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Abstract
Selenium (Se) is an essential micronutrient. Its biological functions are associated with
selenoproteins, which contain this trace element in the form of the 21st amino acid, selenocysteine.
Genetic defects in selenocysteine insertion into proteins are associated with severe health issues.
The consequences of selenoprotein deficiency are more variable, with several selenoproteins being
essential, and several showing no clear phenotypes. Much of these functional studies benefited
from the use of rodent models and diets employing variable levels of Se. This review summarizes
the data obtained with these models, focusing on mouse models with targeted expression of
individual selenoproteins and removal of individual, subsets or all selenoproteins in a systemic or
organ-specific manner.
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1. Selenoproteins: identification and oxidoreductase functions
Glutathione peroxidase 1 (GPx1) [1] was the first identified selenoprotein. Initially isolated
from human erythrocytes, it was shown to protect hemoglobin from oxidative damage.
Later, it was found to be dependent on selenium (Se), [2–5]. Se is incorporated into GPx1 in
the form of the 21st amino acid, selenocysteine (Sec). In comparison to cysteine (Cys), Sec
has a lower pKa and is a stronger nucleophile [6]. Almost all known selenoproteins are
oxidoreductases with Sec in the active center. Sec insertion requires the presence of an in-
frame UGA codon and the Sec insertion sequence (SECIS) element, a kink-turn RNA
structure. In eukaryotes, the SECIS element is located in the 3’ UTRs of selenoprotein
mRNAs. Biosynthesis of Sec occurs on its own tRNA, tRNA[Ser]Sec, which is initially
charged with Ser. SECIS-binding protein 2 (SBP2 or Secisbp2) binds the SECIS element
and recruits Sec-tRNA[Ser]Sec along with other factors involved in Sec insertion [7, 8].
Characterization of the structure and conserved sequences of the SECIS element allowed
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development of computational programs for identification of selenoprotein genes in
sequence databases [9–11]. The SECISsearch program was designed to recognize sequence,
structural and thermodynamic parameters of SECIS elements [12]. By searching for SECIS
elements, in-frame UGA codons in the ORFs and the presence of Cys-containing orthologs
of selenoproteins, selenoprotein genes could be identified in genomic sequences.
Accordingly, the human genome was found to contain 25 selenoprotein genes (Table 1).
Most of these proteins participate in maintaining cellular redox homeostasis, including three
thioredoxin reductases (TRs), five glutathione peroxidases (GPx1), methionine sulfoxide
reductase (MsrB1), and three thyroid hormone deiodinases (DIs).

As shown in Table 1, the functions of several selenoproteins have been established, but the
majority of selenoproteins have no known functions. Indeed, besides TRs, GPxs, MsrB1,
DIs, and SPS2, the specific reactions catalyzed by selenoproteins are not known. However,
conservation of selenoproteins among species and preservation of the complex biosynthetic
pathway for their production indicate the importance of this class of proteins. So far, the
common feature of all selenoproteins with the identified functions is their participation in
oxidoreductase reactions. This type of reaction is important in intracellular redox
homeostasis and antioxidant defense. GPxs (and possibly the N-terminal domain of SelP)
are capable of reducing various peroxides [13, 14]. TRs and MsrB1 participate in the
reduction of disulfides and methionine (Met) sulfoxide residues in proteins, respectively
[15–18]. DIs catalyze reductive removal of iodine (I) from the outer ring of the prohormone
thyroxine (T4) yielding various forms of thyroid hormones [19, 20]. Sep15, SelM, SelH,
SelS, SelK, SelN, SelT, SelW are less characterized, whereas almost no studies have been
done on SelV, SelO, and SelI. Most likely, many these proteins are also oxidoreductases
with Sec in the active site. More than half of mammalian selenoproteins are characterized by
the thioredoxin-like fold. This fold is a two-layer α/β/α sandwich structure that includes a
conserved CxxC motif (i.e., two Cys separated by two other residues). In some cases, one of
the Cys residues can be substituted with Ser or Thr. This fold is especially common for
enzymes that catalyze formation or isomerization of disulfide bonds or perform other
functions that change the redox state of cysteine residues. In addition, at least 6 out of 25
selenoproteins (Sep15, SelK, SelM, SelN, SelS, and SelT) reside in the ER lumen, an
additional selenoprotein (D2 or Dio2) is associated with ER membranes (its catalytic site
faces the cytosol), and several secreted selenoproteins pass through this compartment. The
enrichment of the ER with selenoproteins suggests the roles of selenoproteins in ER-
associated pathways, such as protein secretion/modification (Sep15, SelM [21]) and ER-
associated protein degradation ERAD (SelS, SelK [22, 23, 24]).

