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Abstract

Neuro-electromagnetic recording techniques (EEG, MEG, iEEG) provide high temporal resolution
data to study the dynamics of neurocognitive networks: large scale neural assemblies involved in
task-specific information processing. How does a neurocognitive network reorganize
spatiotemporally on the order of a few milliseconds to process specific aspects of the task? At
what times do networks segregate for task processing, and at what time scales does integration of
information occur via changes in functional connectivity? Here, we propose a data analysis
framework-Temporal microstructure of cortical networks (TMCN)-that answers these questions
for EEG/MEG recordings in the signal space. Method validation is established on simulated MEG
data from a delayed-match to-sample (DMS) task. We then provide an example application on
MEG recordings during a paired associate task (modified from the simpler DMS paradigm)
designed to study modality specific long term memory recall. Our analysis identified the times at
which network segregation occurs for processing the memory recall of an auditory object paired to
a visual stimulus (visual-auditory) in comparison to an analogous visual-visual pair. Across all
subjects, onset times for first network divergence appeared within a range of 0.08 — 0.47 s after
initial visual stimulus onset. This indicates that visual-visual and visual auditory memory
recollection involves equivalent network components without any additional recruitment during an
initial period of the sensory processing stage which is then followed by recruitment of additional
network components for modality specific memory recollection. Therefore, we propose TMCN as
a viable computational tool for extracting network timing in various cognitive tasks.
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1. Introduction

Many behavioral tasks (e.g., naming and reading) have some common components (e.g.,
visual perception, speech production), as well as some components that are task specific
(e.g., grapheme-to-phoneme transformations). Neuronal processing of such behavioral tasks
employs overlapping network components whose orchestration over time at millisecond
temporal resolution embodies the different task components (Meyer and Damasio, 2009;
Roebroeck et al., 2009; Just et al., 2010; Smith et al., 2010; Tanabe et al., 2005). Such
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network components can give rise to distributed patterns of neural activity observed at the
macroscopic level of electro- and magneto- encephalogram (EEG/MEG) recordings
(Mclntosh, 2004). Overlapping of the network components can result in similar patterns of
brain activity underlying distinct cognitive functions. Also known as neural degeneracy
(Tononi et al., 1999), this presents a significant challenge in understanding the temporal
microstructure of large-scale brain networks. In order to gain insights on the spatiotemporal
organization of network components two questions become fundamentally important and
need to be addressed simultaneously: 1) How can /fow dimensional functional brain
networks be defined from high dimensional electromagnetic recordings? 2) How can the
time points of frue network recruitment and subsequent dissociation be decoded by
circumventing the computational challenge posed by neural degeneracy? Answering these
questions in a subject-by-subject basis will help us understand the neural basis of several
higher order cognitive tasks.

In order to decode the time scales on which large-scale networks are operational, a whole-
brain recording method such as EEG/MEG is required. Ideally, the networks should be
defined via quantitative measures rather than selection of region of interests based on ad-hoc
hypotheses. Motivated by empirical observations, it can be argued that dynamics of brain
network activations following an externally presented stimulus becomes low dimensional
(Friston et al., 1993). This simply means that a significant proportion of data can be captured
by the dynamics of a few patterns using spatiotemporal mode decomposition techniques,
such as principal component analysis (PCA) (Friston et al., 1993; Mclintosh et al., 1996;
Kelso et al., 1998). Hence, the goal of any dimensional reduction analyses is to explain the
maximum possible variance in the data with the minimum number of modes (spatial
patterns) and corresponding temporal projections. The spatial patterns can be interpreted as
signatures of networks that constitute the substrate on which information processing occurs.

In this article we present a computational framework to decode the temporal microstructure
of neural information processing occurring via recruitment of task-specific large-scale
networks at the level of scalp EEG/MEG sensors. We have named this method “temporal
microstructure of cortical networks” (TMCN). Here, dimensional reduction techniques such
as PCA are used to define control subspaces from an experimental control dataset (EEG/
MEG time series from sensors). Data from an experimental task condition can be
reconstructed from their projections onto this control subspace. Banerjee et a/. (2008)
showed how the goodness of fit of such reconstructions can be used to interpret the
underlying spatiotemporal network mechanisms: “temporal modulation” where the task
relevant large-scale network is comprised of the network components identified for the
baseline control, versus “recruitment” where compensatory network involvement is required
for specific aspects of task processing. In the current work, the time scales of task-specific
network recruitment at millisecond resolution is estimated from statistical comparison of
goodness of fit time series obtained from reconstruction of alternative task conditions. Such
task conditions are formulated in several experimental designs, one of which we will discuss
in detail in this article. Statistical analysis can be performed on the resulting outcome
measure: onset times of network recruitment at an individual subject level. Correlations of
network onset and offset times with measures of behavioral performance will reveal the
neuronal mechanisms guiding behavior. Therefore, temporal microstructure of cortical
networks (TMCN) provide a computational framework to decode the timing of task specific
network-level differences in neural information processing.

We tested the validity of TMCN using simulated magnetoencephalographic (MEG) data
from a delayed match-to-sample (DMS) task 1. Such tasks have been widely used in animal

1A part of this validation was presented in a recent review by Banerjee ef a/. (2011). Here we perform a more comprehensive analysis.
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recordings (Fuster et al., 1982; Haenny et al., 1988; Fuster, 1990; Wilson et al., 1993; Miller
et al., 1996) and in human PET/fMRI studies (Sergent et al., 1992; Courtney et al., 1997,
Husain et al., 2006; Schon et al., 2008) to study working memory function. They involve
presentation of two consecutive stimuli, followed by a response that indicates if the two
stimuli were identical. Hence, performance of this task requires recruitment of working
memory networks. We simulated this scenario with a large-scale neural model of the ventral
visual stream (Tagamets and Horwitz, 1998), following which we sought to decode the time-
scale of this recruitment with TMCN. A close match between simulated and decoded
estimates of timing related measures establishes the validity of the TMCN framework in a
scenario where the “ground truth” is known. Further by using two different forward models,
spherical (Mosher et al., 1999) and realistic (Nolte and Dassios, 2005) for simulating MEG
sensor dynamics, we established the stability of TMCN. Furthermore, we tested the
sensitivity of the method by simulating varying degrees of recruitment related neural activity
at the source level. Finally, we illustrate TMCN’s applicability to empirical MEG studies of
higher order cognition by computing the temporal microstructure of large-scale systems
level memory recall networks. In this experiment human subjects are trained to remember
abstract non-nameable and nonlinguistic visual-to-visual (VV) and visual-to-auditory (VA)
paired associate memories. In the test session they recollected the correct visual or auditory
paired associate to the initial visual stimulus that is presented from their long term memory,
and performed a matching task to identify if the right paired associate is present within the
compound visual-auditory second stimulus. Assigning the unimodal (visual-visual, VV)
condition as control, we derived a low dimensional control subspace (from the high
dimensional space of sensors) using PCA on the event related fields (ERF). Following
which, ERFs from both unimodal VVV and crossmodal VA task conditions are reconstructed
at millisecond-by-millisecond resolution. Finally, by applying statistical tests on goodness of
fit times series from two conditions, we decoded the recall-specific network recruitment and
temporal modulation periods on a subject-by-subject basis. We also tested the robustness of
TMCN upon variation of analysis time windows, different thresholds for principal
component selection, and subjects: all important design parameters in this framework.

