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Abstract

Advanced bone imaging with quantitative computed tomography (QCT) has had limited success 

in significantly improving fracture prediction beyond standard areal bone mineral density (aBMD) 

measurements. Thus, we examined whether a machine learning paradigm, gradient boosting 

machine (GBM) modeling, which can incorporate diverse measurements of bone density and 

geometry from central QCT imaging and of bone microstructure from high-resolution peripheral 

QCT imaging, can improve fracture prediction. We studied two cohorts of postmenopausal 

women: 105 with and 99 without distal forearm fractures (Distal Forearm Cohort) and 40 with at 

least one grade 2 or 3 vertebral deformity and 78 with no vertebral fracture (Vertebral Cohort). 

Within each cohort, individual bone density, structure, or strength variables had areas under 

receiver operating characteristic curves (AUCs) ranging from 0.50 to 0.84 (median 0.61) for 

discriminating women with and without fracture. Using all possible variables in the GBM model, 

the AUCs were close to 1.0. Fracture predictions in the Vertebral Cohort using the GBM models 

built with the Distal Forearm Cohort had AUCs of 0.82–0.95, while predictions in the Distal 

Forearm Cohort using models built with the Vertebral Cohort had AUCs of 0.80–0.83. Attempts at 

capturing a comparable parametric model using the top variables from the Distal Forearm Cohort 
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resulted in resulted in an AUC of 0.81. Relatively high AUCs for differing fracture types suggest 

that an underlying fracture propensity is being captured by this modeling approach. More complex 

modeling, such as with GBM, creates stronger fracture predictions and may allow deeper insights 

into information provided by advanced bone imaging techniques.
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Introduction

Advanced bone imaging methodologies, such as quantitative computed tomography (QCT) 

and high-resolution peripheral QCT (HRpQCT), can measure numerous bone macro- and 

microstructural properties, along with volumetric bone mineral density (vBMD) of cortical 

and trabecular bone separately (1,2). Recent publications examining the relative ability of 

these different measurements to assess fracture risk have focused primarily on each 

measurement individually, which is helpful to better understand whether certain attributes of 

bone can discriminate between those with and without fractures (3–11). The focus has 

generally been on bone imaging measurements that are better understood, such as vBMD or 

cortical thickness. However, there is a potential for increased predictive ability when all 

available measurements are used in a multivariable approach, including measurements 

produced by these scanners that are less understood but which also may relate to the 

structural and biomechanical properties of bone. Additionally, more complex modeling 

allows for non-linear relationships and interactions between variables. Statistical learning is 

a framework used extensively in finance and industry to predict outcomes, such as the price 

of a stock in six months (12). Many of these approaches, of which gradient boosting 

machines (GBM) are a particular instance, focus on improved prediction by combining 

information from many variables that individually may not be significant but together are 

very informative; of less concern is the functional form of any one variable. Indeed, these 

methods have often been successful even when the predictors are highly related. The goal of 

our study was to use GBM to determine whether prediction of specific fractures can be 

improved by incorporating additional information available from the scanners and to assess 

whether the resulting models that are useful for one kind of fracture are equally robust for 

predicting fractures of another type. Moreover, we hoped to evaluate the potential usefulness 

of underutilized measurements available from newer bone imaging devices.

Methods

Study subjects

As previously described,(13) we identified 99 postmenopausal community women ≥ 50 

years of age who were newly diagnosed with a distal forearm (Colles’) fracture in 2001–08. 

The fracture cases were frequency matched to 105 postmenopausal controls recruited from 

an age-stratified random sample of Olmsted County, MN women (Distal Forearm Cohort). 
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None of the controls had a history of an osteoporotic fracture, ie, a hip, spine or forearm 

fracture that occurred after age 35 years.