2. Mouse models for studying selenoproteins
Knockout (KO) and transgenic models can be used for evaluating protein functions as well
as for their impact on physiology and pathology. To examine selenoprotein functions, a
number of mouse models have been developed and characterized. Generally, these models
can be divided into two groups. The first group includes animals lacking (or overexpressing)
one or two selenoproteins. The second group includes various mouse models characterized
by the altered selenoprotein biosynthesis pathway. These animals develop systemic
selenoprotein deficiency. The use of these animal groups is discussed in the following
sections.

2.1 Targeted removal of individual selenoproteins
Several mouse models with targeted inactivation of one or two selenoproteins have been
developed and characterized thus far [25, 26]. Their overview is given in Table 2. Three
selenoproteins were found to be essential for embryogenesis: TR1, TR3 and GPx4.
Knockout of cytosolic TR1 leads to embryonic death between days E8.5 and E10.5 [27, 28].
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While the cardiomyocyte-specific TR1 KO mice developed normally, the neuronal system
(NS)-specific TR1 KO caused severe neurological symptoms, such as ataxia and tremor
[29]. These symptoms were the result of cerebellar hypoplasia, abnormal foliation, perturbed
lamination and reduced proliferation of granule cell precursors in the cerebellum [29].
Mitochondrial TR3 KO induced embryonic lethality between days E13.5 and E15.5.
Compared to controls, embryos were smaller, developed anemia and showed high levels of
liver apoptosis. NS-specific TR3 KO mice developed normally without signs of
neurodegeneration; however, the cardiomyocyte-specific TR3 KO mice died from the heart
failure within a few hours of birth [30]. Disruption of mitochondrial TR3 in B and T cells
did not affect viability and functions of immune cells [31]. Similar to mice, TR3
polymorphism was found to be associated with dilated cardiomyopathy in humans. Both
nucleotide substitutions were in the open reading frame and were part of the FAD-binding
domain [32].

GPx4 is another essential selenoenzyme: its homozygous genetic inactivation was found to
be lethal by E7.5 [33–35]. GPx4 is represented by cytosolic (cGPx4), nuclear (nGPx4) and
mitochondrial (mGPx4) isoforms. These isoforms are synthesized from the same gene by
alternative initiation of transcription and differ by their N-terminal sequences. nGPx4
expression is driven by its own testes-specific promoter, which lies inside the first intron of
the cytosolic GPx4 transcript [36]. The role of GPx4 in sperm maturation was supported by
the finding that this protein was a structural component of the mitochondrial capsule of male
germ cells [37]. In addition, spermatid-specific knockout of GPx4 led to infertility in mice
[38]. Moreover, inducible inactivation of GPx4 in mice and primary cells led to an increased
12/15-lipoxygenase-derived lipid peroxidation followed by apoptosis triggered by activation
of apoptosis-inducing factor. To further access the function of each isoform, several KO/
transgenic mouse models were prepared. nGPx4 KO mice developed normally; neither
testicular structure nor fertility were affected in these mice; however, the delayed sperm
chromatin condensation was observed [39]. The sequence between the two alternative
translation initiation codons corresponding to mitochondrial and cytosolic forms encodes a
mitochondrial signal peptide. Thus, introduction of the in-frame stop codon between these
start codons resulted in the specific disruption of the mGPx4 form without affecting the
expression of cGPx4. mGPx4 KO male mice were infertile [40]. These experiments revealed
an essential role of mGPx4 in male reproduction.

KO of other GPxs did not affect viability and fertility. The major findings with GPx KO
mice are summarized in Table 2. GPx1 KO mice did not show significant phenotypes;
however, they were more susceptible to oxidative stress and viral myocarditis, as well as to
reoxygenation damage due to ischemia-reperfusion injury [41]. GPx2 is mainly expressed in
the epithelial tissues, and its disruption affects intestinal cells [42]. GPx1 and GPx2 double
KO mice are characterized by severe colitis when maintained on an atherogenic diet [43].
Recently, GPx3 KO mice were developed [44]. Even though no significant phenotype was
observed, this model revealed the specific binding of GPx3 to the basement membranes of
renal cortical proximal and distal convoluted tubules.

Experiments designed to understand the function of selenoproteins in the thyroid gave
ambiguous results. Both general and liver-specific knockout of DI1did not lead to significant
changes in the thyroid hormone axis. [45, 46]. DI2 is expressed in the pituitary and is
thought to be a T4 sensor, which is known to be a part of the negative feedback loop for
thyroid hormone production. DI2 KO mice showed pituitary resistance to T4 [47]. In
addition, DI2 was found to be important in the conversion of T4 to T3 in peripheral tissues
(T3 stimulation is critical for the development of the auditory functions) [48, 49]. DI2
activity was increased in the WT mouse cochlea at postnatal day 7, and then declined by day
10. This DI2 activity correlated with the onset of hearing. This observation suggests that DI2
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plays an important role in producing local T3 for the proper cochlear development [50]. At
the same time, DI2 deficiency resulted in delayed cochlear differentiation that was the
reason for irreversible deafness of DI2 KO mice [49]. DI1/DI2 double KO mice did not
augment the phenotype of D1 or D2 KO mice; it was rather the sum of each single KO [51].
DI3 is responsible for inactivation of T3 and T4. DI3 KO mice showed signs of central
hypothyroidism, suggesting the importance of T3 degradation for maintaining the thyroid
hormone axis [52]. D3 KO mice, like DI2 KO mice, were characterized by impaired
auditory function, but with different pathogenesis. Unlike DI2 KO, DI3 KO mice displayed
accelerated cochlear differentiation, which also resulted in deafness. This might suggest a
critical role of DI3 in local protection of the developing tissues from premature T3 exposure
and differentiation [53].

