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Abstract: We compared image restoration methods [Richardson-Lucy 

(RL), Wiener, and Next-image] with measured “scatter” point-spread-

functions, for removing subsurface fluorescence from section-and-image 

cryo-image volumes. All methods removed haze, delineated single cells 

from clusters, and improved visualization, but RL best represented 

structures. Contrast-to-noise and contrast-to-background improvement from 

RL and Wiener were comparable and 35% better than Next-image. 

Concerning detection of labeled cells, ROC analyses showed RL Wiener > 

Next-image >> no processing. Next-image was faster than other methods 

and less prone to image processing artifacts. RL is recommended for the 

best restoration of the shape and size of fluorescent structures. 
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imaging; (100.0100) Image processing; (100.1830) Deconvolution; (180.0180) Microscopy; 
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Introduction 

We are developing cryo-imaging technology and applying it to a very large number of 

biomedical and biotechnology applications, including stem cell therapy, metastatic cancer, 

gene expression mapping, mouse phenotyping, imaging agents, etc [1–5]. The Case cryo-

imaging system consists of a bright-field/fluorescence microscope, an imaging system 

positioner, and a customized, motorized cryostat, and significant automation software. By 

alternately sectioning and imaging, a cryo-imaging system will acquire 3D, high-resolution, 

large field of view, color, and molecular fluorescence image volumes from sequential images 

of the tissue block face. Serially acquired images of the sample block face are stacked to 

create 3D microscopic resolution, brightfield and fluorescence data sets with 15 μm-scale or 

better resolution. Cryo-imaging can detect even single fluorescently labeled cancer and stem 

cells throughout a mouse. In the case of bright fluorescent cells and transparent tissues, light 

scatter and subsurface fluorescence is an issue in block face imaging. In our laboratory, we 

have noted subsurface fluorescence from a variety of sources, including isolated fluorescently 

labeled stem cells and cancer cells [1,4]. Spaan et al, observed subsurface fluorescence in a 

section-and-image system when they imbedded arteries with a fluorescent plastic [6]. One 

approach to reduce this problem is to incorporate a microscope with optical sectioning 

capabilities. Tsai et al used laser ablation for removing physical sections of tissue and a two-

photon instrument for optical sectioning of the newly exposed volume [7]. Ragan et al. used a 

fast two-photon imager and serial milling to image an entire fluorescently stained heart 

embedded in paraffin at microscopic resolution [8]. Although incorporation of confocal or 

two photon microscopes is a powerful approach, the field of view is necessarily limited by a 

relatively high numerical aperture. That is, to achieve optical sectioning <10 µm on a 

“macro” confocal microscope (e.g., Leica LSI), the NA would be 0.31 and the field of view 

would be only 0.5 mm. With such a microscope, larger fields of view will necessarily require 

lower NA‟s and thicker optical sections. Similar limitations on field of view are found with 

other optical sectioning approaches such as computational optical sectioning with a high 

numerical aperture microscope or structured illumination [9,10], although more exotic 

solutions exist with larger fields of view [11]. With a field of view of 0.5 mm, it would take 

80 x 160 = 12800 images for each slice, an impractical approach. Instead, we typically use a 

field of view of 20 mm and use image processing on the physically sectioned data. Steyer et 

al. [4] developed the “Next-image” processing method wherein the next image in a stack is 

used to estimate and remove the subsurface contribution in the current image. Results were 

positive, but this method uses a difference between two images, necessarily a noisy process. 

Using an imaging cryomicrotome to assess blood flow with microspheres, van Horssen also 

subtracted a blurred version of the next image to reduce subsurface fluorescence [12]. 

In this report, we address the problem of subsurface fluorescence using image 

deconvolution methods which use more than two images, presumably providing improved 

contrast to noise characteristics as compared to Next-image processing. As reviewed in 
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references [13,14], there are a very large number of deconvolution algorithms which could be 

applied. We evaluated the Richardson-Lucy (RL) algorithm [15,16], a powerful iterative 

maximum likelihood image restoration algorithm, and the Wiener filter [17], a single step 

method that accounts for noise characteristics. Using a variety of test data sets, we 

qualitatively and quantitatively compare results to our “Next-image” processing method. In 

the next section, we briefly describe the three image restoration methods. 

Image restoration methods 

We assume that for fluorescence images in homogeneous tissue, output images o, are 

obtained by the convolution of the true signal i with the point spread function h as in Eq. (1). 

 ( ) ( ') ( ') 'o X h X X i X dX    (1) 

The independent variable X refers to position coordinates in 3D. By convention, the optic axis 

perpendicular to the imaging plane is the Z axis. Using matrix notation, the image formation 

model can be written as 

 ˆˆô hi n    (2) 

where n is a noise random variable. The point spread function (PSF), h, describes the nature 

of the blur mostly caused by scattering and absorption in the tissue. (Optical blur in our 

microscope is negligible as described later.) 

In the case where the image pixels are modeled as Poisson distributed, the expected value 

of each pixel is given by Eq. (2). 