Similarly, we recruited 40 postmenopausal Olmsted County women ≥ 50 years of age who 

had a moderate-to-severe vertebral fracture that was clinically diagnosed within the past 5 

years.(14) They were compared to 78 controls with no vertebral fracture who were recruited 

from the same age-stratified random sample of community women (Vertebral Cohort). The 

78 controls were also controls in the Distal Forearm Cohort. Seven subjects were cases in 

both the Distal Forearm Cohort and in the Vertebral Cohort. Thoracic and lumbar vertebral 

body fractures were assessed according to the semiquantitative method(15) from the QCT 

lateral localizer images, which have no projection distortion and a nominal resolution of 0.5 

mm. Deformities were classified as mild (grade 1), moderate (grade 2) or severe (grade 3), 

although only the latter two groups were included in this analysis.

Women with distal forearm or vertebral fractures due to severe trauma or to a specific 

pathological process were excluded, as was anyone who had undergone vertebroplasty or 

intermittent parathyroid hormone therapy. Women treated with antiresorptive drugs 

(bisphosphonates, hormone therapy or selective estrogen receptor modulators [SERM]) were 

included, however, as these agents do not appear to greatly alter bone structure.(16) Each 

subject at the time of study visit also underwent anthropometric assessment, which included 

measurement of height to the nearest 0.1 cm and weight in light clothes without shoes to the 

nearest 0.1 kg. Written informed consent was obtained from all subjects.

Bone density and structure measurements

Hip, forearm, and total body areal BMD (aBMD) were made by dual-energy x-ray 

absorptiometry (DXA) using the Lunar Prodigy system (GE Healthcare, Madison, WI), and 

evaluated according to technical criteria from the International Society of Clinical 

Densitometry.(17) Osteoporosis and osteopenia were defined by World Health Organization 

criteria,(18) using femoral neck (FN) T-scores from the Lunar device. In addition to aBMD 

measurements, approximately 60 other bone and soft tissue parameters were available from 

DXA scans, as documented in the Appendix.

FN and LS vBMD and geometry were assessed by single-energy spiral QCT using a 64-

channel system (Somatom Sensation 64, Siemens Healthcare, Forcheim, Germany). In 

addition to total vBMD, we also measured trabecular vBMD in the central 70% of the 

midportion of the vertebral bodies and non-dominant FN. A number of bone macrostructure 

measurements were derived, including total cross-sectional area, moment-of-inertia, section 

modulus and cortical thickness, recognizing that thickness of the cortical shell is 

overestimated in the vertebrae due to volume averaging artifacts.(19,20) In addition to 

overall summaries for a mid-portion of the FN and vertebrae, many of the measurements 

were summarized within quadrants (posterior [P], superior [S], anterior [A], and inferior [I]). 

Finally, we included in the analysis a large number of additional variables as defined in the 

Appendix.

In lieu of detailed trabecular microstructure data for the spine or hip, we evaluated the non-

dominant distal radius and tibia by HRpQCT (XtremeCT, Scanco Medical AG, Brüttisellen, 
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Switzerland). As described elsewhere, (21) distal radius or tibia trabecular bone volume/total 

volume fraction (BV/TV) was derived from trabecular vBMD. A thickness-independent 

structure extraction was used to identify three-dimensional ridges (centers of the trabeculae), 

and trabecular number (Tb.N) was then taken as the inverse of the mean spacing of the 

ridges.(22) Analogous with standard histomorphometry,(23) trabecular thickness (Tb.Th) 

was calculated as BV/TV ÷ Tb.N, and trabecular separation (Tb.Sp) as (1-BV/TV) ÷ Tb.N. 