Experiments with SelP KO mice revealed that the major function of SelP is the transport of
Se from liver to peripheral tissues [54, 55]. SelP KO mice developed symptoms of general
Se deficiency, such as ataxia, seizures and male infertility [56, 57]. All these symptoms
(except male infertility) could be rescued by an increase in dietary Se. Some of these
phenotypes could be rescued by an increase in dietary Se. Apparently, SelP KO mice are a
particularly well suited model to study Se deficiency. Analysis of the liver-specific Sec
tRNA[Ser]Sec KO (liver Trsp KO) mice (these mice lack expression of all selenoproteins in
hepatocytes and will be discussed later in this review) showed decreased expression and
activity of selenoproteins in peripheral tissues, which confirmed the transport function for
the hepatic SelP [58]. The levels of Se in the brain remained unaffected in liver-specific
Trsp KO mice; also, these mice did not show neurological phenotypes. These findings
suggested another essential SelP function in the brain. Restoration of liver SelP expression
in SelP KO mice restored Se transport and removed symptoms associated with Se deficiency
[59]. Thus, hepatocyte-derived SelP provides the major Se supply for kidney, testis and
brain. However, under Se deficiency, overexpression of SelP in the liver was unable to
rescue the phenotypes of SelP KO mice, which indicates the importance of local SelP
production to support selenoprotein biosynthesis under limiting Se conditions [59]. SelP was
found to be recognized by two receptors: ApoER2 (mostly in the testes) and megalin. Mice,
lacking these receptors demonstrated Se deficiency in testes and kidney proximal tubule
epithelial cells, respectively [60, 61]. SelP consists of two parts. The N-terminal region
contains a conserved UxxC motif, which is part of the domain characterized by the
thioredoxin-like fold [62]. The C-terminal part of SelP contains multiple Sec residues and is
involved in providing Se for the synthesis of other selenoproteins. Deletion of the C-
terminal region of SelP resulted in a milder phenotype compared to the KO of the entire
protein. Overall, the C-terminus plays a critical role in Se transport [63]. Infection of mice
lacking the C-terminal domain of SelP with the African tripanosomiasis resulted in lower
tissue injury in comparison with SelP KO mice. These mice also showed decreased
production of reactive oxygen species and decreased apoptosis in the liver immune cells,
increased parasite clearance capacity of myeloid cells, and increased survival. All these
observations indicate that the N-terminal part of SelP plays an important role in these
processes [64].

Recently, three additional KO models were described [65]. A KO of MsrB1 did not lead to
strong phenotypes: the KO mice were viable and fertile. However, various tissues of MsrB1
KO mice were characterized by a decreased level of MsrA (methionine sulfoxide reductase
specific for the S-diastereomer of Met sulfoxide) and increased levels of malondialdehyde,
protein carbonyls, protein Met sulfoxide, as well as higher levels of oxidized glutathione and
reduced levels of free and protein thiols; all this indicates the persistent oxidative stress in
MsrB1 KO mice.
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Systemic inactivation of SelK in mice also did not affect viability and reproduction [66].
However, as a result of the receptor mediated Ca2+ flux, SelK KO mice showed
compromised functions of the immune cells, including T cell proliferation, T cell and
neutrophil migration, and Fcγ receptor-mediated oxidative burst in macrophages; they also
showed higher susceptibility to viral infection.

Unexpected results were obtained from the analysis of the mouse model characterized by
targeted inactivation of the Sep15 gene. These Sep15 KO mice developed congenital nuclear
cataracts. Sep15 mRNA was enriched during lens development, which suggested Sep15
function in lens formation. These cataracts did not appear to be due to severe oxidative
stress or glucose dysregulation and presumably are associated with improper folding status
of lens proteins caused by Sep15 deficiency [67].