2. Methods and Materials

2.1. Theory

Time scales of information processing at the network level has been used to identify the
sequential steps in task processing via feed-forward and feedback processes (Garrido et a/.,
2007; Liu et al., 2009). In neurophysiological studies on non-human primates, top-down and
bottom-up influences on neural information processing during higher order cognitive tasks
have been disambiguated using onset time detection between two alternative tasks (Hanes
and Schall, 1996; Monosov et al., 2008; Lebedev et al., 2008; Liu et al., 2009). Nonetheless,
there are two major limitations in extending these approaches directly to multivariate EEG/
MEG data. First, task specific network recruitment cannot be interpreted from a “pure
insertion” based subtraction of brain activity during control from the task condition, because
the possibility of temporal modulation via changes in the strength of functional connections
cannot be easily ruled out (Friston et al,, 1996; Banerjee et al., 2008). Second, the existing
analysis methods are somewhat tuned in an either/or fashion to address the spatial or
temporal aspects of network dynamics. Following the lines of reasoning in Banerjee et al.
(2008), these two issues can be resolved by a mode decomposition approach.

A large-scale functional brain network may be defined as the lower dimensional
approximation of high dimensional brain electro-magnetic activity observed in EEG or
MEG recordings. This entails expressing the brain activity from hypothesized control
conditions into a linearly independent basis vector space with time varying coefficients
using one of the existing dimension reduction techniques, e.g. principal component analysis
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(PCA), independent component analysis (ICA, Bell and Sejnowski, 1995; Fuchs et a/., 2000;
Lobaugh et al., 2001; Tang et al., 2005). Instantaneous brain electromagnetic activity Y (X,
) from nsensors may be decomposed in terms of its principal components and the
corresponding temporal coefficients

Yi(X, t):Z/li(I)i(X)f,-(t) Viet )
i=1

where, @ (X) is the 7th principal component, £(#) the corresponding temporal coefficient,
and A;is the eigenvalue that scales the principal component. X is the column vector of all n
sensor locations (n = 273, for the current CTF MEG system used in NIH). Using this
scheme, the lower dimensional large-scale network underlying task 1 (control) over a time
window z can be defined as the vector space spanned by the basis vector set ® = {®4, ,,
.. Dy} kK nand

k
Yi(X, 1) ~ Z/liQ,-(X)fi(t) Viet @)
i=1

It is imperative to note that we do not restrict our definition of network to individual scalp
topography realized from the corresponding basis vector. Rather, we refer to the entire
subspace spanned by all basis vectors as a network underlying task 1 over a time window <.
In fact, the control subspace can be constructed from multiple task conditions. In such cases,
the non-orthogonal but linearly independent modes (PCs of different tasks) can be
transformed to orthogonal modes using Gram-Schmidt orthogonalization (Hoffman and
Kunze, 1961). The dual space spanned by transformed modes has linearly orthogonal basis
vectors and has an identical spatial extent to the original space. To retain simplicity, we
won’t use the dual space for this article but a curious reader can refer to its usage in
Banerjee et al. (2008) and Banerjee et al. (2012).

Now data from task 2, Y5, can be reconstructed from projections onto the control subspace

k
V2(X, =) @ (¥2(X, )[®;) )
i=1

where (|) represents the projection operation and 1 represents transpose. Similarly, task 1
can also be reconstructed ms-by-ms.

k
ViX, =) @ (¥1(X,1)|®;) @

i=1

Goodness of fit (Go# of reconstruction for each task (y= 1 or 2) may be expressed as

Y[(X.0)- ¥X.0)

Gof j(Hy=1-—
Yi(X,0)- ¥j(X, 1)

®)

where . represents the scalar product. The Gofmeasure for each reconstruction quantifies the
degree to which the task 1 subspace (network activated over a time window z) contributes to
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the instantaneous dynamics of task 1 or task 2. Thus, a difference in Gofbetween task 1 and
task 2 would indicate a difference in network recruitment across the two conditions. One
should note that the independence of basis vectors is an important requirement to interpret
spatial recruitment and guaranteed by PCA. An instantaneous statistical comparison of the
Gofdistributions from task 1 and task 2 allows us to detect the change points at which task
specific network divergences and convergences occur (Fig 1). Thus, we could interpret the
onsetand offsettimes of network recruitment by performing instantaneous t-tests on the Gof
distributions. Onset time is the time point at which the Gofdistributions become statistically
different at 99% significance, successive p-values consistently remain below 0.01 for up to
50 ms and for at least one point reaches a difference where p=0.001 within the entire
interval. Similar thresholds for detecting response times from spiking and local field
potentials were used by Monosov et a/. (2008). A window of up to 50 ms is used typically
for smoothing single unit responses (Optican and Richmond, 1987). Offset time is the first
time point that succeeds an onset time at which the two Gofdistributions converge with p>
0.01 and successive p-values consistently remain above 0.01.

The non-divergent time intervals characterize the time scales where similar network
components are involved in the two tasks. Here, functional connectivity may undergo
reorganization during the task compared to the control. The times at which the Gof
distributions from VV and VA diverge significantly are onset times of modality specific
network recruitment. A convergence of two Gofdistributions can be interpreted as the offset
times of the modality specific network recruitment. The divergent time interval (onsetto
offsel) quantifies the time scale of network recruitment. The area sandwiched between the
goodness of fit curves from onsetto offsettimes, normalized by the corresponding divergent
time interval, quantifies the degree of network recruitment or network divergence. Hence,
four measures quantify recruitment of network components for task related processing: onset
time, offset time, divergent time interval and network divergence (Fig 1).

The choice of the number of lower dimensional spatial modes (k) and the time window z
over which the subspaces are constructed constitute two of the most critical factors of this
analysis. Awas computed by setting a threshold on the sum of normalized eigenvalues
associated by the first A principal components. The choice of zis motivated by empirical
factors which we will discuss further in the context of the experimental results. In principle,
the method itself is independent of the time window and the choice of kthat are chosen, but
the results of the analysis and the ensuing interpretations may be dependent on these
choices.

2.2. Simulated MEG data of delayed match-to-sample (DMS) task

To partially validate our method, we used simulated MEG data obtained from a large-scale
neural model. MEG source dynamics are simulated by the large-scale neural model for
visual-to-visual DMS task (Tagamets and Horwitz, 1998) incorporating the major cortical
areas of the ventral visual pathway: V1, V4, inferior temporal (IT) and the pre-frontral
cortex. These nodes have been consistently observed in PET and fMRI studies of the ventral
visual stream in relation to face and object recognition (Corbetta ef a/., 1991; Haxby et al.,
1991; Sergent et al., 1992; Haxby et al., 1995; Courtney et al., 1997; Connor et al., 2007).
This model has previously been used to simulate PET and fMRI activation (Horwitz and
Tagamets, 1999) and functional and effective connectivity data (Horwitz et al., 2005; Lee et
al., 2006; Kim and Horwitz, 2008).

