., 2009). These findings demonstrate the
requirement of RAR/RXR hetero-dimers, particularly RARβ/RXRα, for NIS induction.

6.1 Non-genomic effects of RA through PI3K participate in NIS induction in breast cancer
cells

Although most of type II nuclear receptors are distributed in the nucleus, catalytic activity of
PI3K, predominantly localized in cytoplasm, is directly modulated by those receptors,
including thyroid hormone receptor (Cao et al., 2005; Furuya et al., 2006), RAR (Day et al.,
2006; del Rincon et al., 2003; Masia et al., 2007; Ohashi et al., 2009), and peroxisome
proliferator-activated receptors (PPARs)(Han et al., 2005; Lin et al., 2005). RA temporally
activates a major PI3K effector, AKT, within the first 10 min of RA treatment in MCF-7
cells (Ohashi et al., 2009), as well as SH-SY5Y neuroblastoma cells (Masia et al., 2007). A
regulatory subunit of PI3K, p85, directly interacts with RAR isoforms, including RARα
(Day et al., 2006; Masia et al., 2007) and RARβ (Ohashi et al., 2009). Co-
immunoprecipitation studies have demonstrated the association between p85 and the RARβ/
RXRα heterodimer (Ohashi et al., 2009). Since loss-of-function analysis demonstrates the
requirement of both RARβ and p85, the crosstalk between RARβ signaling and PI3K
signaling may mediate NIS induction by RA (Ohashi et al., 2009).
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6.2 Rac1/p38β contributes RA-induced NIS expression in breast cancer cells
The p38 kinase is a MAPK, regulating cell proliferation, differentiation, and migration. Four
p38 isoforms, α, β, γ, and δ, are found in mammalian cells with variable tissue distribution
and substrate specificity, producing differential activation of downstream effector pathways
(Jiang et al., 1996; Pramanik et al., 2003). tRA stimulates phosphorylation of p38 isoforms,
α and β, in MCF7 breast cancer cells through a small GTPase Rac1 (Alsayed et al., 2001;
Kogai et al., 2012). The NIS expression in MCF-7 cells requires one of the p38 pathways,
MKK3B-p38β (Fig. 7)(Kogai et al., 2012). Over-expression of p38β, as well as Rac1,
significantly enhances the tRA-induced NIS expression and iodide uptake (Kogai et al.,
2012). The p38α is considered to be an important mediator of stress signaling, cell
proliferation and differentiation in cancer cells (Wagner & Nebreda, 2009), whereas the
p38β isoform is thought to be a minor pathway in rodent development and physiology,
based on the findings in p38β-deficient mice (Beardmore et al., 2005). The requirement of
p38β for the NIS expression in breast cancer cells, therefore, may provide a strategy for
relatively specific induction of NIS in some breast cancer cells.

6.3 Genomic-effects of RAR and NIS expression
The genomic effects of RAR is mediated by its cis-elements, retinoic acid response
elements, with diverse orientations of half sites, 5′-PuG(G/T)(T/A)CA-3′, often a direct
repeat with spacing of 2 or 5 bases (DR-2 or DR-5). Among these consensus sequences,
several DR-2 sequences are located in the NIS intron sequences (Kogai et al., 2008a).
Binding of RARα, as well as RNA polymerase II, to the intronic DR-2 elements have been
shown within 30 min of initiation of tRA stimulation in MCF-7 cells (Alotaibi et al., 2010),
indicating a potential role of the intronic DR-2 elements in the initiation of human NIS
transcription.

DR-2 elements are often located in Alu elements, one of the most abundant repeated
elements in the human genome (Laperriere et al., 2007). Alu elements are retrotransposons,
proposed to contribute to primate evolution. The NIS-carrying chromosome 19 has higher
density (25.8%) of the Alu repeats compared to other chromosomes (Grimwood et al.,
2004). All DR-2 elements in the human NIS introns are located in such repeated
retrotransposons (Table 5), while the mouse NIS gene sequence does not contain any DR-2
element. tRA, however, significantly induces mouse NIS expression in breast tumors of the
transgenic mouse model of MMTV-PyVT (Kogai et al., 2004). The full induction of NIS by
tRA, therefore, must include non-genomic effects of RA, as discussed above.