Genetic defects in SEPN1 gene are associated with a human disorder called SEPN1 related
myopathy, which includes early-onset muscle atrophy, myotendinous contractures and
muscle weakness [68]. These symptoms lead to respiratory insufficiency, spine rigidity and
severe scoliosis. Recently, a mouse model for SelN (Sepn1) deficiency was developed and
characterized. Although SEPN1 KO mice showed normal embryogenesis and growth, they
demonstrated limited motility and body rigidity during physical exercise [69]. By 4 months
of age, these animals displayed a reduced pool of muscle satellite cells (SC), which are
essential for adult muscle growth and repair. SelN expression was drastically increased
during muscle regeneration followed by cardiotoxin-induced injury. Under these conditions,
SelN KO mice showed poorer recovery, characterized by lower injured-to-colateral muscle
mass ratio and excessive SC loss. The essential role of SelN in SC homeostasis is consistent
with the observation that biopsies from patients with SEPN1 related myopathies showed a
significant SC loss [70].

There are several selenoproteins, which are still poorly characterized, and which would
benefit from the development and characterization of KO models. These proteins include
SPS2, SelI, SelO, SelS, SelT, SelV, and SelW.

2.2 Overexpression of selenoproteins in mice
Besides selenoprotein gene KO mice, several studies described animals with overexpression
of individual selenoproteins. One of the best such models is the GPx-overexpressing mice
(GPx1oe). These animals were shown to develop hyperglycemia and hyperinsulinemia, and
they also developed high levels of blood insulin and increased islet β-cell mass [71–73]. It
should be noted that similar phenotypes were observed in Type 2 diabetes models. When
maintained on a high fat diet, these mice developed obesity and insulin resistance, unlike
GPx1 KO mice, which showed reduced insulin levels and decreased islet β-cell mass [72].
This phenotype of GPx1oe mice might be explained by insufficient ROS-mediated signaling
in islet β-cells. In a different model of diabetes, expression of GPx1 had a beneficial effect.
Here, overexpression of GPx1 in the islet β-cell of the db/db mice alleviated hyperglycemia
at an early age and completely reversed it by 20 weeks of age [74]. Since redox signaling
plays a critical role in β-cell signal transduction, both deficiency and excess of GPx1 are
capable of deregulating signaling pathways. These results suggest the importance of
controlled GPx1 expression for prevention of Type 2 diabetes.

Another research group developed mice with transgenic overexpression of mitochondrial
GPx4 (mGPx4) [75]. Compared to littermate controls, these mice developed attenuated
cardiac dysfunction in response to ischemia/reperfusion injury. Overexpression of mGPx4
reduced the levels of lipid peroxidation and slightly increased the activity of the electron
transport chain (ETC) complexes I, III, and IV.
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Another example of overexpression of a selenoprotein in an animal model is the
overexpression of SelM in rats [76]. These animals showed a better response to oxidant
treatment. When fed with high Se diet, transgenic rats showed altered ERK signal
transduction in the brain, which was characterized by inhibition of the alpha/gamma-
secretase activity and Tau protein phosphorylation. These observations suggest a possible
protective role of SelM in the Alzheimer's disease [77].

3. Mouse models targeting the Sec biosynthesis pathway
Inactivating a single selenoprotein in the mouse can provide information about its function
and reveal phenotypes associated with its deficiency. However, targeting the Sec
incorporation machinery allows modulation of the expression of subsets or even all
selenoproteins. Many such models have been developed.

3.1 Sec incorporating machinery
In eukaryotic cells, Sec biosynthesis and incorporation is a complex multi-stage process [7,
8, 78, 79]. The overall pathway of Sec incorporation is illustrated in Fig 1. Sec is
synthesized on its own tRNA, tRNA[Ser]Sec, which is the product of the Trsp gene. Initially,
this tRNA is charged with Ser, forming Ser-tRNA[Ser]Sec. This reaction is catalyzed by
seryl-tRNA synthetase (SerRS). Ser-tRNA[Ser]Sec is further phosphorylated by
phosphoseryl-tRNA[Ser]Sec kinase (PSTK). The Se donor compound for the Sec
biosynthesis, selenophosphate, is synthesized by selenophosphate synthetase 2 (SPS2). Sec
synthase (SecS or SepSecS) catalyzes the pyridoxal phosphate-dependent reaction which
results in Sec-tRNA[Ser]Sec formation. Once formed, Sec-tRNA[Ser]Sec associates with
EFSec and SBP2, and this supramolecular complex is translocated to the nucleus [80]. SBP2
recognizes the SECIS element, which is located in the 3’-UTR of selenoprotein mRNAs.
This complex then supports the incorporation of Sec in response to the in-frame-UGA
codon. There are several features which are critical for proper function of the pathway: 1) as
shown in Fig 1, SBP2 and EFSec shuttle between the nucleus and cytosol. This allows
binding selenoprotein mRNAs in the nucleus and inhibition of the nonsense mediated decay
induced by the in-frame stop codon [81]; 2) SPS2 is itself a selenoprotein, forming a
positive feedback loop [82]; 3) recently, it was found that SPS2 can also synthesize
thiophosphate, promoting incorporation of Cys in place of Sec; in mice maintained on the
Se-deficient diet, insertion of Cys at UGA codon of TR1 equaled that of Sec [83]; and 4)
Sec tRNA[Ser]Sec is a unique tRNA, which undergoes multiple modifications, further
regulating Sec incorporation. These modifications include isopentenyladenosine
modification at position 37 and methylcarboxymethyl-5’-uridine (mcm5U) at position 34.
The last step in Sec-tRNA[Ser]Sec maturation is the methylation of mcm5U, which may be
assisted by Secp43 and results in the formation of methylcarboxymethyl-5’-uridine-2’-O-
hydroxymethylribose (mcm5Um) [84]. This process is highly sensitive to the primary,
secondary and tertiary structure of the tRNA as well as to overall Se status. mcm5U supports
the synthesis of “housekeeping” selenoproteins, such as GPx4, TR1 and TR3, whereas the
methylated tRNA is needed for expression of “stress-related” selenoproteins, such as GPx1,
GPx3, and MsrB1. This change in selenoprotein expression pattern is commonly observed
during Se deficiency, but the precise molecular mechanism is unknown.