The basic circuit used to represent each cortical column (the basic neuronal unit in each
region) is shown in Fig 2. The local response and total synaptic activity within a cortical
area depends on the interactions of the afferent connections, originating from other areas and
local connectivity which shapes the response. Following earlier results (Douglas et af., 1995;
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Tagamets and Horwitz, 1998) we have (1) 85% of the synapses in cortex are excitatory, and
(2) of those, 85% are to other excitatory neurons. This high percentage of excitatory
connection has given rise to the notion of “amplification” of neuronal responses within a
local circuit in response to the relatively small amount of regional afferents. Following
Tagamets and Horwitz (1998) we chose the total excitatory to excitatory connectivity weight
at 0.6, excitatory to inhibitory connectivity weight at 0.15 and inhibitory to excitatory
connectivity weight at —0.15 (Fig 2). Each pair of excitatory and inhibitory units is modeled
using the well known Wilson-Cowan unit (Wilson and Cowan, 1972). In our large-scale
model, each brain area is composed of 81 Wilson-Cowan units in 9 x 9 configuration (in
order to capture complex visual patterns).

We model the MEG activity for the DMS task in three steps. In the first step, we define the
activation equations of membrane currents for each Wilson-Cowan unit. In the second step,
we compute the net activation (excitatory minus inhibitory inputs) of excitatory neurons to
compute the primary currents which are the main sources of MEG data. In the third stage,
we obtain the magnetic fields generated by the current sources outside the brain on a unit
hemisphere using forward solutions for spherical head (Mosher et a/., 1999) and realistic
head shapes (Nolte and Dassios, 2005). The modeling and validation using only the
spherical head shape was presented in Banerjee ef al. (2011). Comparing the results of
TMCN across different head shapes in this article allowed us to evaluate the stability of the
method.

The electrical activity of each of the excitatory (£) and inhibitory (/) units is governed by a
sigmoidal function of the summed synaptic inputs that arrive at the unit. This corresponds to
average spiking rates from single-cell recordings. The electrical activity of an E-I pair is
mathematically expressed as

dE;i(t) _ 1
j, - ( e KeDgg EO+w g li@ring O +N©] ) _6Ei(t)
= =61i(1)

dt I+e K1 Dvg; Bt 0= +N@] )

()

where, E{? and /{J) represent the electrical activations of the ith excitatory and inhibitory
elements at time frespectively. Kgzand Kjare the gains or steepness of the sigmoid
functions for excitatory and inhibitory units respectively, zzand z;are the input thresholds
for the excitatory and inhibitory units, A is the rate of change, & is the decay rate, and M9 is
the added noise term. wgegs wyesand wgy are the weights within a unit: excitatory-to-
excitatory (value = 0.6), inhibitory-to-excitatory (value = —0.15) and excitatory-to-inhibitory
(value = 0.15) respectively. ing(? and /n[f) are the total inputs coming from other areas into
the excitatory and inhibitory units at time ¢

in, ()= zwfiE i+ zwj.l.l (D)
J J

in, (=S wE EL(t)+ Swl 1) @
k J

where, w;i and w;; are weights coming from excitatory/inhibitory unit j in another area into
the ith excitatory and inhibitory units respectively. Electrical activations in the model range
between 0 and 1, and can be interpreted as reflecting the percentage of active units within a
local population. For this article we chose to keep parameter values (Kg K, t, A, 8)
identical to Tagamets and Horwitz (1998).
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The source of MEG activity is the primary currents across pyramidal cell assemblies
dominated by excitatory connections (Okada, 1983). To compute the current dipoles that
generate the event related fields (ERF), we sum over the total inputs to one excitatory unit.

Torim()= ) Wy Ei0)+ Y i, Ei(t)+ > wi Ex(1) @
i i k,i

where, the first term on the right hand side of equation 8 represent the contribution of
excitatory inputs onto itself (no axonal delays are considered), the second term is the
inhibitory input (recall wjgis negative), and the third term represents the input from other
excitatory units.

The DMS task involves remembering the first stimulus S1 and responding after a second
stimulus S2 is presented if S2 matches S1. We have square patterns of light (S1 and S2) as
external visual stimuli, presented consecutively and interspersed with a delay period. A large
scale model of the DMS task is created by including brain areas V1, V4, IT and the
prefrontal cortex as current dipoles (Fig 2). A local short-term memory circuit is
implemented in the prefrontal cortex by incorporating four different sub-modules (Fig 2D).
We placed current dipoles at the Talairach coordinates corresponding to each area (Table 1)
with electrical responses as follows:

1. V1/VA/IT become active during stimulation periods S1 and S2.
2. Cue (C) units respond if there is a stimulus present.

3. Delay only (D1) units become active during delay period after presentation of the
first stimulus.

4. Delay + Cue (D2) units become active during presentation of the stimulus and
delay period.

5. Response (R) units show a brief activation if the second stimulus matches the first
and if the first stimulus is remembered.

Based on primate electrophysiological recordings (Funahashi et al.,, 1990), D1, D2 and C are
taken to be located near one another and hence, share the same Talairach coordinates. The
orientations of all current dipoles were fixed such that only tangential and radial components
contributed to the net dipole moment (1, 0, 0.5). This ensured that the MEG sensor patterns
for the realistic head shapes will be different from the spherical head models due to the
presence of volume currents in the former arising from the head geometry (Van Uietert,
2003). The effect of attention in the model is implemented by a low-level, diffuse incoming
activity to the D2 units as shown in Fig 2 (from the modulator). While we do not model the
source of this modulation, our model makes it explicit that the D2 units are the recipients.
The inhibitory connections from one node to another (e.g. R— D1, Fig 2) are excitatory
inputs onto inhibitory units. When the attention level is low there is very little delay period
activity in the D1 and D2 units (Fig 3). Hence, the prefrontal working memory network is
only recruited for the DMS task during high attention. In the large scale model, an
increasingly larger number of individual D2 units become activated with a rise in attention
level, thus increasing the overall activation of the pre-frontal cortical areas. However, we
assume such locally distributed activity is captured adequately by a single current dipole
source in D2 for the purpose of this simulated study.

Two sources of trial-by-trial variability were incorporated in the model: 1) additive random
noise to each Wilson-Cowan unit and 2) activity of the nonspecific units at a background
rate were added to the DMS task-specific network (see Horwitz et al., 2005 for details). The

Neuroimage. Author manuscript; available in PMC 2013 September 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Banerjee et al.

Page 8

current dipole source dynamics at different brain locations are plotted in Fig 3. Finally,
MEG activity at the sensor level is computed by applying a forward solution with sources at
the aforementioned locations. To study the stability of TMCN results as a function of
possible distortions from non-neural elements, we used a single-shell forward model with a
spherical head (Mosher et a/., 1999) and an one with realistic head shape (Nolte, 2003; Nolte
and Dassios, 2005). Both forward models are computed using MATLAB codes provided by
the FIELDTRIP toolbox (http://fieldtrip.fcdonders.nl/) for neuromagnetic signal analysis.
MEG data are generated for the DMS task with various levels (low to high) of attention. The
scalp topography of the simulated data at two different time points (stimulus on and delay
period respectively) is shown in Fig 3 followed by TMCN analysis results in Fig 4.