6.4 Alternatives to tRA treatment for the NIS induction
tRA is commonly used for treatment of acute promyelocytic leukemia (APL). The remission
of APL, however, is often for a limited duration of time (Frankel et al., 1994), partially due
to a short biological half-life of tRA (Warrell, 1993). In addition, tRA treatment frequently
causes a cardio-respiratory distress syndrome, called “retinoic acid syndrome”, in patients
with APL. New retinoid preparations, therefore, have been sought that are more biologically
stable and selective for RA signaling, with less toxicity (Kagechika, 2002; Nagpal &
Chandraratna, 2000). The majority of synthetic retinoids, however, have only been used for
topical skin treatment.

The 50% effective concentration (EC50) of tRA in vitro for NIS induction is ~10−7 M
(Kogai et al., 2005), consistent with that for transcriptional regulation of other tRA-regulated
genes (Idres et al., 2002). The systemic dose of tRA required for maximum NIS induction in
rodent models, however, is likely higher than would be tolerated for routine treatment in
humans (Kogai et al., 2004). In addition, several in vivo studies have demonstrated variable
effects of systemic tRA treatment on radioiodide uptake (~1.2 to ~15-fold) in MCF-7
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xenografts (Cheong et al., 2011; Kogai et al., 2004; Willhauck et al., 2008b), possibly due to
clonal variation of MCF-7 cells (Kogai et al., 2004; Lacroix & Leclercq, 2004; Seibert et al.,
1983). To search for more efficient agents, several other retinoids have been tested for the
ability to induce NIS in MCF-7 cells in vitro (Fig. 5) (Kogai et al., 2005; Ohashi et al.,
2009).

Among the retinoids that markedly induce NIS, 13-cis RA is the only retinoid, other than
tRA, commonly used for systemic administration. 13-cis RA is widely used for treatment of
cystic acne, as well as neuroblastoma and other cancers. Endogenous isomerases, such as
glutathione S-transferases (Chen & Juchau, 1998), convert 13-cis RA to tRA in target cells
so 13-cis RA works as a prodrug of tRA (Fig. 6) with less side effects and a longer
biological half-life. The efficacy of enzymatic conversion is distinct in each tissue, and
isomerase activity is relatively low in tumor tissues. After systemic administration of 13-cis
RA in MCF-7 xenograft mice, the fraction converted to tRA in the xenograft tumors (~20%)
is significantly smaller than that in liver (~68%) (Conley et al., 1999). The magnitude of
NIS mRNA induction by 13-cis RA is actually lower (~65%) than that by tRA in MCF-7
cells in vitro (Kogai et al., 2005).

An in vitro study has demonstrated that AGN190168 (Tazarotene) is the most effective
synthetic retinoid for the NIS induction in MCF-7 cells (Fig. 5)(Kogai et al., 2005).
AGN190168 is clinically used for acne and psoriasis, but limited to topical application, due
to a very short half-life (< 1 hour) of its active metabolite AGN 190299 in the serum (Chien
et al., 1992; Hsyu et al., 1994). Selective RARβ agonists with longer half-lives would
establish more effective and less toxic treatment for the NIS induction.

6.5 Enhancement of tRA-induced NIS expression by other nuclear receptor ligands
A nuclear receptor dimmer recognizes a specific response element, typically containing two
common half-sites, 5′-AGGTCA-3′, or its variants. The selectivity of cis-element to each
receptor dimmer is dependent on spacing and orientation of the two half-sites. The
consensus half-site, therefore, is occasionally shared by different receptors. Co-activators
and co-repressors are also often shared among various nuclear receptors. In addition, RXR is
shared among type II nuclear receptors to form hetero-dimers. These mechanisms result in
crosstalk among nuclear receptor signaling pathways (Yen, 2001). To potentially enhance
the effects of RAR agonists on NIS expression, a number of nuclear receptor ligands have
been tested in breast cancer cells (Table 4).

