
Soft Tissue Reconstruction of Open Fractures of the Lower
Limb: muscle versus fasciocutaneous flaps

Dr. James K-K Chan, MA(Cantab), MB BChir, MRCS, Dr. Lorraine Harry, MA(Cantab), PhD,
MRCSEd, Dr. Garry Williams, PhD, and Professor Jagdeep Nanchahal, PhD, FRCS(Plast),
FRACS
The Kennedy Institute of Rheumatology University of Oxford 65 Aspenlea Road London W6 8LH

Abstract
Early vascularized soft tissue closure has long been recognized to be essential in achieving
eventual infection free union. The question of whether muscle or fasciocutaneous tissue is superior
in terms of promoting fracture healing remains unresolved. Here we review the experimental and
clinical evidence for the different tissue types and advocate that the biological role of flaps should
be included as a key consideration during flap selection.

Introduction
Open tibial fractures are severe injuries, largely affecting young men of working age, and
take on average 43 weeks to unite, with 13% developing non-union in the best centres[1].
There is, therefore, an urgent need to enhance the process of bone repair in these patients.
There have been numerous innovations in the techniques used for fracture stabilization as
well as biological therapy, such as bone morphogenetic proteins (BMPs)[2]. Improvement in
the care pathway, through a multidisciplinary and integrated orthoplastic approach, has also
led to significant improvements in patient outcomes[3-6]. These refinements have reduced
the mean union time to 26 weeks[5].

Considerations when planning soft tissue coverage include the size and location of the defect
as well as donor site morbidity. An area which has not featured prominently in determining
flap choice thus far is the potential biological role the flap may play in the fracture repair
process. However, there is a growing body of experimental evidence that demonstrates that
the biological characteristics of the tissues in a flap can significantly influence fracture
healing, thereby potentially reducing union time and the rate of delayed or non-union.
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Experimental Evidence
Wound healing properties of soft tissue flaps

The role of soft tissue reconstruction in open fractures is not limited to wound coverage to
prevent wound desiccation and infection. Soft tissues also contribute to fracture repair by
serving as a local source of stem or osteoprogenitor cells, growth factors and vascular
supply[7-10].

Vascular Supply
A key role of soft tissue flaps in lower limb trauma is to serve as source of vascular supply
to bone ends that have been stripped of periosteum and undergone disruption of the
endosteum[11]. There is evidence that muscle contributes greater vascularity to a defect than
fasciocutaneous tissue[12-16]. A study using a canine model to compare the blood flow at
the musculocutaneous and fasciocutaneous flap/wound interfaces with no underlying
fracture showed that whilst there was an initial increase in muscle blood flow in the first 24
hours, the deep surface of the fasciocutaneous flap underwent a slower and steadier increase
in blood flow over the experimental period of 6 days to exceed that of muscle by this time
point[17], yet there was greater evidence of healing in the muscle group [18]. Using a
murine tibial fracture model, Harry et al. found that at all time points the vascular density
was greater in fasciocutaneous tissue in apposition with a periosteally stripped fracture than
muscle, and in spite of this, fracture repair was more rapid in the muscle group[19, 20].
These observations suggest that while vascularity is essential for wound healing, including
bone repair, other biological factors become limiting, once an adequate blood supply
threshold has been met.

Cellular contribution
Fracture repair requires the recruitment of osteoprogenitor cells. Mesenchymal stem cells
(MSCs) are, by definition, multipotent and can therefore serve as a source of osteoprogenitor
cells. MSCs may originate from a variety of tissues including the bone marrow, periosteum,
dermis, adipose tissue and muscle, as well as blood vessels and the circulation. In closed
fractures, the main sources of osteoprogenitor cells are thought to be the bone marrow and
periosteum[21-25]. However, high energy open fractures of long bones are characterized by
loss of the periosteum and bone marrow, especially following insertion of an intramedullary
rod. Under these circumstances the main osteoprogenitor cells must originate from the local
soft tissues or the circulation[10, 26].

It is well established that muscle provides a suitable environment for osteogenesis, although
damaged muscle is less effective[27]. In 1965, Urist[28] found that new bone formed readily
when decalcified bone was implanted into muscle and deduced that the inductor cells were
derived from the host bed. Furthermore, purified BMPs injected into muscle are capable of
inducing ectopic bone formation[29, 30]. Using a mouse model, Zacks et al.[31] found that
muscle (but not liver tissue) demonstrated a significant osteogenic effect. Extraskeletal
ossification observed in patients with fibrodysplasia ossificans progressiva[32] and
heterotopic ossification following either orthopaedic surgery or blast injuries tend to occur
in muscle[33, 34].