2.3. Empirical data

2.3.1. Participants—MEG data were collected from ten subjects (3 females, 7 males). All
subjects reported normal hearing and vision or corrected to normal vision. Signed informed
consents were obtained from all subjects prior to data collection and training according to
the National Institutes of Health Institutional Review Board guidelines. All subjects were
compensated for their time.

2.3.2. Experimental Design—We employed a paired associate task in which
nonlinguistic, abstract visual and auditory stimuli were used. Two sets of visual stimuli are
created. One set consisted of ten white line drawings on a black background of non-
nameable three-dimensional block shapes taken from Schacter et al. (1991) (see also
Schacter et al.,, 1990). The second set consisted of five non-nameable, colored, fractal-like
patterns generated by a method similar to Miyashita ef a/. (1991) using a script written in
MATLAB (Mathworks Inc. Natick MA). Three colors are used from the ‘summer’ colormap
provided in MATLAB. Five auditory stimuli were created by summing multiple sine waves
of random frequency near 660Hz and random phase. Duration of each auditory stimulus was
18s.

Participants are trained to uniquely associate each block image with either a sound or fractal
image. Five of these pairs are visual-visual (VV) pairs, in which 5 abstract, non-nameable
block-like images are paired with another 5 abstract fractal-like images. The other 5 pairs
are visual-auditory (VA) pairings, in which another 5 block-like images are paired with 5
abstract tone sequences (see Fig 5). During training, participants are presented with the
correct parings in a random order and then tested on their knowledge of the pairings for
twenty trials. For each test trial, participants are presented with a block image (S1) followed
by a 4s pause which is succeeded by a sound and a fractal image (S2) presented
concurrently. Participants indicated via a button press if they believed the correct pair to the
block image is presented. The trained pair is presented on half of the trials. Feedback is
given on each trial immediately following the response. Participants received up to five
iterations of the presentation-test cycle until they achieved at least 90% accuracy during the
test phase. After achieving this desired accuracy level, participants performed two more test
blocks consisting of 30 trials each without feedback. Participants returned 14 days after the
initial training for an additional training session to reset them (if required) to the 90%
accuracy level. Participants are tested on their maintenance of the pairing 28 days after
initial training, but are not overtly retrained. MEG testing occurred 42 days following initial
training.

For the MEG study, during each test trial (120 total in two runs of 60 each), participants are
first presented with stimulus one (S1), a block-like image for 1.8 seconds, and after a delay
of 4 seconds they are presented with stimulus two (S2) for 1.8 seconds, which is the
simultaneous presentation of a fractal-like image and a tone sequence. Participants had to
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decide whether one of the modalities of the compound S2 is the paired associate of the given
S1in ayes/no button-press response within a 3 second time frame. The correct pairings are
presented in 50% of the trials. No indication of trial type (VA or VV) is given to the
participants. Only 7 participants who performed the task with greater than 95% accuracy are
selected for the temporal microstructure analysis. One of them performed only 60 trials (30
runs each for VV and VA), and hence was excluded in this study for the subject-by-subject
analysis.

2.3.3. Data Acquisition—MEG data are recorded at 1200Hz sampling rate using a 275
channel CTF whole head MEG system (VSM MedTech Inc., BC, Canada) in a shielded
room. High resolution structural MRI images (220 mm FOV, 256 by 256 Matrix, 0.86 mm
by 0.86 mm in plane resolution, 1.3mm slice thickness, 124 slices, TE 2.7 ms, Flip angle 12
degrees) are obtained for each subject with markers (vitamin E capsules) for left and right
pre-auricular points and nasion. The MEG data for each subject is co-registered to the
corresponding structural MRI image using these landmarks.

2.3.4. Source imaging—The cortical sources during 0-1.8 s (S1-epoch) period are
calculated from the anatomically co-registered MEG data using synthetic aperture
magnetometry method (SAM) (Robinson and Vrba, 1999; Cheyne et al., 2006). The forward
source to sensor relationship is modeled by a single shell realistic headmodel based on Nolte
(2003). The relative source power between the VA and V'V conditions are calculated (using
SAM software developed at the NIMH MEG core) for each of the subjects. The software
produced a F-statistic map of the relative power of the two conditions. Each cortical location
where a dipole is placed for computation of the forward solution is assigned an F-value.
These locations are normalized in 3-D for every subject to the Talairach coordinates using
AFNI software (NIMH/NIH, Bethesda, USA). Final activation maps based on the Student’s
t-test are computed from the individual subject maps at a threshold of p< 0.05. These
contrast images are constructed in each frequency band, alpha (8-12 Hz), beta (15-30 Hz)
and gamma (30-54 Hz) of the raw data.

2.3.5. TMCN on sensor space—MEG data was downsampled at 200 HZ for TMCN
analysis in which VV was chosen as “‘control’and VA as the ‘task. We performed a
sensitivity analysis on the network measures to study their variability over the parameter
space of &k (number of retained principal components) and z (analysis time window). We
controlled the variance captured by the first & principal components of the control condition
as a strict threshold. The zon the other hand is varied at sizes of 0.2, 0.3, 0.6, 0.9 and 1.8
seconds. Thus, for different values of variance captured and time window lengths we
computed the onset time, offset time and network divergence.

3.1. TMCN on simulated MEG data

We defined the passive viewing condition (attention level 0) as the control where working
memory networks are not active. PCA is performed on the simulated MEG activity during
onset of S1 to end of S2. The two scalp topographies capturing almost all of the variance
(99.98%) in this condition are plotted in Fig 4. Analysis of goodness of fit (Gof) from
reconstruction of the control, low (attention level 0.03) and high attention condition
(attention level 0.3) demonstrates that recruitment of network can be detected at the sensor
level (Fig 4B and C). Finally, we computed the onset and offset times of network
recruitment for each attention level and also for the two different forward model generated
data sets (Fig 4D). The detection of network timing required a certain level of neural activity
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in the recruited network nodes. Beyond this threshold, the timing detection is quite stable as
shown in Fig 4D. The timing measures from the different forward models matched closely.

3.2. Empirical MEG data

3.2.1. Event related fields—Grand average of event related fields (ERFs) time-locked to
S1 onset are computed for across all subjects during the duration of S1 (1.8 s) in a sensor by
sensor univariate analysis. In Fig 6 the trial-averaged ERFs for VA and VVV conditions are
plotted. The largest difference intervals between VA and VV conditions are observed in left
temporal and right frontal sensors. The first difference interval in left temporal sensors
arrived earlier (0.15-0.2 s) compared to the difference period in frontal sensors (0.425-0.6
s). There are multiple periods of differences in the ERFs in both of the sensor groups.
Prominent differences in the temporal sensors occurred at 0.475 s and 0.85 s. The
differences for frontal sensors occurred at 0.9 and 1.6 s. ERFs are also computed at various
window sizes 0.2, 0.3, 0.6 and 0.9 s for TMCN analysis.