There are several ways to regulate efficiency of Sec incorporation. In order to modulate
expression of selenoproteins, the easiest way is to change the levels of dietary Se. To
examine the effects of dietary Se on various health parameters, one can adjust Se
concentration in rodent chow. For example, 0.1 ppm Se in the diet corresponds
approximately to the human Recommended Dietary Allowance for adults, whereas 0.4 ppm
Se may correspond to the diet supplemented with 200 µg Se/day, which is the dose most
often used in clinical trials involving Se [85–87]. This approach was successfully applied to
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examine Se function in diabetes [88], cancer [89], the immune response [90, 91], etc. The
disadvantage of this approach, however, is that with the change in dietary Se in order to
regulate selenoprotein expression, the levels of low molecular weight Se compounds are also
changed, which might itself influence certain pathways.

3.2 Trsp transgenic mouse models
Stable expression of mutant Trsp was shown to severely affect selenoprotein biosynthesis by
interfering with the Sec incorporation pathway by a dominant-negative mechanism.
According to this hypothesis, two mouse models were generated. In the first model, A37
was substituted with G37 [92], and in the second, T34 was replaced with A34 [93]. Both
models lacked mcm5Um34; thus, expression of stress-related selenoproteins was severely
reduced, whereas expression of housekeeping selenoprotein genes was little affected. The
effect of G37 transgene was tissue-specific: it was significant in the liver and kidney, but not
in testes [92]. The G37 transgenic mice were studied for various health parameters. These
mice were found to be more susceptible to viral infection [94], colon cancer [95] and X-ray
damage [96]. Crossing the G37 and C3/Tag mice provided a good model for studying the
function of selenoproteins in prostate cancer. Such mice were found to accelerate the
development of prostatic epithelial neoplasia (PIN), suggesting a protecting role of
selenoproteins during prostate cancer development [97]. The G37 mice demonstrated
enhanced muscle growth in the setting that modeled exercise overload. These data correlated
with the initial activation of the insulin signaling pathway, which included increased Akt
and p70 phosphorylation [98]. Abnormal insulin signaling might be, in part, the reason for
glucose intolerance and lead to a diabetes-like phenotype, that was recently observed in the
G37 mice [88].