Tb.Sp.SD, the standard deviation of Tb.Sp, is a measure of trabecular variation.(24) 

Validation studies show excellent correlation (R≥0.96) of these parameters with gold 

standard ex vivo μCT.(25) Trabecular architectural disruption was also assessed by 

connectivity density (Conn.D), and the structure model index (SMI) indicated whether 

trabeculae were more plate-like (lower values) or more rod-like (higher values). We 

recognize that there may be significant limitations to measuring SMI using HRpQCT. Thus, 

MacNeil and Boyd (26) found relatively poor correlations (R2 = 0.075) for SMI measured 

by HRpQCT versus μCT. By contrast, unpublished data from Scanco Medical AG 

(Brüttisellen, Switzerland) suggests that SMI measured by HRpQCT correlates well with 

that measured using μCT. For this, 15 different 1 cm x1 cm x 1 cm radius cubes (BV/TV 

range, 0.04–0.19) from human donors were scanned with μCT (20 microns) and then with 

HRpQCT using the standard patient protocol resolution (82 microns); SMI showed an R2 of 

0.94 between the results from the two scanners. The distal radius or tibia cortex was 

segmented from the gray scale image with a Gaussian filter and threshold.(22) Cortical 

vBMD and area were measured directly and the periosteal circumference calculated from 

the contour; cortical thickness (Ct.Th) was then calculated as Area ÷ Circumference. 

Excellent correlation (R=0.98) has also been shown with Ct.Th measurements by μCT (26). 

Total and cortical section modulus, as well as components of these measurements, were also 

included. Again, we also included numerous additional variables produced by the device as 

defined in the Appendix.

Statistical analysis

Before fitting the GBM models, each bone variable was age-standardized by fitting a linear 

regression model using all subjects in both study cohorts, extracting the residuals, then 

adding to that the overall mean, ie, presenting the variables as if they were all measured on 

68-year-old women (overall mean age of the cohorts). We used the R package GBM (27) to 

build separate prediction models for distal forearm and for vertebral fractures. The shrinkage 

penalization, which controls the rate of optimization in the model, was set at 0.01 (values 

closer to 1 are computationally faster but less accurate). Tree complexity controls the 

maximum number of interactions, and in these models, was set at three (ie, 2 and 3-way 

interactions were allowed) for the main analysis. The number of steps or terms in the fit was 

determined by cross-validation to prevent overfitting. Note that the GBM program utilizes a 

stochastic (random) component in the fitting process; stochastic methods are well 

established, but are normally only necessary for the most difficult maximization problems. 

One consequence of this is that the final solution will differ slightly from one run to another 

on the data. Multiple runs were done to verify that this had only minor impact on the results. 

Resulting models were further evaluated by exploration of functional form plots (ie, looking 

for indications of non-linearity or interactions).
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Models were fit predicting fracture status (case versus control) using both the Distal 

Forearm Cohort and the Vertebral Cohort. Separate models were fit using the HRpQCT 

variables, the spiral QCT variables, the DXA variables, or all three sets of variables as 

indicated in Figure 1. All models included height, weight, body mass index (BMI), and FN 

aBMD since these are standard measurements used to assess fracture risk. The GBM model 

developed to predict distal forearm fractures in the Distal Forearm Cohort was then used to 

predict vertebral fracture status in the Vertebral Cohort and vice versa. As a secondary 

analysis, the top 10 variables from the model using all three sets of variables were used to 

create a logistic regression model using interactions and splines to determine whether the 

predictive ability of these variables could be captured in a more standard model. Logistic 

regression and stepwise model selection were used when attempting to build this model. As 

an expression of fracture discrimination, the area under a receiver operating characteristic 

curve (AUC) was assessed using the predictive values from the various GBM and logistic 

models.(28) Analyses were performed using R version 2.11.0 (R Foundation for Statistical 

Computing, Vienna, Austria) and SAS 9.2 (SAS Institute Inc., Cary, NC).

Results

Table 1 summarizes the AUCs when the various distal forearm fracture models were used to 

extract predictions for the Distal Forearm Cohort and for the Vertebral Cohort. For the 

Distal Forearm Cohort there were 267 bone density, structure, or strength variables available 

for use in the analysis (Appendix); individually they had AUCs for predicting forearm 

fracture outcomes ranging from 0.50 to 0.71 (median 0.61). FN aBMD, a standard 

measurement used clinically, had an AUC of 0.68. When only HRpQCT variables along 

with FN aBMD, height, weight and BMI were used in the GBM modeling, the AUC was 

significantly higher at 0.96. Similarly, when only DXA variables or only spiral QCT 

variables were used instead of HRpQCT variables, the resulting AUCs were quite high (0.95 

and 1.0, respectively). Using all 267 variables (DXA, HRpQCT, spiral QCT) also produced 

an AUC of 1.00.