3.2.2. Source imaging during first visual stimulus (S1-epoch)—Source analysis
using the SAM beamformer (Fig 7) revealed differential activation of neural sources in the
alpha (8-12 Hz), beta (16—-30 Hz) and gamma (> 30 Hz) frequency bands between the VA
and VV task conditions. The lower and higher order (primary sensory and association areas)
visual and auditory areas however, are activated only in the beta frequency band. Enhanced
task-specific relative power of bilateral visual cortices during presentation of the first visual
stimulus (S1) in the VA condition is observed when contrasted with VV trials. Intriguingly,
a primarily left dominant task-specific relative increase in power of higher order auditory
areas such as superior temporal gyrus (STG) also occured during the S1 period of visual
stimuli. In addition, right inferior temporal (IT) areas also showed higher power in VA
compared to VV trials. Statistically significant power ratio across the two conditions are not
observed when the time window for SAM analysis is shortened which highlights the
difficulty of spatiotemporal analysis with existing source imaging techniques. The reader
may recognize that all this evidence of enhanced activations point toward the recruitment of
a large-scale brain network based on an approach similar to cognitive subtraction. Hence,
these may incorporate the scenarios of temporal modulation that we aimed to disambiguate
with the TMCN technique. Nonetheless, these results generate interest in exploring the
temporal microstructure of such task-specific networks with the TMCN analysis.

3.2.3. Principal Component Analysis (PCA)—PCA is performed on ERFs from each
subject in 0.3 s windows that was earlier shown to be functionally relevant for auditory and
linguistic processing studies. For example, peak positive EEG activity time locked to
auditory oddball stimuli at 0.3 s (Squires et al., 1975) and temporally structured theta band
MEG responses for sentence processing (Luo and Poeppel, 2007) suggest that integration of
auditory and linguistic information take place around 0.2-0.3 s. The first principal
components (PC) accounting for the largest amount of variance in one representative
subject’s data are plotted in Fig 8 for both VV and VA trials. The scalp topographies
expressed by this PC show that both VA and VV trials share a left-temporal dominated
pattern in the first window. More bilateral patterns emerged in the subsequent windows. The
first time window after S1 onset also reflected the highest amount of dimensionality
reduction, recognized by the higher amount of variance explained by them (21% for VV and
16% for VA variance captured by one mode out of 273 spatial modes). The similarity
between the scalp topographies spanned by the PCs underlying VV and VA trials is
quantified using an angular difference measure for higher dimensional subspaces (Bjoérck
and Golub, 1973). According to this measure 0 indicates two mathematically equivalent
subspaces and /2 indicate orthogonality or zero overlap. Using this measure, we observed
that the first principal components across VV and VA trials were most similar at the first
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window (Fig 8). At subsequent windows (2-6), the degree of similarity between the first
PC’s did not vary significantly. This indicates weaker time locking of later network
components with the onset of stimulus 1 (S1).

Characterizing signal space by choosing the first k principal components (PCs) is an often
encountered problem in PCA. In Fig 8C we have plotted the number of PCs required for
each subject to satisfy the different variance thresholds at each time window. The between-
subject variation is clearly less at smaller variance thresholds which also capture lower
amount of the data. Beyond a 85% variance threshold, the number of PCs increases
drastically. For instance, sometimes the number of PCs required to capture 90% of the data
doubles the number required to capture 85% with increase in between-subject variability.
This indicates that some parts of the noise space may start to be added into the signal space
at variance threshold levels higher than 85%.

3.3. TMCN on empirical MEG data

3.3.1. Goodness of fit of ERF reconstruction and outcome measures—The first
kmodes, capturing 85% of the MEG data in VVV condition, are used for constructing the
control subspace, subject-by-subject. We reconstructed the ERFs during the VA and VV
task conditions with VV as the control in 0.3 s windows. For VVV, cross-validation is used, i.
e, different trial sets are used for computing PCs and reconstruction respectively. The
goodness of fit (Gof) of these reconstructions are then plotted in Fig 9 subject-by-subject.
Gofis smoothed over a 10 ms window using a moving average scheme with equal
weightings. The key events in task related information processing are computed by applying
statistical discrimination techniques on Goftime series from VV and VA trials. We
computed the divergent time intervals (defined in section 2.1), onset times, offset times and
network divergence using a combination of t-tests (Fig 9). Multiple regions of significant
differences between Goftime series exist, indicating the presence of recruitment of multiple
task related networks. The TMCN analysis is repeated for other time windows 0.2, 0.6, 0.9
and 1.8 s and PCA variance thresholds 60% to 90% in steps of 5 to evaluate the variability
of network timing measures across parameters of TMCN.

3.3.2. First network divergence—We identified first onset times, offset times, divergent
time intervals and network divergence in each subject. A bootstrap approach was followed
by randomly selecting 30 trials of VV for PCA computation and the remaining 30 trials for
ERF reconstruction. ERF of randomly selected 30 VA trials were reconstructed to obtain a
Gofrtime series. This procedure was iteratively repeated 100 times to obtain multiple onset
times in each subject. Subject-by-subject non parametric statistics performed on the first
onset times, divergent time interval of recruitment and network divergence are reported in
Fig 10. The distribution of onset times was non-Gaussian within subjects and highly variable
across subjects.

We analyzed the variability of the first onset and offset times, divergent time intervals and
network divergence across PCA variance thresholds, window size and subjects as factors
using 3-way Analysis of Variance (ANOVA, Table 2). The onset time significantly varied
across variance thresholds and subjects (p < 0.05, Schefe corrected, see Table 2 for details)
but not across across window sizes. The offset time did not vary across any factors. The
divergent time interval varied across subjects (p < 0.05, Schefe corrected) but not across
window sizes and PCA variance thresholds. The network divergence varied across all
factors (p < 0.05, Schefe corrected).

3.3.3. Multiple network recruitment—The decoding of temporal microstructure was
not limited to the first network recruitment. We captured subsequent network recruitments
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following the first divergence and convergence of the Goftime series using the same
statistical thresholds that were applied for the first recruitment. Multiple network
recruitment decoded with multiple divergent time intervals (based on median Onset and
offset times) for each subject is presented in Fig 11. The median number of networks
recruited across all subjects (divergent regimes of Gof) was 4 (3 and 5 being the 25th and
75th percentiles). In Fig 11 we plot up to the first 5 recruitment periods, interspersed with
intervals where the network components underlying task processing were similar (white
spaces between two colored bars in each subject). From our earlier results of 3-way
ANOVA on first network divergence, it is evident that in this task the variability across
subjects was quite large. Hence, for this task, group statistics may not reflect the true
temporal structure of the task processing on a subject-by-subject basis. Nonetheless, the first
and second networks recruited during task processing were within a duration of 1 second
from the presentation of S1. The time scale of the first and second network recruitment
across subjects was comparable.