Both fasciocutaneous tissue and muscle are rich reservoirs of MSCs[9, 10]. However, the
characteristics, including the osteogenic potential, of MSCs vary depending on their tissue
origin. For example, human stromal cells derived from muscle exhibit a significantly greater
potential for osteogenesis than those from fasiocutaneous tissue, including both skin and
adipose, and are equivalent to those from bone marrow[35]. Using a critical sized rat
femoral diaphyseal defect model, muscle was found to be more effective in promoting bone
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repair than adipose tissue[36]. Muscle-derived stem cells can be recruited from muscle and
stimulated to undergo osteogenic differentiation by proinflammatory cytokines, especially
TNF-α, released at the site of injury[35].

Cytokine/ growth factor environment
Muscle also provides a bone anabolic environment through the expression of members of
the transforming growth factor-β (TGF-β) superfamily of growth and differentiation factors,
including the BMPs. The reciprocal relationship between muscle and bone mass is well
described, particularly the strong association between sarcopenia (age-related loss of muscle
mass) and osteopenia. Muscle and bone are believed to be mutually regulating via physical
forces and cytokine control. Indeed, recent evidence indicates that muscle serves as an
endocrine organ that releases trophic factors, known as myokines, which have been
identified as key regulators of the muscle and bone mass. Further observations suggest that
intact muscle supports bone repair via the release of bone anabolics, including IGF-1, IL-6,
BDNF and FGF-2[37-39] while severely injured muscle, such as following military trauma,
impairs this process through the release catabolic myokines, including myostatin (GDF-8)
[40-42]. Therefore, the net effect on bone is dependent on the balance of these factors.

Anti-microbial property
Soft tissue flaps are believed to possess an anti-bacterial property that is independent of
vascularity. Chang and Mathes used a canine model to compare the anti-microbial properties
of different tissues during wound healing[43]. Chambers inoculated with bacteria were
inserted beneath random pattern flaps raised on the flanks with no underlying fracture.
Muscle was found to be superior in eliminating bacteria from the wound bed. In a separate
study, they compared bacterial growth within the wound fluid at interface of
musculocutaneous and fasciocutaneous flaps and found that despite a higher blood flow and
tissue oxygen tension in the fasciocutaneous group, muscle exhibited a greater ability to
reduce the bacterial count[17, 18]. Moreover, histological examination revealed greater
evidence of wound repair, including increased collagen deposition, at the muscle
interface[18].

Comparison in animal models of bone repair
Recent evidence suggests that the presence of muscle is an important contributor to bone
healing[9, 10, 44]. For example, the size of fracture callus is greater adjacent to muscle[45]
and muscle coverage accelerates fracture repair in murine models[19, 46].

Schemitsch et al.[11, 47-50] compared cutaneous and muscle tissues in a series of studies
using a canine open tibial fracture model. A devascularized segment of tibia was covered
with either transposed tibialis muscle and the skin incision closed (muscle flap group) or
skin closed directly following excision of the underlying fascia (skin group), and fracture
healing was assessed. There was a significant increase in the bone blood flow and rate of
union in the muscle flap group compared to the skin group[11, 48]. Muscle flaps were also
found to significantly increase cortical porosity, enveloping callus and intracortical new
bone formation[49]. Notably, there was no direct correlation between the soft tissue blood
flow and the indices of bone repair, and resting muscle blood flow was found to be higher in
the control limb using the microsphere technique[47]. Subsequent investigation of flap
perfusion showed no difference in extraosseous soft tissue perfusion at the fracture site
between the different groups[50]. However, this model does not emulate the clinical
scenario as fascia beneath the anterior skin was excised in both groups, and only one-third of
the circumference of the osteotomised tibial segment was in contact with the soft tissue flap,
with the posterior segment in direct apposition with intact periosteum and musculature in
both groups.
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Our group developed a murine tibial fracture model to emulate the high-energy injuries
encountered in clinical practice. One third of the circumference of the fracture was permitted
direct contact with either muscle of fasciocutaneous tissue by excluding the remainder with
polytetrafluoroethylene[19]. At 28 days following fracture, there was greater healing in the
experimental muscle coverage group compared to skin and fascia alone with almost 50%
more mineralized bone content and a three-fold stronger union in the muscle group
compared to fasciocutaneous group despite a higher vascular density in the fasciocutaneous
tissue compared to the muscle at all time points[19, 20].