3.3 Trsp knockout mouse models
Another approach of inactivating selenoprotein function in mice is to target the Trsp gene.
The complete KO of Trsp leads to embryonic lethality [99], but a conditional removal of
Trsp is possible [100]. Development of the tissue-specific KO models helped examining
important functions of selenoproteins in the heart and skeletal muscle, endothelial cells
[101], skin [102], bone [103], neurons [104] and the immune cells (macrophages, T cells
and hematopoietic tissues) [105–107], and also studying more dispensable selenoprotein
functions in the liver [58, 108], mammary gland [100] and podocytes [109]. KO of Trsp in
the endothelial cells led to embryonic death at day E14.5 due to necrosis of the central
nervous system, erythrocyte immaturity and subcutaneous hemorrhage. Mice with the
myocyte-specific Trsp KO died 12 days after birth from acute myocardial failure [101].
Deletion of Trsp in the skin resulted in runt phenotype, epidermal neoplasia, and abnormal
development of the hair follicles. Altogether, these abnormalities induced weight loss and
early death. Thus, selenoproteins have a role in maintaining skin integrity [110]. Osteo-
chondroprogenitor-specific Trsp KO mice showed multiple skeletal abnormalities, including
growth retardation, abnormal epiphyseal plates, delayed ossification, and chondronecrosis of
cartilage [103]. The neuron-specific Trsp KO induced severe neurodegeneration in the
hippocampus and led to the absence of certain interneurons [110] (similar to what was
observed in the neuron-specific GPx4 KO model). Besides, these mice showed degeneration
of the Purkinje and granule cells that led to cerebral hyperplasia. In several studies, Se
modulated the immune response. To understand the function of selenoproteins in immune
cells, T and B cell-specific Trsp KO mice were developed. The T-cell-specific Trsp KO
decreased the pool of mature T-cells and impaired T-cell dependent antibody response. Lack
of antioxidant enzymes caused extensive oxidative stress and weak proliferation in response
to T-cell receptor stimulation [106]. Macrophage specific-Trsp KO mice showed impaired
invasiveness, which might be explained by hyperproduction of ROS and altered expression
of extracellular matrix proteins [105]. Ablation of the Trsp gene in hematopoietic tissues
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resulted in anemia, which led to an increased production of erythroid progenitors in the bone
marrow as well as to thymus atrophy [107]. The liver-specific Trsp KO induced expression
of phase II enzymes, including various GSTs [111]. By preventing SelP synthesis and
secretion, the liver-specific Trsp KO dramatically decreased plasma SelP. Thus, these mice
showed symptoms of Se deficiency, which could be rescued by increased Se intake [93].
The mammary gland-specific Trsp KO mice showed increased levels of p53 and decreased
expression of BRCA1 tumor suppressor [100]. In addition, mice carrying a knockout of Trsp
in the liver were found to have an increased apolipoprotein E (ApoE) level and elevated
cholesterol levels in plasma that was accompanied by enhanced expressed of the genes
involved in cholesterol biosynthesis, metabolism and transport [112]. Interestingly,
transgenic mouse models that express housekeeping, but not stress-related selenoproteins
restored the expression of these genes (made them close to the corresponding levels
observed in wild type controls). These studies showed that housekeeping selenoproteins
have a role in regulating lipoprotein biosynthesis and metabolism and were consistent with
the earlier studies showing that selenium deficiency increased ApoE expression. Overall,
mouse models with conditional Trsp KO turned out to be a powerful tool for understanding
functions of selenoproteins in various tissues.

3.4 Knockout/transgenic mouse models
An additional strategy to investigate the effect of transgene overexpression is to develop
KO/transgenic animal models. In the case of selenoproteins, liver Trsp KO mice were
crossed with the G37 or A34 mice. In both cases, similar expression patterns of
housekeeping selenoproteins were observed. As discussed above, restoration of
housekeeping selenoprotein genes partially decreased elevated levels of ApoE and serum
cholesterol that had been observed in the liver-specific Trsp KO. Another useful knockout/
transgene mouse model was also described [113]. STAF (Sec tRNA gene transcription
activating factor) is a transcription factor for several RNA PolII and RNA PolIII-dependent
genes. In this study, the authors overexpressed Trsp lacking the STAF binding promoter
region and afterwards removed the WT Trsp. Interestingly, removal of the STAF binding
site did not affect Trsp levels in the heart and testis, but showed severe reduction of the
transgene in the liver, kidney, lung, spleen, and brain. Moreover, methylation of Trsp at A34
was significantly decreased, and expression of stress-related selenoproteins was reduced.
These mice demonstrated the neurological phenotype similar to that of SelP KO mice. These
findings indicated the importance of the STAF binding region in regulation of Sec
tRNA[Ser]Sec expression and its proper modification status.

4. Concluding remarks
Development of appropriate animal models is a critical step in the characterization of
biological functions of genes. A great deal of research in the area of Se biology was devoted
to the understanding of functions of this micronutrient and selenoproteins in health and
disease. It is clear from the discussion above that the functions of several selenoproteins and
their forms could not have been determined without the use of appropriate KO models.
However, there are also several obstacles resulting from the analysis of human diseases
associated with the genetic defects in selenoprotein biosynthesis. For example, the presence
of hypomorphic alleles of SBP2 gene was associated with retarded growth due to thyroid
axis imbalance in children. At the same time, these patients experienced myopathy,
waddling gait and mental retardation [114, 115] and were characterized by bilateral hearing
loss and infertility. Recent research demonstrated that mutations in SecS gene are associated
with the development of autosomal-recessive progressive cerebellocerebral atrophy [116]
and that the observed phenotypes could be partially reproduced in the corresponding KO
animal models. Indeed, analysis of the SelP KO mice could explain all symptoms, except for
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abnormalities in the thyroid function. While hypothyroidism is one of the first complaints in
patients with impaired Sec incorporation pathway, in mice this effect is less pronounced.
There are also several open questions. For example, mice maintained on the Se-deficient diet
survive for more than one year with no visible abnormalities. The lifespan of the G37
transgenic mice was not affected: these mice were fully fertile, and did not develop
symptoms similar to those in the patients with defects in SBP2. Understanding the reasons
for the differences between human and mouse phenotypes could provide important new
insights into the role of Se, Sec and selenoproteins in human health, and also into the
molecular mechanisms of Sec incorporation and selenoprotein function. This research may
also reveal novel regulatory mechanisms.