Because AUC values are artificially high when models and predictions are based on the 

same data, we also applied the prediction models developed from the Distal Forearm Cohort 

models to data from the Vertebral Cohort. When the distal forearm fracture GBM model 

with only HRpQCT variables was applied to the Vertebral Cohort, the AUC for predicting 

vertebral fractures dropped considerably, to 0.82. The AUC was 0.88 when the distal 

forearm GBM model using only DXA variables was applied to the Vertebral Cohort. The 

distal forearm GBM model using all three sets of variables provided the best overall 

prediction of vertebral fractures, with an AUC of 0.95.

Table 1 also summarizes the AUCs when the various vertebral fracture models were used to 

generate predictions for the Vertebral Cohort and the Distal Forearm Cohort. For the 

Vertebral Cohort, the 267 available variables used in the GBM models had AUCs ranging 

from 0.50 to 0.84 (median=0.61) for discriminating those with and without vertebral 

fractures when used individually. For predicting vertebral fracture, the AUC for FN aBMD 

was 0.69. Using the HRpQCT measurements alone in the GBM model improved the AUC 

markedly to 0.95. Using the DXA measurements alone in the GBM model resulted in an 
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AUC of 0.99. Using the spiral QCT variables alone or using the combination of DXA, 

HRpQCT, and spiral QCT variables, the AUCs were 1.00. Although the GBM model fit 

using only DXA variables produced a high AUC, the spiral QCT variables dominated the 

top 20 list when all HRpQCT, spiral QCT, and DXA variables were included in the 

modeling process.

As shown in Table 1, when the vertebral fracture GBM models derived from the Vertebral 

Cohort were applied to the Distal Forearm Cohort, the AUCs for predicting a distal forearm 

fracture ranged from 0.78 to 0.83.

Figure 2 shows the predicted probability of a distal forearm fracture for subjects, grouped by 

the traditional FN aBMD T-score classification (osteoporotic, osteopenic, normal). The 

predictions come from the GBM model using the HRpQCT variables plus BMI, height, 

weight, and FN aBMD as applied to the Distal Forearm Cohort. Higher probabilities of 

fracture were observed for those subjects who experienced a distal forearm fracture; and, as 

might be expected, the subset of osteoporotic subjects (as defined by FN aBMD T-score) 

had the highest predicted probability of fracture. Similarly, women defined as osteoporotic 

who had not yet developed a fracture were identified as being at higher risk for fracture 

compared with women who were defined as osteopenic or having normal FN aBMD but had 

not yet developed a fracture.

Interestingly, women with normal FN aBMD who had experienced a distal forearm fracture 

were clearly identified as being at high risk for fracture and were distinguished from women 

with normal FN aBMD but no forearm fracture. Based on the fracture predictions derived 

from the GBM model using the spiral QCT variables plus BMI, height, weight, and FN 

aBMD and applied to the Vertebral Fracture Cohort, Figure 3 shows an even stronger 

separation between vertebral fracture and non-fractured subjects, irrespective of FN aBMD 

T-score group.

Table 2 lists the top twenty variables included in each of the four GBM models fit using the 

Distal Forearm Cohort. Given the stochastic approach used in this modeling, the variables 

chosen differed somewhat each time the model was fit; however, the predictive ability was 

consistent when the modeling process was repeated 100 times. Additionally, for the model 

fit using the HRpQCT variables, the tibia structure model index (SMI) was consistently the 

top variable listed when the models were run multiple times, while radius cortical density 

and SMI were consistently among the top variables. Less familiar variables such as Radius 

Imin/Cmin (mm^3), the radius total section modulus relative to the larger main axis of 

inertia, and Radius Imax (mm^4), also appeared in the top 20 variables. When the models 

were fit using only these 20 variables, the resulting AUC values were quite similar to those 

using all variables, due in part to the strong correlation between all of these measurements. 