4. Discussion

We have outlined a mathematical framework to decode the temporal microstructure of
cortical networks (TMCN). TMCN involves two key analysis steps. In the first step, a sub-
network or lower dimensional subspace is derived from the whole brain EEG/MEG
recording during one or more control task conditions. The subsequent control subspace is a
vector space spanned by linearly independent basis vectors. Our framework studies the
degree of contribution of the large-scale network projected on the sensor space and captured
by this control subspace in different task conditions. The control subspace can be
constructed by accumulating basis vectors from different control conditions (Banerjee et al.,
2008; Banerjee et al. 2012). For example, in an experimental design to detect the recruitment
of multisensory integration areas, a combination of unisensory networks can be defined as
the control subspace. In the second step, time varying EEG/MEG activity from a task
condition is reconstructed (ms by ms) using their projections on to the control subspace. The
temporal evolution of the goodness of fit for ERFs during any other tasks can be compared
with that during control. The regimes where two goodness of fit distributions are not
statistically significant capture the time scales of neural information processing where no
recruitment of additional network nodes take place. As far as TMCN is concerned, at these
regimes there may be either no difference in functional connectivity among network nodes
or rearganization of network dynamics via functional connectivity changes during task 2
compared to task 1 (control) in the signal space. Such temporal modulation mechanisms
within the detected time windows can be studied more rigorously with other methods of
functional and effective connectivity estimation (Friston, 1994; Mcintosh et al., 1994;
Wendling et al., 2009). For example, spectro-temporal coherence modulation among the
activity of sub-network components will reveal the finer details of the temporal modulation
mechanisms (Mitra and Pesaran, 1999). On the other hand, spatial localization of recruited
nodes, in particular for any higher order cortical function, is an open problem. Even though
the existing inverse techniques can localize the sources of evoked potentials that are large in
amplitude (P300, N400) (Hamaldinen and Sarvas, 1989; Pascual-Marqui et al., 1994;
Robinson and Vrba, 1999; Gross et al., 2001; Hillebrand and Barnes, 2003), the subtle
changes in network recruitment is difficult to localize in both space and time
simultaneously.

4.1. Using scalp topographies to estimate recruitment

A PCA analysis on event related fields (ERFs) of each task condition, VV and VA, and
subsequent computation of the angle between subspaces spanned by the first principal
components (PC) revealed the overlap of the underlying sub-networks (Fig 8) during the S1
presentation period. The strongest overlap between first PC’s of the VA and VV tasks
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occurred during the first 300 ms of S1 presentation indicating that the underlying networks
are most similar within this time window. In other windows (2—6) significantly lower
degrees of overlap are observed compared to the first. However, no significant differences in
overlap existed among windows 2-6. This analysis revealed that there is a high possibility of
task-specific network node recruitment following an initial period of equivalent sensory
processing where no new network nodes are recruited across the different tasks. However,
the angular measure of overlap between only the first principal components components
does not reveal the precise time scales at which task-specific networks are recruited. We also
computed the angular overlap between the overall subspaces (including all 1 : APCs, not
shown here). The volume of such higher dimensional subspaces grow exponentially (curse
of dimensionality) and hence the overlap decreased for each of the time windows. In
summary, the problem of accurately detecting network timing is unresolved using such
angular difference measures of higher dimensional subspaces.

4.2. Validation and Stability

TMCN successfully revealed the time scales of network recruitment in biologically realistic
simulations of MEG data. The large scale neural model is set up such that the recruitment of
working memory related networks in the pre-frontal cortex (D1 in Fig 2) occurs during the
delay period. The time-scale of this activity coincided with suppression of activity in
sensory areas (V1, V4 in Fig 2). TMCN is able to decode the timing of this network re-
organization conclusively (Fig 4B, C and D) from their projection onto the sensor space.
The stability of timing related measures is established by two different tests. First, the onset
and offset times did not change once a threshold amount of activity level is reached in the
recruited network (Fig 4D). Second, the timing measures are invariant across the different
forward models that were used in the simulations. The latter is particularly insightful
because the spherical and realistic head models map the neural activity to different spatial
topologies. Yet, the network timing computed by TMCN matched closely. Hence, our
simulated results suggest that as long as the temporal structure of the underlying large-scale
network is retained in the scalp/sensor level activity of EEG/MEG data, TMCN is suitable
for decoding network timing information.

4.3. Sensitivity of TMCN to parameter changes

In simulated MEG data we established that TMCN requires a threshold level of activity
within the recruited network for detection of network timing (Fig 4D). Under this threshold,
detection of recruitment is not possible and the reorganization may be classified as
modulation. Once the threshold is reached the timing measures are stable with further
increases of neural activity. The number of principal components chosen however, can
become a key factor in outcome measures. Two principal components captured 99.98% of
the simulated sensor data and hence classification of signal, noise and null spaces can be
achieved simply by visual inspection of the eigenvalue spectrum. Choosing the number of
principal components (4) as part of signal is always a contentious issue in PCA and there are
several ways to compute the signal space (e.g. Mosher and Leahy, 1998; Mitra and Pesaran,
1999). In TMCN, we are interested in the overall subspace captured by all components and
not on physiological substrates captured by each one of them. Hence, PCs are chosen based
on a measure which can quantify the size of control subspace captured in each subject
(variance captured). By the same token, using modes generated by ICA algorithms which
often requires pre-processing by PCA would not add anything extra to this analysis as long
as all independent components (ICs) are retained. Hence, the sensitivity of TMCN needs to
be tested against different sizes of the overall control subspace. For the present empirical
recording we controlled the size of control subspace by variance captured by the first &
modes of PCA and the time window #over which the PCA was performed. The same
variance threshold is maintained in each subject to retain the identical signal to noise ratio.
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To choose an empirically motivated optimum variance threshold, a balance between overall
data captured in minimum possible dimensions and between-subject variability of the
number of dimensions should be considered (e.g Fig 8). Analytical techniques such as
multiple signal classification (MUSIC, Mosher and Leahy, 1998) or random matrix
properties (Mitra and Pesaran, 1999) may be used to estimate the signal space (K modes)
individually for each subject. In such scenarios, SNR will vary across different data sets and
statistical comparison of network measures may become ad-hoc.

In the empirical recordings, onset times, offset times and corresponding divergent time
interval are independent of variation in window size (see Table 2 for details). This is an
important result in interpreting the functional significance of network measures. The
experimental design ensures that a memory recall period appears for retrieving the paired
auditory/visual object following visual perception of S1. Perception of very similar visual
objects may involve identical networks and hence the first network recruited is most likely
related to memory recall. This is also evident in the group ERF activity (Fig 6) where the
first divergence appeared only after 200 ms at any sensor.

Likely candidates of the control subspace are generators of visual evoked potentials that
contribute to the large MEG amplitudes. Further, the absence of significant differences in
onset times across time windows means slower components (up to a cycle of 1.8 s) are not
recruited in a task-specific way for VA trials. PCA variance thresholds affected the detection
of onset times but not offset times and divergent time intervals. Inter-subject variability
affected all measures except the offset time (Table 2). Only network divergence is found to
be significantly sensitive to variation of all analysis parameters: window size, PCA variance
thresholds, and across subjects (Table 2). Inter-subject variability is empirical in nature and
can be minimized with training and selecting optimal task design based on performance. By
setting up empirically realistic values for the analysis parameters, decoding of signal timing
using the temporal microstructure analysis can be of immense practical importance for
experimental paradigms where task performance is measured on a trial-by-trial basis.