Agonists of glucocorticoid receptor (GR), such as dexamethasone (Dex) and hydrocortisone,
synergistically increase expression of genes induced by tRA (Medh & Schmidt, 1997; Tsai
et al., 2000), including NIS (Dohan et al., 2006; Kogai et al., 2005; Unterholzner et al.,
2006). Dex significantly increases iodide uptake (>3-fold with 10−7 M tRA) in MCF-7 cells
both in the presence and absence of tRA (Kogai et al., 2005). Significant reduction of the
EC50 of tRA (from ~10−7 M to 6.8×10−9 M) for iodide uptake by Dex (10−7 M), shown in
an in vitro study (Kogai et al., 2005), provides an approach to decrease the in vivo dose of
tRA for NIS induction.

The combination of Dex and AGN190168 is effective for NIS induction in MCF-7 breast
cancer cells. Sustained treatment with tRA is associated with significant attenuation of
iodide uptake after the peak of induction at 48 hours (Kogai et al., 2005). The addition of
Dex to AGN190168 prolonged the peak period of iodide-uptake for up to 4 days, while the
addition of Dex to tRA did not extend the peak period (Kogai et al., 2005). It is likely,
therefore, that the combination of AGN190168 and Dex could confer an increased
cumulative radiation dose of 131I, although in vivo use of AGN190168 is not feasible
because of its rapid metabolism (Chien et al., 1992; Hsyu et al., 1994).
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Addition of carbamazepine (CBZ), an agonist of pregnane X receptor (PXR), has been
described to significantly (~1.8-fold) enhance tRA-induced iodide uptake both in the
presence and absence of Dex (Willhauck et al., 2011), although a relatively high
concentration (100 μM) of CBZ is required for the maximum stimulatory effect. The
addition of Dex, as well as CBZ, significantly enhances the cytotoxic effects of 131I induced
by tRA in MCF-7 cells (Kogai et al., 2005; Willhauck et al., 2011; Willhauck et al., 2008b).

Troglitazone, a PPARγ agonist, has also been reported to significantly (~1.8-fold) enhance
9-cis RA-induced NIS expression in MCF-7 cells (Tanosaki et al., 2003). Other PPARγ
agonists, pioglitazone and rosiglitazone, however, did not significantly enhance iodide
uptake or NIS mRNA expression in MCF-7 cells (Kogai et al., 2005; Tanosaki et al., 2003).
The enhancement of NIS expression by troglitazone is likely due to PPARγ-independent off
target effects, as is the case in its effects on cell growth and apoptosis (Wei et al., 2009).

A GR agonist is the most effective enhancer of tRA-induced NIS expression in MCF-7 cells.
The combination of AGN190168 and Dex (Kogai et al., 2005), as well as the triple
combination of tRA, Dex and CBZ (Willhauck et al., 2011), are the most effective for iodide
uptake in vitro. An in vivo study with MCF-7 xenografts has demonstrated significant
enhancement of tRA-stimulated tumor radioiodide uptake by systemic Dex treatment
(Willhauck et al., 2008b). The magnitude of induction, however, is modest (~3.5-fold),
achieving iodide accumulation with only 25% or less activity of the radioiodide required for
tumor shrinkage (Willhauck et al., 2008b). In contrast, another in vivo study with only tRA
demonstrated robust induction of iodide uptake (up to 15-fold) (Kogai et al., 2004). The
discrepancy could be due to differential responses of MCF7 cells to systemic tRA treatment
in NIS mRNA induction, almost no significant induction (Willhauck et al., 2008b) vs. ~40-
fold induction (Kogai et al., 2004). The difference in findings may be due to the
heterogeneity of MCF-7 cells (Lacroix & Leclercq, 2004).