In a series of studies, Utvag et al.[27, 46, 51, 52] examined the effect of separating muscle
from the fracture site in the long bones of the lower limb in rodents. Interposition of an
impermeable membrane between periosteum and muscle resulted in impaired healing in a
rat femoral model[51]. However, a delay of 2 weeks in insertion of the impermeable
membrane did not have any detrimental effect, indicating that early direct contact of muscle
with the fracture site enhances fracture healing[52]. Excision of the anterolateral
compartment muscles in a rat tibial fracture model also resulted in delayed healing. This
effect was abolished when the muscle defect was corrected by transposition of the gluteal
muscle[46]. Furthermore, isolating a tibial fracture in a rat model with nitrocellulose
membranes with pore sizes ranging from 3 to 50kDa still resulted in impaired healing,
confirming that direct contact of muscle with the fracture site, likely the cellular component,
is an important factor in the healing of diaphyseal fractures[53].

Clinical Evidence
Most of the relevant clinical evidence comprises descriptive retrospective observational case
series (Table 1) and all studies are categorized as Level 4 evidence according to the Oxford
Centre for Evidence-based Medicine. Few of these specifically compared muscle with
fasciocutaneous flaps and those that did were severely limited by the lack of power and case
heterogeneity, including a wide variety of patients with clinical indications ranging from
open fractures to burns or contour deficits. There were insufficient details in the publications
to allow us to separate the flaps used to cover open fractures. Furthermore, the outcome
measures differed considerably between studies, for example, not all studies reported time to
fracture union, rates of deep infection or even flap survival. Therefore, the currently the
published literature precludes amalgamation of data from different studies and hence any
meaningful meta-analysis or systematic review that can provide guidance for the use of
different flap options in the management of open fractures of the lower limb.

Muscle flaps
It has been observed that open fractures of bones not surrounded by muscle, such as the
tibia, unite slowly[54] and that healing of open bone defects is accelerated when a muscle
flap is used to cover the wound. Furthermore, intact muscle appears to be more effective at
promoting bone repair than injured muscle[55]. In a retrospective review of 84 consecutive
patients with severe open tibial fractures, which included 79 grade IIIB and five Gustilo
grade IIIC fractures, Gopal et al. presented their ‘fix and flap’ approach comprising early
effective debridement, skeletal stabilization and subsequent obliteration of the dead space
with a well-vascularized muscle flap[55]. Their longer-term outcome of 34 severe open
tibial fractures, including 30 graded as Gustilo grade IIIB, showed a mean union time of 41
weeks, and rates of limb salvage and amputation compared favourably with other series[56].

Other authors have also commented that muscle provides superior coverage of open tibial
fractures[55, 57-60]. Georgiadis et al.[59] highlighted the ability of muscle flaps to reduce
both healing time and deep infection while Small and Mollan[61] retrospectively reviewed
168 open tibial fractures treated over a 15-year period and found a lower necrosis rate in
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local muscle flaps (13.3%) and free tissue transfer (most were muscle only latissimus dorsi
and rectus abdominis flaps; 10%) compared to fasciocutaneous flaps (21.2%).

Fasciocutaneous flaps
Fasciocutaneous flaps are popular and have been used successfully in large clinical series to
reconstruct open tibial defects[62-68]. Local fasciocutaneous flaps are reliable for lower
limb reconstruction, as demonstrated by Ponten[69] in his study of 23 cases. They offered
significant advantages, including simplicity, availability and versatility, replacing ‘like with
like’ without sacrificing muscle function[62, 63, 65, 70]. However, in a series of 100
consecutive local fasciocutaneous flaps, which included 67 to the lower extremity,
Hallock[62] reported that 15% required further surgical intervention, with the majority in
lower limb wounds and attributed to peripheral vascular insufficiency. Although the
majority of patients requiring vascularized tissue had been subject to trauma, it was not clear
that all patients had fractures. The coverage of contaminated wounds was highlighted, with
short-term healing achieved, suggesting that local fasciocutaneous flaps could be used to
cover previously infected fractures[18].

The major advantage of local fasciocutaneous flaps is their relative simplicity of procedure.
However, in patients with high-energy injuries, they may be susceptible to tip necrosis.
Erdmann et al.[64] published their experience of pedicled fasciocutaneous flaps in lower
limb trauma. Over a five-year period, they used distally-based, islanded fasciocutaneous
flaps to reconstruct open tibial fractures to cover the distal one-third of the leg, ankle, heel or
foot in 61 patients, with 25 fractures graded as Gustilo IIIB. The overall complication rate
was 7.6%, which included five patients with Gustilo IIIB fractures suffering complete flap
loss and four patients developing chronic osteomyelitis that led to non-union. Thus, the
complication rate for coverage of Gustio IIIB fractures with distally-based islanded
fasciocutaneous flaps reached 20%. The mean time to fracture healing was 5.9 months. In a
prospective multicentre study involving high energy lower limb trauma, rotational flaps,
including fasciocutaneous tissue and muscle, were compared to free muscle flaps in 195
limbs in 190 patients[60]. In patients with the most severe grade of osseous injury, wound
complications including infection, necrosis or flap loss, were significantly higher in the
rotational flap group (44% compared to 23%), and furthermore, these were 4.3 times more
likely to require operative intervention.