Using other dimensional reduction techniques in addition to PCA and ICA that use linearly
independent basis functions is possible in the TMCN framework. Some prominent examples
are probabilistic PCA (Tipping and Bishop, 1999) and locally linear embedding (Roweis and
Saul, 2000). However, the use of dual basis (having orthogonal basis vectors) for the control
subspace when multiple controls are used is necessary for disambiguation of recruitment
from modulation. Therefore, TMCN can be viewed as an overarching computational
framework to interpret the temporal organization/reorganization of large-scale brain
networks.

4.4. Paired associate task

Earlier fMRI studies with paired associate memory tasks showed increased activation in
superior temporal sulcus (STS), auditory cortex and visual areas during the delay period
(Tanabe et al., 2005). Smith et al. (2010) showed a decrease in the amount of medial
temporal lobe recruitment simultaneously occurring with an increase in lateral temporal-
prefrontal functional connectivity during the consolidation period. Based on these findings
we hypothesized that information about well-learned visual-visual (VV) and visual-auditory
(VA) pairs may be processed in two different but spatially overlapping neurocognitive
networks. Using a standard source localization scheme, synthetic aperture magnetometry
(SAM Barnes and Hillebrand, 2003), the spatial organization of spectral power difference
between the two tasks can be mapped (Fig 7). The areas reported by earlier fMRI studies
(Tanabe et al., 2005) such as superior temporal sulcus and visual cortex showed significant
differences in the beta band response between VA and VYV tasks during the S1 period.
However, the temporal information of various cognitive components present in ERFs (Fig 6)
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are lost within the relatively long time window on which SAM is applied. An important
point to note is that SAM is a minimum variance beamformer, which relies on the inversion
of the covariance matrix of the data, for a selected time window. While it is possible to use
SAM on smaller time windows, it can render the covariance matrix used for the SAM
calculation more susceptible to noise and hence less reliable. Additionally, cognitive
subtraction hypothesis makes detection of recruitment from task comparisons ambiguous
(Friston et al., 1996; Banerjee et al., 2008). Finally, as depicted in Fig 6, the multivariate
nature of task specific differences make it difficult to assign a meaningful sensor latency. Is
it the latency of one of the left temporal channels or one of the right frontal channels?
TMCN analysis addressed the issue of quantifying a control (baseline) network from VV
tasks and revealed the timing of VA specific recruitment to this baseline VV network. The
first network divergence on a subject-by-subject basis can be interpreted as a signature of
long term memory retrieval because the degree of visual perception required for stimulus
processing is equivalent for the two tasks after extensive behavioral training. The lowest
median latency was 80 ms for one subject whereas 4 subjects had latencies ranging between
130-300 ms. A longer latency of 470 ms was observed in one subject. Overall, these
numbers are higher compared to the putative sensory processing times in auditory and visual
cortices reported from MEG recordings (e.g. Raij et a/., 2010).

Other groups have studied the temporal structure of paired associate memory recall (though
not with auditory objects similar to ours) with EEG/MEG recordings using a variety of
measures to detect functional brain networks (Honda et a/., 1998; Tallon-Baudry ef al.,
1999; Gruber et al., 2001; Nieuwenhuis et al.,, 2011). With univariate timing analysis of
ERPs, Honda ef a/. (1998) detected a posterior positive component in ERP occurs between
0.3 to 0.8 s after S1 onset during visual-to-visual paired associate recall when compared to
choice tasks. Gruber ef a/. (2001) observed increased gamma band activity in posterior and
anterior electrode sites in similar tasks during the recall phase. Tallon-Baudry et a/. (1999)
found enhanced beta and gamma band responses during a DMS task where subjects had to
store visual objects in their working memory. Recently, Nieuwenhuis ef a/. (2011) reported
gamma power peaked first in the fusiform face area around 0.3 s and then in the posterior
parietal cortex around 0.6 s. Overall, these findings are in line with our results. We also
found evidences of multiple network recruitment (> 2) taking place within S1 period.
Unfortunately, sufficient task components do not exist in the current experimental design to
interpret the neurophyisiological relevance of higher order recruitment, but such possibilities
exist if TMCS paradigm is used judiciously.

4.5. Limitations and potential applications

Multivariate neural time series at the sensor level can be highly non-Gaussian (Elul et al.,
1975; Freyer et al., 2009) as well as temporally correlated (Daniel, 1964; Wu et al., 2004).
These are two of the prominent challenges in handling EEG/MEG data to decode neural
events (Wu et al., 2004). An important result of the TMCN framework is that the goodness
of fit of reconstruction measure follows a Gaussian distribution by construction. This
reduces the complex problem of decoding at the level of multivariate non-Gaussian neural
time series from two different task conditions into a simpler problem of decoding from
bivariate Goftime series using Gaussian statistics. However, this simplicity also brings a
key limitation for this method. A well defined hypothesis or experimental paradigm is
required to apply TMCN. For example comparison of tasks where no information processing
via compensatory mechanism of recruiting brain networks occur, is not very meaningful
unless followed up with functional connectivity analysis. Hence, choosing the control and
task based on a hypothesis of network interactions is a critical requirement to apply this
method. Another important limitation that requires immediate attention is the spatial
localization of control and recruited networks. Identifying the control network localization
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from smaller time windows is an active area of research whereas localization of recruited
networks from residuals of TMCN analysis involves favorable signal to noise ratios that can
be empirically addressed, e. g. by collecting larger number of trials. Both are interesting
future extensions of this method. At the current stage, drawing interpretations to networks in
the source space is not recommended.

To conclude, we note several potential uses for TMCN to generate clinically relevant
biomarkers for studying brain disorders. First, one could employ a control and active task in
a subject at risk for a disorder against a normal population. It is conceivable that the at-risk
subjects could show a delayed (or early) network divergence compared to the normal
population. Second, one would use a single task, but the control would be a normal
population response and the active condition would be that of a patient or an at-risk subject.
It may be that a brain disordered subject will not employ the same network as a control
population (and thus there would be a poor Goffor the subject). Finally, a relationship
between behavioral performance measures such as reaction times and decision times with
underlying network response onset times may provide a deeper understanding of the
operational principles involved in normal and aberrant cognitive functions.
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Figure 1.

Decoding network timing from multivariate neural recordings. Multivariate problem of
pattern discrimination over time is converted to a bivariate statistical comparison of the
goodness of fit time series (see text for details).
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Figure2.

MEG Extension of the Tagamets and Horwitz (1998) Large-Scale Neural Model: A)
Locations in the ventral visual stream where sources are placed for simulating MEG data.
The 3-D Talairach coordinates have been projected to the nearest gray matter on the cortical
surface within a window of 5mm (see Table 1 for coordinates). The medial surface locations
V1 and V4 are shaded in lighter color, pink whereas the lateral surface locations in IT and
prefrontal cortex in brighter red. B) The basic Wilson-Cowan unit. E represents the
excitatory population and | the inhibitory population in a local assembly such as a cortical
column. Local synaptic activity is dominated by the local excitation and inhibition, while
afferents account for the smallest proportion, as indicated by the synaptic weights shown. C)
A cortical area is modeled by a 9 x 9 sets of basic units. The excitatory population is shown
in bold lines above the inhibitory group, shown in lighter lines. Individual units in the
excitatory and inhibitory populations within a group are connected as shown in (B). D) The
working memory circuit in the prefrontal area of the model. It is composed of different types
of units, as identified in electrophysiological studies, and shown in (C). Each element of the
circuit shown is a basic unit, as shown in (B). Inhibitory connections are affected by
excitatory connections onto inhibitory units. These D2 units also are the source of feedback
into earlier areas. B, C, and D are adapted from Tagamets and Horwitz (1998).
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Figure 3.