When only the 9 top variables were used, the AUC dropped slightly to 0.94, suggesting that 

there may be a minimum number of variables necessary to create these models. When these 

reduced distal forearm models were applied to the Vertebral Cohort, the AUC similarly 

dropped slightly to 0.80. When all HRpQCT, spiral QCT, and DXA variables were included 

in the modeling process, the spiral QCT variables dominated the top 20 list.
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Table 3 shows the top twenty variables included in each of the four the GBM models fit 

using the Vertebral Cohort. As was true with the Distal Forearm Cohort, variables such as 

cortical density and SMI were among the top listed HRpQCT variables. The strongest 

predictor among the models fit using only the spiral QCT variables was a measure of 

variability within the FN cortical vBMD measurement, followed by vertebral histogram 

entropy and overall vertebral trabecular vBMD. When the model building was limited to 

these three variables, the AUC for predicting a vertebral fracture was essentially unchanged. 

The strongest predictor among the models fit using only the DXA variables was ultradistal 

ulna aBMD followed by the area of the femoral shaft and total fat measured in the arms. 

Although the GBM model fit using only DXA variables produced a high AUC, the spiral 

QCT variables dominated the top 20 list when all HRpQCT, spiral QCT, and DXA variables 

were included in the modeling process.

As a secondary analysis, an attempt was made to mimic the distal forearm prediction model 

using a traditional logistic regression approach, with interactions and quadradic and cubic 

terms to capture the non-linearity, using the top ten HRpQCT variables listed in Table 2 

(first column). As applied to the Distal Forearm Cohort, the model it was built with, the 

AUC was 0.81 compared to 0.96 using the GBM approach. When this alternative Distal 

Forearm model was applied to data from the Vertebral Cohort, the AUC dropped to 0.73. 

Additionally, the need for interactions within the GBM framework was investigated by 

fitting a GBM model with a tree complexity setting of one. This resulted in an AUC of 0.88 

in the Distal Forearm Cohort, indicating that interactions play an important role in the GBM 

model.

Discussion

Using the GBM modeling approach and taking advantage of all of the variables produced by 

the DXA, HRpQCT and spiral QCT scanners, we were able to differentiate fracture and 

non-fracture subjects with surprisingly high predictive ability, with AUCs near 1.0 for 

predicting distal forearm fractures in the Distal Forearm Cohort and vertebral fractures in the 

Vertebral Cohort. There is, of course, a possibility that the models may be overfitted, 

thereby producing results better than would be obtained applying these models to new data; 

however, prediction was still strong when each model was applied to the other fracture type, 

suggesting that these models may be capturing underlying fracture susceptibility attributes, 

regardless of fracture type. Of particular note, using parameters derived from these advanced 

bone imaging measurements, and no clinical information, GBM models predicted the 

increased fracture risk among women who were considered osteopenic or had normal bone 

density by DXA (Figs. 2 and 3). These results suggest that there are structural parameters 

assessed by QCT and/or HRpQCT which have unique biomechanical interactions that are 

contributing to diminished bone strength and predisposing these women to fracture; these 

are clearly not being captured by aBMD T-scores. On the other hand, use of all DXA 

measurements together may prove more useful than relying on only a handful of standard 

DXA values.