6.6 Effects of RA and/or Dex on the NIS expression in normal breast cells
To establish a potential therapeutic and diagnostic application of NIS induction by RA in
breast cancer, the effects of RA on NIS expression in normal breast tissues is important. In
vitro studies with human normal breast-derived cells have demonstrated no significant
effects of tRA on the NIS mRNA and iodide uptake in MCF12A cells (Kogai et al., 2000b),
as well as in HB-2 cells (Willhauck et al., 2008b). Although systemic tRA treatment does
not promote significant iodide uptake in breast tissues in severe combined immunodeficient
(SCID)/beige mice (Kogai et al., 2004), another study with sensitive imaging has
demonstrated radioiodide uptake in normal mammary glands in ~75% of tRA/Dex-treated
CD1 mice (Willhauck et al., 2008b). The effects of tRA/Dex combination treatment on
normal breast tissues will need to be investigated in other animal models, as well as human
primary cell models.

7. Differential regulation of NIS expression in thyroid cells and breast
cancer cells

Since iodide accumulation is critical for thyroid hormone synthesis, NIS expression is
persistently maintained in thyroid glands by TSH stimulation. In contrast, NIS expression in
breast tissue is not dependent on TSH and is transient, just during lactation due to
stimulation by oxytocin, prolactin, and estradiol (Dohan et al., 2003). RA significantly
induces NIS in some breast cancer cells (Kogai et al., 2006) and thyroid follicular cancer
cells (Schmutzler & Kohrle, 2000), but not other normal tissues, including thyroid (Kogai et
al., 2004; Schmutzler et al., 1997). Such differential regulation of NIS (summarized in Table
6) allows for selective induction or reduction of endogenous NIS expression in target
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tissue(s). An example is the thyroid-specific regulation of NIS by the TSHR signaling
pathway brings about the selective induction of NIS in thyroid cancer required for 131I
therapy.

In the 131I therapy proposed for non-thyroidal cancer treatment, 131I accumulation by
thyroid glands should be minimized to avoid thyroid damage and to maximize 131I content
available to target the tumor. Elevated serum thyroid hormones suppress secretion of TSH
from the pituitary gland, followed by suppression of thyroid NIS expression. Thyroxine does
not significantly affect the iodide uptake in tRA-stimulated MCF-7 breast cancer xenografts
(Kogai et al., 2004), or NIS-introduced xenograft tumors (Boland et al., 2000; Shimura et
al., 1997). An inhibitor of iodide organification, methimazole (MMI), reduces retention
of 131I in thyroid glands. A pilot clinical trial (Wapnir et al., 2004) demonstrated that the
combination treatment with triiodothyronine and MMI markedly reduced the estimated
radiation dose of 131I in thyroid glands after ingestion of 100 mCi from ~270 Gy to a
cumulative dose of ~3 Gy in thyroid (Wapnir et al., 2004).

The RA signaling for NIS induction in breast cancer cells is mediated by the PI3K and p38β
MAPK pathways (Kogai et al., 2012; Ohashi et al., 2009). The PI3K pathway inhibits
expression of NIS in thyroid cancer, opposite to the effect in breast cancer (Kogai et al.,
2008a; Kogai et al., 2008b), as shown in Table 6. Thyroid cells, as well as breast cancer
cells, require the Rac1-p38 MAPK pathway for the full induction of NIS (Kogai et al., 2012;
Pomerance et al., 2000). Distinct isoforms of p38 and MKK, as well as downstream
effectors, however, mediate the signaling toward NIS expression in those cell types (Fig. 7)
(Kogai et al., 2012). These differential regulatory mechanisms could allow stimulation of a
selective NIS-inducing pathway in target tumors expectedly with less side effects.