Temporal and spatial organization of simulated neural activity: A) Total currents in each
brain location computed using the large-scale neural model for two different levels of
attention (0 and 0.3). During stimulus S1, the sensory and object identification areas are first
activated (V1, V4 and IT) followed by activations in prefrontal network (D1, D2, C and R).
For low attention (or zero attention, passive viewing) all units are silent during delay period
because no working memory is required to perform the DMS task. D1 and D2 units have
sustained activation (recruited) during delay period if high attention is required to store the
identity of S1 in working memory while the other units were silent. Neuromagnetic (MEG)
activity is simulated at 264 sensors using a forward solution with spherical head model.
Topographic maps of this activity are plotted over a transparent hemisphere at times t=15 ms
(within initial S1) and t=100 ms(during delay). B) MEG activity was computed with realistic
and spherical head models on simulated source time series. Only 7 representative channels
(from major brain landmarks) out of 264 channels that were simulated are shown in this
figure. Same channels are plotted for both models with y axes scaled to magnify similarities/
differences between active and passive viewing conditions.
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TMCN analysis on simulated MEG data: A) The two principal components (and
corresponding eigenvalues A) computed from the DMS task at lowest attention level that
spans the control subspace. The sum of the eigenvalues amounts to the total variance of the
control condition that is capture by these two patterns. B) The mean goodness of fit of
reconstruction (Gof) time series plotted as a function of time when the difference in
attention levels is low. The error bars at 95% significance level are also plotted as a function
of time (shaded areas). In this scenario, lack of significant recruitment results in statistically
equivalent Gofs over time. C) The mean Gof time series from two conditions are plotted as a
function of time when the difference in attention levels is high. The error bars at 95%
significance level are also plotted as a function of time (shaded areas). The regime of
difference in Gof distributions reflect the time scale of recruitment D) Sensitivity analysis
for onset time detection: Onset time plotted as function of different attention levels and for
different head models. For all levels of attention (except the zero attention scenario) the
same prefrontal network (D1, D2) is recruited in the delay period, with varying degrees of
intensity. At low attention (gain < 0.09), onset time of this prefrontal network recruitment
occurs twice by chance. However, after a threshold level of attention (0.09), onset time is
consistently detected for all higher levels. This is a modified version of the figure presented
in Banerjee et al. (2011)
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Figureb5.

Paired Associate task: A visual or auditory object is paired with a visual stimulus S1. The
subject’s task is to correctly discriminate if a visual-visual (VV) pair or visual-auditory (VA)
pair follows S1. This requires long term memory retrieval of the correct identity of the
paired visual or auditory object expected to appear in S2 after a delay period following S1.
Several brain areas may interact during different stages of task execution, some of which are
indicated in the hypothetical diagram. The main goal of TMCN analysis was to detect
instantiations of such network reorganizations as they appear in visual-to-auditory paired
associate task within the S1 period.
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Figure6.
A) MEG sensor layout (2D) view (Courtesy: NIMH MEG Core) The first two letters for
each sensor label represents the location of the sensor: The first letter codes for hemispheres,
left (L) and right (R); the second letter codes for the anatomical regions/lobes, temporal(T),
frontal (F), parietal (P), occipetal (O) and central (C). B) Event related fields (ERFs) during
S1 (1.8 sec) time locked to onset of the stimulus. Some key sensors where significant
activity differences between VV and VA tasks are observed are magnified in size.

Sensor Names - 275 Channel Systems
CHANNEL COUNT:
Frontal Central Parietal Occipital Temporal | Totals
Z (Midline) 3 4 1 3 0
L (Left) 33 24 22 19 34
R (Right) 33 24 22 19 34

Totals 69 52 45 41 68
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Figure7.

Source Imaging: Relative power difference in beta frequency band between the VA and VV
conditions using a synthetic aperture magnetometry (SAM) beamformer. Only the beta band
showed significant differences (p < 0.05) in auditory and object recognition areas across the
group. The data is projected on the cortical surface using the standard Montreal
Neurological Institute (MNI) template. The image reveals a complex network showing
significant (p < 0.05) relative power difference (positive values are locations where VA
power is greater than VVV, negative values are locations where VA power is lower than VV),
which includes higher auditory areas, superior temporal gyrus (STG), V4 in the left
hemisphere and inferior temporal (IT), V1 and V4 (visual cortical areas) in the right
hemisphere. A realistic head shape was used in the forward model. (see text for details)
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Figure8.

Principal component Analysis: A) The first principal components of VV (top row) and VA
(bottom row) ERPs are plotted in 0.3 s time windows with their respective normalized
eigenvalues (). B) The overlap between the first principal components is expressed as the
angle between two subspaces computed (bottom row) following Bjérck and Golub (1973).
C) The number of PC’s required in each subject to satisfy 60% to 90% (color coded)
variance threshold in 300 ms windows.
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Figure9.

For PCA variance threshold of 85%, the temporal evolution of the goodness of fit of
reconstruction for VA and V'V task conditions are plotted over 0.3 sec time windows (mean
in dark solid lines and standard error of mean at 95% signifiance as shaded areas). The
control subspace used in both cases are computed using PCA on the ERF of VVV condition
over the corresponding time window (see text for details). The divergent time interval
spanned by the rectangular box indicates significant network divergence. The left and right
edges of the box signify onset and offset times. In this particular example only one
bootstrapped iteration of the analysis is displayed for each subject. We performed statistics
on the network measures, onset and offset times and network divergence from many
realizations
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Subject-by-subject non-parametric statistics on A) onset times B) divergent time interval C)

Network divergence, ND (area within the divergent interval between two Gof curves)

obtained for the first divergence period. The box plots show the median (the thick red lines),

25 th and 75th pecentiles (horizontal boundaries of a box), 2.5 and 97.5th percentiles

(horizontal black lines) and the outliars (red +)
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Figure 11.

Median divergent time intervals (y-axis) where recruitment takes place in VA compared to
VV during the entire stimulus duration of S1. Each subject (x-axis) had varying number of
networks recruited however, network 1 and 2 consistently recruited by all subjects (see text
for details). The lower edge of each bar represents the median onset time and the upper edge
represents median offset time.
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Table 1

Talaraich coordinates of the cortical sources used for simulation of MEG data

Talairach coordinates (mm)

Brain areas (Sources) X Y z
Vi -12 =94 4

V4 -12 -84 1

IT -63 -18 -16

C -50 25 4

D1 -50 25 4

D2 -50 25 4

R -50 25 28
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