Fasciocutaneous flaps have been found to be useful in chronic osteomyelitis of the lower
limb by Hong et al.[67]. Over a three-year period, they treated 28 consecutive patients with
surgical debridement and reconstruction using free anterolateral thigh perforator flaps,
although six of these fasciocutaneous flaps were combined with a segment of vastus lateralis
muscle. The well-contoured soft tissue flaps allowed effective resurfacing at the level of the
ankle, permitting normal footwear, and unlike the muscle flaps, the elasticity of the skin
flaps permitted easy re-exploration for secondary bone grafting procedures, with tension-
free closure. Although lacking long-term follow-up, they felt that with adequate debridement
and obliteration of dead space, the anterolateral thigh perforator flap was a time-efficient,
functional, aesthetic and safe procedure that provided successful coverage for chronic
infection.

More recently, the sural artery flap has gained popularity. However, in a multicentre review
of 70 flaps, Baumeister et al.[71], found that up to 36% developed necrosis, and this was
most likely to occur in patients with comorbidities, including diabetes mellitus, venous
insufficiency and peripheral arterial disease. This is the sub group that is erroneously
considered by some surgeons to be unsuitable for free flaps.
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Studies comparing fasciocutaneous and muscle flaps
In a retrospective review over an 18-year period, Hallock assessed the role of muscle and
fascia flaps in lower extremity trauma[65]. Details of flap coverage in 160 limbs in 155
patients, of which 60 were local muscle, 50 local fascial and 74 free muscle and fascial
flaps, were reported. Flap selection was not randomly assigned, but based on clinical need.
Complications were related to the severity of the injury, with 39% associated with free flap
transfer, whereas local muscle and local fascia flaps had similar morbidities of 27% and
30%, respectively.

Donor site morbidity is often a factor in flap selection. In a retrospective review, the same
author compared the relative donor site morbidity of muscle and fascial flaps[63]. In total,
147 local muscle/musculocutaneous and 122 fascia/fasciocutaneous flaps were used to
reconstruct all regions of the body. These included a total of 45 muscle and 72
fasciocutaneous flaps for the lower limb, although it was not clear whether all these patients
had exposed fractures. Overall, donor site complications were equivalent at 14% for each
group while major complications, including nerve injury, failed graft, necrosis or ulceration,
were infrequent in both. Most difficulties, however, were encountered below the knee with
fasciocutaneous flap donor sites, where no local muscle option was available, and the skin
grafted donor sites were described as cosmetically unappealing.

Finally, a retrospective review of patients with open tibial fractures treated with either free
muscle or facsciocutaneous flaps showed that similar numbers went on to achieve bony
union and were able to walk unaided at two years[72]. The authors found that muscle
conformed better to complex defects but fasciocutaneous flaps better tolerated secondary
surgical procedures.

Clinical Implications
Meticulous wound debridement removes any non-viable soft tissue including muscle that
may serve as a nidus of infection and a source of catabolic myokines to inhibit bone repair.
From the available data and our own experience, we suggest that fasciocutaneous flaps may
be superior to muscle for coverage of rapidly uniting metaphyseal fractures, particularly
around the ankle, thereby avoiding skin grafts, which might be susceptible to minor trauma.
However, muscle in direct apposition with diaphyseal fractures would aid healing. While
muscle flaps covered with skin grafts are aesthetically unappealing and can be difficult to
elevate for secondary procedures such as bone grafting, an alternative which retains the
biological benefits of muscle apposition is to use chimeric flaps, such as a free anterolateral
thigh flap that includes a segment of vastus lateralis[73] (Fig. 1). The plasticity of muscle
also helps to obliterate the dead space, thereby reducing potential complications associated
with hematoma formation[74]. In summary, thorough wound debridement and early flap
coverage of open fractures achieves infection-free union and the biological contribution of
the constituent tissues should be taken into consideration during flap selection.
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Figure 1.
Chimeric free ALT flap, with a segment of vastus lateralis
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