8. Posttranslational regulation of NIS
NIS functions as a transporter, only when it is properly distributed to the cell surface
membrane. Posttranslational regulatory mechanisms, especially translocation of NIS, have
been proposed as an important factor determining the functionality of NIS, and of interest as
a target to augment iodide uptake in NIS-expressing cancer cells.

8.1 Regulation of NIS translocation in thyroid cells by TSH
When FRTL-5 rat thyroid cells were stimulated by TSH, iodide uptake, as well as NIS
protein production, was significantly induced in 24 hours (Kogai et al., 1997). NIS protein
induction reached ~80% of the maximum at 36 hours, while iodide uptake at 36 hours was
still 30–40% of the maximum reached in 72 hours (Kogai et al., 1997). The time lag
between iodide uptake and NIS protein induction has suggested the posttranslational
regulation of NIS by TSH (Kogai et al., 1997). In the presence of TSH, NIS in FRTL-5 cells
is mainly distributed to the cell surface membrane, while when TSH is removed NIS is
mainly localized in the intracellular compartments (Riedel et al., 2001). A thyroid-specific
NIS translocation mechanism, therefore, has been proposed, which is responsive to TSH
stimulation (Kogai et al., 1997; Riedel et al., 2001). In Graves’ disease thyroid tissues, NIS
is predominantly expressed on the basolateral membrane (Dohan et al., 2001), likely due to
the activation of TSHR signaling by circulating stimulating antibody associated with
Graves’ disease.

8.2 Impairment of NIS translocation in cancer cells
NIS mRNA expression is decreased in some differentiated thyroid cancer tissues, likely due
to failure of transcriptional regulation of NIS (Kogai et al., 2001; Puppin et al., 2004; Taki et
al., 2002). Several studies, however, have reported abundant expression of NIS in
differentiated thyroid cancer (Dohan et al., 2001; Saito et al., 1998; Wapnir et al., 2003),
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demonstrating abundant NIS expression in the cytoplasm, but little on the cell surface
membrane. Similar observations have been described in breast tissues. Lactating breast
alveolar cells express intense membrane NIS (Cho et al., 2000; Tazebay et al., 2000), while
the majority of breast cancer NIS is localized in the cytoplasm (Kogai et al., 2004; Wapnir et
al., 2003). The failure of NIS translocation to the cell surface membrane, therefore, has been
proposed to contribute to reduced radioiodide accumulation in those cancers.

8.3 PBF as a NIS translocation regulator
PBF, one of the NUE regulators (Fig. 3B), also has been characterized as a protein
interacting and co-localizing with NIS protein in the cytoplasm (Smith et al., 2009).
Exogenous PBF in Cos-7 cells is predominantly expressed in CD63-positive late endosome
with NIS, co-localizing with NIS in clathrin-coated vesicles (Smith et al., 2009). In fact, NIS
has a dileucine motif, which is able to directly interact with the clathrin-coated machinery
(Bonifacino & Traub, 2003), at the intracellular C-terminal portion (Dohan et al., 2003). In
NIS-introduced Cos-7 cells, exogenous PBF expression significantly reduced iodide uptake
and cell surface NIS expression (Smith et al., 2009). Expression of PBF is significantly
increased in thyroid cancer, compared to normal thyroid (Stratford et al., 2005). Most breast
cancers express abundant PBF, while expression of PBF in normal breast tissues is only
modest (Watkins et al., 2010). The abundant expression of PBF, therefore, is likely
associated with the reduced cell surface NIS expression in those cancers.

8.4 Signal transduction pathways and NIS translocation
Cultures of the rat thyroid cell lines, FRTL-5 and PCCL3, require both TSH and insulin to
maintain cell differentiation and proliferation. The stimulatory effects of PI3K inhibitor
LY294002 on iodide uptake in FRTL-5 rat thyroid cells are, at least partially, due to the up-
regulation of NIS mRNA expression (Kogai et al., 2008b). Removal of insulin from culture
media completely abolished the augmentation of NIS mRNA and protein expression by
LY294002. Meanwhile, iodide uptake was increased by LY294002 even without insulin
(Kogai et al., 2008b). The discrepancy between the effects on NIS protein expression and
iodide uptake indicates some posttranslational mechanism(s), including NIS translocation to
the cell surface membrane, in the regulation by PI3K inhibition. Our preliminary study has
indicated stimulation of NIS translocation by a PI3K-AKT-mTOR signaling inhibitor,
PP242, in BHP 2–7 thyroid cancer cells (unpublished observation).