Highlights

➢ Se regulates pathways through incorporation into selenoproteins in the form
of Sec

➢ Recent findings in selenoprotein biosynthesis and functions are summarized

➢ Overview of available knockout mouse models relevant to Se biology is
provided

➢ Mouse models with targeted expression of selenoproteins are described

➢ Limitations of using animal models and insights into human health are
discussed

Abbreviations

Cys cysteine

DI1 thyroid hormone deiodinase type 1

DI2 thyroid hormone deiodinase type 2

DI3 thyroid hormone deiodinase type 3

ER endoplasmic reticulum

ERAD ER associated degradation

ICP-MS inductively coupled plasma mass spectrometry

GF germ-free

GPx1 glutathione peroxidase 1

GPx2 glutathione peroxidase 2

GPx3 glutathione peroxidase 3

GPx4 glutathione peroxidase 4

GSH glutathione

I iodine

MsrA methionine-S-sulfoxide reductase

MsrB methionine-R-sulfoxide reductase

NS neuronal system

SC satellite cells
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Se selenium

Sec selenocysteine

SECIS selenocysteine insertion sequence

SelH selenoprotein H

SelI selenoprotein I

SelK selenoprotein K

SelM selenoprotein M

SelN selenoprotein N

SelO selenoprotein O

SelP selenoprotein P

SelS selenoprotein S

SelT selenoprotein T

SelV selenoprotein V

SelW selenoprotein W

Sep15 the 15 kDa selenoprotein

SPS1 selenophosphate synthetase 1

SPS2 selenophosphate synthetase 2

TR1 thioredoxin reductase 1

TR3 thioredoxin reductase 3

Trsp Sec tRNA[Ser]Sec gene

UGT UDP-glucose:glycoprotein glucosyltransferase

UPR unfolded protein response
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Figure 1. Mechanisms of eukaryotic Sec biosynthesis and incorporation
Sec tRNA[Ser]Sec is initially charged with Ser, which is further phosphorylated by PSTK.
SPS2 facilitates the synthesis of selenophosphate, the selenium donor compound. SecS then
catalyzes Sec formation. SECp43 may be involved in the methylation of Sec tRNA[Ser]Sec at
the A34 position. Protein factors, including SBP2 and EFSec, bind the SECIS element,
located in the 3’-UTRs of selenoprotein mRNAs. After translocation to the cytosol, protein
factors support interaction with the ribosome and Sec incorporation.
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Table 1

Mammalian selenoproteins: localization and functions

Selenoprotein Localization Function References

15 kDa selenoprotein (Sep15) ER - Trx-like fold

- regulated by ER stress

- interacts with UDP-glucose: glycoprotein
glucosyltransferase

- potentially involved in glycoprotein folding

[21, 117–119]

Thyroid hormone deiodinase 1
(DI1, Dio1)

Plasma membrane - removes iodine from the outer ring of T4 to produce
plasma T3

- catalyzes deiodination and thus inactivation of T3

[120, 121]

Thyroid hormone deiodinase 2
(DI2, Dio2)

ER - converts T4 to T3 locally in tissues [48]

Thyroid hormone deiodinase 3
(DI3, Dio3)

Plasma membrane - catalyzes deiodination of T4 to T3 in peripheral
tissues

[121, 122]

Glutathione peroxidase 1
(GPx1)

Cytosol - GSH-dependent detoxification of H2O2 (enriched in
liver, kidney, erythrocytes)

[13]

Glutathione peroxidase 2
(GPx2)

Cytosol - GSH-dependent detoxification of H2O2 (enriched in
the epithelium, especially in the intestine and lung)

[123, 124]

Glutathione peroxidase 3
(GPx3)

Plasma - GSH-dependent detoxification of H2O2 (synthesized
predominantly by kidneys and secreted to plasma)

[125]

Glutathione peroxidase 4
(GPx4, PHGPx)

Cytosol
Mitochondria
nucleus (testis-
specific)

- has cytosolic, nuclear and mitochondrial isoforms

- protects lipids from H2O2-mediated oxidation

[36]

Glutathione peroxidase 6
(GPx6)

Cytosol - GSH-dependent detoxification of H2O2(enriched in
the olfactory epithelium)

[124]

Selenoprotein H (SelH) Nucleus - Trx-like fold

- protects cells from H2O2, increases mitochondrial
biogenesis and CytC production

- AT-hook family protein. In response to redox
changes facilitates synthesis of genes responsible for
de novo GSH synthesis and phase II detoxification

[126–128]

Selenoprotein I (SelI) Membrane unknown function [12]

Selenoprotein K (SelK) ER membrane - modulates Ca2+ influx that affects immune cell
function