These results further illustrate the utility of such novel modeling approaches to help better 

identify previously understudied measurements currently being captured by DXA, QCT and 
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HRpQCT scanners that may allow us to improve our understanding of the factors 

contributing to bone fragility. Indeed, the data presented in Tables 2 and 3 strongly suggest 

that potentially important information is being ignored when we focus only on the well 

characterized skeletal parameters such as aBMD, vBMD and cortical thickness. Although it 

is unclear at present what attributes some of the HRpQCT variables are capturing, our 

results provide the rationale for additional biomechanical analyses that will be needed to 

better understand the implications of relatively understudied skeletal parameters such as 

radius mean Imax. Moreover, one of the important concepts in data mining is that small 

contributions from many variables can lead to high quality predictions (29). Thus, rather 

than devise ever newer imaging techniques, there may be opportunities for better analysis of 

currently available data.

There are many possible machine learning methods available, such as neural networks and 

support vector machines (12), but we chose GBM for three primary reasons: there is 

evidence that boosting methods are one of the approaches least affected by overfitting; the 

models can accommodate both continuous and categorical variables; and software is readily 

available in the R statistical package (27). Moreover, GBM models have the advantage over 

logistic regression in that non-linearity and interactions between variables can be captured 

without prior specification, which is of obvious importance in the search for new fracture 

prediction parameters. Moreover, GBM incorporates the stochastic component, eg falling, 

that is so important in fracture pathogenesis. No intimation is implied or intended that ours 

is the “best” method: the point made here is that important information is contained within 

the currently collected variables which analytic methods such as this may be able to extract.

“Boosting” is a process that combines many separate prediction rules, some of which may 

be quite weak on their own, to produce a more powerful combined classifier. It is an 

important concept that has been discussed in the machine learning literature for the past 

twenty years (29). Gradient boosting, which combines ideas of boosting with classification 

trees, was introduced by Friedman in 1999, who clarified its relation to several other 

important statistical methods including lasso, bagging, and stage-wise models.(30–32). 

Applications of the GBM approach to deal with complex sets of variables can be seen in the 

ecology literature, (33–35), but this approach has rarely been applied in the analysis of 

medical data.

In several of our models, SMI derived from the HRpQCT parameters appeared as a 

significant predictive parameter for fracture. As noted earlier in the Methods, HRpQCT may 

not accurately measure SMI (26). Despite this limitation, we chose to include SMI in our 

models as it likely does reflect some “quality” of trabecular bone that is being assessed by 

HRpQCT, even if that quality is not the true SMI as assessed by μCT.

In this report, we have demonstrated the potential power of the GBM approach to provide 

better fracture prediction models by re-analyzing existing information. It must be 

recognized, of course, that the resulting models were derived from our own specific datasets 

and need to be validated by others both in a case-control study such as this and using 

longitudinal cohort data. As such, our work represents mathematical prediction models that 

require further validation for the prospective clinical prediction of fractures. Nonetheless, 
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our results provide some sense of an upper bound on how well we might expect to do with a 

given set of variables. Moreover, by including heretofore underutilized information provided 

not only by newer imaging devices but also existing DXA scanners, we were able to identify 

new variables for exploration. Although it is highly unlikely that DXA, HRpQCT and spiral 

QCT assessments would all be combined in routine clinical practice, the goal of this 

preliminary study was instead to illustrate the potential of a novel statistical approach for 

obtaining deeper insights into predictor variables that might improve fracture risk 

assessment. Ultimately, the hope is that an approach such as this would be used by 

researchers to incorporate new prediction algorithms into scanners in order to provide 

increased predictive ability of fractures within the clinical setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Design of the analysis whereby a model predicting distal forearm fractures in the Distal 

Forearm Cohort was also used to predict fractures in Vertebral Cohort and vice versa.
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Figure 2. 
Boxplots of the probability of a distal forearm fracture as predicted by the model fit using 

the Distal Forearm Cohort using the HRpQCT variables, plus BMI, height, weight, and 

femoral neck aBMD. The box boundaries show the 25th and 75th percentiles of the values 

and the middle line is drawn at the median value.
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Figure 3. 
Boxplots of the probability of a moderate-to-severe vertebral fracture as predicted by the 

model fit using the Vertebral Cohort using the spiral QCT variables, plus BMI, height, 

weight, and femoral neck aBMD.
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