Regulation of NIS translocation by PI3K has also been reported in breast cancer cells. A
constitutively active mutant of PI3K, p110αCAAX, suppressed the expression of cell surface
NIS, as well as iodide uptake, in MCF7 cells (Knostman et al., 2007). The over-expression
of PI3K increased expression of unglycosylated forms of NIS (~50 kDa) in the NIS-induced
MCF-7 cells (Knostman et al., 2007). Consistently, PI3K inhibition abolished the expression
of unglycosylated NIS in FRTL-5 rat thyroid cells (Kogai et al., 2008b). Mutation of NIS at
the glycosylation sites reduced the iodide uptake up to ~50%, likely due to reduced NIS
expression on the cell surface membrane (Levy et al., 1998). PI3K may regulate the NIS
translocation by modulating the glycosylation status of NIS.

The NIS translocation to the cell surface membrane is enhanced by EGF (epidermal growth
factor) receptor stimulation in NIS-introduced non-thyroidal cancer cells (Jung et al., 2008).
Treatment with epidermal growth factor increased iodide uptake in NIS-transfected T47D
human breast cancer cells, as well as PC12 rat pheochromocytoma cells. This effect was
abolished by PD98059 (Jung et al., 2008), a MEK-1 inhibitor, indicating a role of the MEK-
ERK signaling cascade in the NIS translocation.
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9. Conclusion
Over 60 years of experience validates significant efficacy of 131I therapy in most
differentiated thyroid cancer. TSH stimulation in thyroid cancer maximizes the effect
of 131I, likely by enhancing NIS gene expression and facilitating the translocation of NIS to
the cell surface membrane. Despite these actions, more than 90 mCi of 131I, however, is still
typically required to achieve the sufficient effective radiation dose in the target tumors. High
doses of radioiodine are associated with adverse effects, including dysfunction of salivary
and lacrimal glands, and a small increased risk of secondary cancers and leukemia
(Alexander et al., 1998). Recent progress in the study of NIS regulation has brought about
possibilities of new therapeutic approaches, which may decrease the ingested dose in 131I
therapy, and expand application of 131I therapy to some radioiodide-refractory thyroid
cancers.

PI3K inhibitors induce NIS in rat thyroid cells as well as RET/PTC-positive papillary
thyroid cancer cells. To enhance the NIS expression in well-differentiated thyroid cancer,
modulation of PI3K-AKT pathway is a promising strategy (de Souza et al., 2010; Kogai et
al., 2008b), especially in cancer that retains TSH-responsiveness. HDAC inhibitors restore
NIS expression in poorly differentiated thyroid cancer cells (Furuya et al., 2004; Kitazono et
al., 2001). Since over-activation of the MAPK pathway and the PI3K-AKT pathway is
critical for development and progression of aggressive thyroid cancers (Fagin, 2004;
Shinohara et al., 2007), inhibition of these pathways may also induce re-differentiation and
restore NIS expression. A very recent clinical pilot study has actually demonstrated
increased radioiodide uptake with a MEK inhibitor Selumetinib in 11 of 17 cases with
metastatic thyroid cancer (Ho et al., 2011). The triple combination treatment with inhibitors
of HDAC, MAPK, and AKT is a new approach to restore NIS expression and radioiodide
accumulation in the poorly differentiated thyroid cancer (Hou et al., 2010). Previous
observations, however, have shown variable effects in different cell lines (Hou et al., 2010),
possibly due to different genetic backgrounds and culture conditions. Elucidation of detailed
mechanisms of NIS induction, including isoform specificity of targeted kinases, as well as
gene expression profiles in those cells, will be required to establish the efficient NIS
induction in various types of thyroid cancer.