- component of ERAD

[66]

Selenoprotein M (SelM) ER - Trx-like fold

- protects neurons from oxidative stress

[129]

Selenoprotein N (SelN,
SEPN1, SelN1)

ER membrane - expressed in skeletal muscle, heart, lung, and
placenta

[24, 130]
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Selenoprotein Localization Function References

- controls redox state of the intracellular calcium-
release channel (ryanodine receptor (RyR)), and
therefore affects Ca2+ homeostasis

- mutations in SelN gene cause congenital myopathy

Selenoprotein O (SelO) Mitochondria - unknown function [12]

Selenoprotein P (SelP) Plasma - Se transport to peripheral tissues and antioxidant
function

[62, 131, 132]

Selenoprotein R (SelR,
MsrB1, Selx1)

Cytosol - reduces methionine-R-sulfoxide residues in proteins
to methionine

[18]

Selenoprotein S (SelS, SEPS1,
Tanis, VIMP, and SELENOS)

ER membrane - upregulated upon treatment with pro-inflammatory
cytokines and glucose deprivation

- ERAD component

[23, 24]

SPS2 Cytosol - synthesis of selenophosphate [82, 133]

Selenoprotein T (SelT) ER and Golgi - Trx-like fold

- redox regulation

- plays a role in cell adhesion

[134]

Thioredoxin reductase 1 (TR1,
Txnrd1)

Cytosol - reduces the oxidized form of cytosolic thioredoxin

- has at least 6 isoforms differing in N-terminal
sequences

[15, 135]

Thioredoxin/glutathi one
reductase (TGR, TR2, Txnrd3)

Cytosol - has a glutaredoxin domain

- catalyzes a variety of reactions, specific for
thioredoxin and glutaredoxin systems

- expressed in spermatids

[136]

Thioredoxin reductase 3
(Txnrd2, TR3)

Mitochondria - reduces the oxidized form of mitochondrial
thioredoxin and glutaredoxin 2

[137]

Selenoprotein V (SelV) Cytosol - Trx-like fold

- unknown function

- expressed in spermatids

[126]

Selenoprotein W (SelW) Cytosol - Trx-like fold

- unknown function

- expressed in skeletal muscle and other tissues

[138]
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Table 2

Knockout of individual selenoprotein genes in mice

Gene Approach Phenotype References

GPx1 Whole body - no gross phenotypes

- susceptibility to oxidative stress and viral miocardites

- acceleration of cardiac hypertrophy and dysfunction

- reduced blood insulin and reduced islet β-cell mass in the
pancreas

[13, 139]

GPx2 Whole body - no gross phenotypes

- increased apoptosis in colon crypt cells during Se deficiency

[42]

GPx1+GPx2 Whole body - microflora-dependent intestinal colitis

- decreased levels of Paneth cells

[43]

GPx3 Whole body - no gross phenotypes [44]

GPx4 Whole body - embryos die at E7.5 [33]

GPx4 Neuron specific - severe neuodegeneration [34, 36]

GPx4 Spermatid-specific - male infertility [38]

nGPx4 Whole body - delayed sperm chromatin condensation

mGPx4 Whole body - male infertility

TR1 Whole body - embryos die at between E8.5 and E10.5 [27]

TR1 Cardiomyocyte-specific - no gross phenotype [27]

TR1 Neuron-specific - neurological symptoms, including tremor and ataxia as a result of
cerebral hypoplasia

[29]

TR3 Whole body - embryos die at between E13.5 and E15.5 [30]

TR3 Cardiomyocyte-specific - heart failure [30]

TR3 Neuron-specific, T-and B
cells specific

- no gross phenotype [30, 31]

DI1 Whole body - no gross phenotypes

- increased iodine excretion

[46]

DI2 Whole body - pituitary resistance to T4

- impaired thermogenic response to cold

- at thermoneutral conditions, high fat diet induced glucose
intolerance, and exacerbated hepatic steatosis

- poor hearing, poorly differentiated sensory epithelium

[48, 49]

DI3 Whole body - reduced levels of circulating T4 and T3 [52, 53]
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Gene Approach Phenotype References

- retarded development

- deafness with premature cochlear differentiation

DI1+DI2 Whole body - mild hypothyroidism

- the sum of DI1 KO and DI2 KO phenotypes

[51]

SelP - neuronal degeneration, leading to ataxia and seizures

- reduced selenoprotein expression in peripheral tissues

- male infertility

[54–56]

MsrB1 Whole body - no gross phenotypes

- increased markers of oxidative stress

[65]

Sep15 Whole body - congenital cataract [67]

SelK Whole body - no gross phenotypes

- impaired function of immune cells

[66]

SEPN1 Whole body - limited motility and body rigidity in response to physical exercise

- poor muscle regeneration due to age and injury induced SC loss

[69, 70]
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