A number of animal studies of exogenous NIS introduction into non-thyroidal cancer have
demonstrated efficient tumor shrinkage with 131I (Hingorani et al., 2010a). Breast cancer
expresses endogenous NIS, which can be markedly induced by RA in some experimental
models (Table 4). To achieve sufficient radioiodide uptake for tumor shrinkage, however, a
high dose of RA is required that would not likely be tolerated in human (Kogai et al., 2004).
Addition of some other nuclear hormone receptor ligands, such as Dex and CBZ,
significantly enhances the tRA-induced NIS expression (Kogai et al., 2005; Unterholzner et
al., 2006; Willhauck et al., 2011), and prolongs NIS induction by some RAR isoform-
specific agonists (Kogai et al., 2005). The magnitude of NIS induction, however, has varied
among experimental systems, especially in animal studies (Cheong et al., 2011; Kogai et al.,
2004; Willhauck et al., 2008b). Genetic and epigenetic differences could influence the
responsiveness to RA.

Recent studies elucidating RA signaling to NIS transcription have demonstrated significant
roles for what were considered minor signal transduction mediators, such as RARβ, and
p38β, in the NIS induction by RA (Kogai et al., 2012; Ohashi et al., 2009). Comprehensive
studies of signal transduction, such as phospho-proteomics, may provide more detailed
information of NIS-inducing pathways. Targeted modulation of such signaling pathways to
NIS transcription would provide more selective, and hence more efficient and less toxic,
treatment for the induction of iodide uptake in some breast cancer cells.
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Stimulation of NIS translocation to the cell surface membrane is a novel approach to achieve
higher iodide uptake in NIS-expressing cells. Targeting NIS-interacting protein(s), such as
PBF (Smith et al., 2009), in the intracellular compartment would stimulate cell surface NIS
expression. Signal transduction inhibitors, including PI3K/AKT inhibitors and MEK/ERK
inhibitors, also have the potential to enhance the functional NIS expression in some thyroid
cancer, as well as non-thyroid cancer cells (Jung et al., 2008; Kogai et al., 2008b).

Functional NIS expression can be augmented by up-regulation of both the transcriptional
and post-translational pathways. Some isoform-specific signal transduction pathways play
critical roles in the tissue-specific NIS regulation. Dissection of such signaling pathways
should lead to methods to further enhance the functional NIS expression in thyroid and
breast cancer, expanding the application of radioiodide therapy to radioiodide-refractory
thyroid cancer and NIS-expressing breast cancer.
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Abbreviations

APL acute promyelocytic leukemia

B-ZIP basic-leucine zipper

cAMP cyclic AMP

CBZ carbamazepine

CRE cAMP-response element

CREM CRE-modulator

Dex dexamethasone

DR direct repeat

DUOX dual oxidase

EC50 50% effective concentration

ER estrogen receptor

ERK extracellular signal-regulated kinase

GR glucocorticoid receptor

Gy gray

HDAC histone deacetylase

IGF insulin-like growth factor

MAPK mitogen-activated protein kinase

MEK MAP/ERK kinase

MKK MAPK kinase

MMI methimazole

MMTV-PyVT murine mammary tumor virus-polyoma virus middle T antigen

NIS sodium iodide symporter
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NUE NIS upstream enhancer

PBF PTTG1-binding factor

%ID/g % of injected dose per gram of tumor

PI3K phosphatidylinositol 3-kinase

PKA protein kinase-A

PPAR peroxisome proliferator-activated receptor

PTTG1 pituitary tumor-transforming gene-1

RA retinoic acid

RAR retinoic acid receptor

RTK receptor tyrosine kinase

RXR retinoid-X receptor

Tg thyroglobulin

TGF transforming growth factor

TLR Toll-like receptor

TPO thyroid peroxidase

tRA All-trans RA

TSH thyroid-stimulating hormone

TSHR TSH Receptor
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Fig. 1.
Schematic representation of iodide transport in the thyroid gland. The thyroid gland consist
of follicles with one layer of epithelial cells surrounding the lumen. Iodide (I−) in circulation
is transported into the lumen via basolateral NIS and apical pendrin. The activity of NIS
requires the Na+-gradient maintained by Na+-K+ ATPase. Iodide in the lumen is organified
with Tg by TPO in the presence of H2O2 produced mainly by DUOX2. The iodinated
tyrosine residues are used for synthesis of thyroid hormones, triiodothyronine (T3) or
thyroxine (T4).
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Fig. 2.
A simplified model of the free iodide cycle in the human body. Most iodine is ingested as
iodide (I−) or iodate (IO3

−), which is rapidly reduced to iodide (Burgi et al., 2001). Iodide is
absorbed by small intestine via the apical NIS, transferred into the circulation, and then
taken up in the thyroid gland, as well as lactating breast, although ~90% of ingested iodide
will be excreted by the kidneys. A fraction of circulating iodide is released again to the
gastrointestinal tract through the salivary glands and stomach that express basolateral NIS.
The sodium-dependent multivitamin transporter (SLC5A6) has also been proposed to
mediate sodium-coupled iodide transport in the intestines (de Carvalho & Quick, 2011). OT,
oxytocin; PRL, prolactin.
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Fig. 3.
Regulation of the NUE in thyroid cells. A. Map of the human chromosome 19p around the
NIS gene locus. The “A” in the translation start site (ATG) of NIS is referred to as +1. B.
TSHR signaling pathways to NUE. NIS expression in thyroid cells is predominantly
regulated by the TSHR signaling to NUE. Gain-of-function studies of the molecules,
indicated by red color, have demonstrated stimulation of the NUE activity. The consensus
sequences of cis-elements of PAX8, CRE, and USF1 are indicated along with the sequence
of human NUE. *, Stimulatory effects have been reported with rat NUE, which contains an
additional Pax8 element and an NFκB element (Nicola et al., 2010). AC, adenylyl cyclase;
Ref-1, apurinic apyrimidinic endonuclease redox effector factor-1.
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Fig. 4.
Differential mechanisms of NIS up-regulation by PI3K inhibition with LY294002 in rat
thyroid cells and BHP 2–7 papillary thyroid cancer cells. *, LY294002 induces Pax8 in
PCCL3 cells, but not in FRTL-5 cells, resulting in a more robust induction of NIS in PCCL3
cells (Kogai et al., 2008b).
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Fig. 5.
Effects of retinoid receptor agonists on iodide uptake in MCF-7 cells in vitro. Cells were
treated with 10−6 M of each agonist for 48 hours, and iodide uptake assay was performed
with 20 mCi/mmol of Na125I, as described (Kogai et al., 2008b; Weiss et al., 1984). The
uptake was normalized by cellular protein amount or cell number. Fold-induction over the
group without retinoid treatment is presented. *, P < 0.02; ** P < 0.01, when compared to
the negative control (n = 3 or 4).
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Fig. 6.
Comparison of genomic and non-genomic effects of RA. Conversion of isomers of RA is
also indicated. The RAR/RXR heterodimer, not bound to chromatin contributes to kinase
cascade activation, whereas the RAR/RXR bound to an RARE (retinoic acid response
element) regulates expression of the target gene. Retinoic acids are hydrophobic compounds
and associate with soluble retinoid-binding proteins (not shown in this schema) in the
intracellular as well as extracellular compartments.
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Fig. 7.
Distinct p38 pathways regulate NIS expression in FRTL-5 rat thyroid cells and MCF-7
breast cancer cells. CHOP, CCAAT/enhancer-binding protein-homologous protein. This
figure is reproduced from (Kogai et al., 2012).
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