Wiener Deconvolution 

The Wiener filtering method models additive noise. The filter is derived by considering the 

mean square error between the filtered estimate and the true object. We minimize to solve for 

the Wiener filtered image: 
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In Eq. (3) 
2

( )H  is the power spectrum of the PSF, 
2

( )I   is the power spectrum of the true 

image and 
2

( )N   is the power spectrum of the noise. The ratio 
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
 is referred to as the 

noise to signal ratio (NSR). The NSR serves to damp amplification of high frequency noise 

due to the low amplitude of the PSF power spectrum at high frequencies. Typically the noise 

and true image power spectra are not known apriori. It is common practice to approximate 

this ratio by a scalar parameter. 

Richardson Lucy (RL) method 

The RL algorithm is a non-linear iterative image restoration method obtained by maximizing 

the log likelihood function assuming Poisson statistics. The likelihood of observing the image 

voxel ( )o X  is given by Eq. (4). 

 
( )exp( ( ))( ( ) ( ))

( )
( )!

o Xo X i X h X
L X

o X

 
   (4) 
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Here ( )L X is the likelihood of observing the voxel at X. If we make a large number of 

observations of the voxel at X, then it would be Poisson distributed with a mean of i h . The 

log-likelihood over all voxels given the ideal image can be written as 

   ln( ) ln( ) ln !L o i h i h o dX       (5) 

The dependence of o , i and h  on position is implied in Eq. (5). Maximizing this function 

with respect to i  subject to the constraint that i  is non-negative yields the desired solution. 

The necessary condition for the ideal image i  to be the maximum of the log likelihood 

function is given by 
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Here *h  is the adjoint of h . Combining Eq. (6) and Eq. (7) we get a non linear algebraic 

equation for i . We can then use the method of successive approximation to set up an iterative 

scheme for determining i . 
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It has been shown that the RL solutions converges to the maximum likelihood solution [18]. 

The non negativity constraint is maintained if the initial guess is non-negative [15] and can be 

inferred from Eq. (8). 

The RL algorithm can amplify noise after a large number of iterations. One recommended 

approach is to simply stop the algorithm before noise amplification [15]. A modified 

likelihood function suggested by White [19] uses a damping parameter to control noise 

amplification. The dampened RL algorithm is obtained by modifying the log likelihood 

function (Eq. (9)) appropriately. 

 ln ( ( ))L f g X dX    (9) 

The functions f and g are given in Eq. (11) and Eq. (10) respectively. 
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The parameter T in Eq. (10) is the damping factor and is set as a multiple of the background 

noise in the image to prevent noise amplification. The variable N in Eq. (11) is an integer and 

the algorithm is insensitive to N as long as it is a large number and is usually set at 10. The 

variable N determines how flat the function f becomes for small values of y. The damped RL 

iteration is given by Eq. (12) 
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where ĝ  is max( ĝ ,1). 

Next-image processing 

The Next-image processing or subtraction method [4] is derived by considering an elementary 

model of light propagation in tissue i.e. the exponential decay and scattering of emitted 

fluorescence as it passes through a finite thickness of tissue. Based on this model the sub- 

surface fluorescence contribution from a slice below the block face is estimated and 

subtracted from the current image. 

The subsurface fluorescence compensated image is given by 

 0

1exp( )( ( , ))k t k k at i tai s i h x y i t f t       (13) 

where 0

ki is the ideal image of the kth section that we seek to estimate. The kth section lies just 

above the k + 1th section and s is the section thickness. The fraction of incident light that goes 

through the tissue air interface is 
att ; the fraction of emitted light that passes through the air 

tissue interface is 
tat ; 

if is the fraction of emitted epifluorescence intensity; 
t is the total 

tissue attenuation coefficient; ( , )h x y  is a two dimensional Gaussian function characterized 

by variance σ2, that approximates in-plane scattering of light. 

The exponential attenuation factor in Eq. (13) is replaced by a scaling factor k and 

rewritten as Eq. (14). 

 0

1.( ( , ))k at i ta k ki t f t i k i h x y     (14) 

Parameters k and σ are estimated in a semi-automated fashion as described by Steyer et al [4]. 

Briefly, individual microspheres are identified in the volume of interest. The image sections 

lying above the microspheres i.e. the regions containing the out of plane fluorescence are 

considered. For every image plane or region of interest containing out of plane fluorescence, 

the successive image is scaled and blurred by k and h respectively and subtracted from it. An 

objective function Fobj given by Eq. (15) was minimized to estimate k and σ 

 ( , )obj s RsF R i k     (15) 

where the sum is over all the pixels in the subtracted image region; ( , )sR i k  is the subtracted 

image region and i, k are the subscripts corresponding to a pixel location; Rs  is the mean 

value of the subtracted image region. 

Experimental methods 

Measurement and processing of PSF 

We measured the PSF from cryo-images of a fluorescent point source in phantoms. Green 

(515 nm) FluoSpheres sulfate microspheres of diameter 0.2 μm (Molecular Probes, 

Invitrogen, Eugene, OR) were embedded in a freezing compound (O.C.T, Tissue Tek, Ted 

Pella, Inc., Redding, CA) which when frozen has scatter and attenuation properties similar to 

frozen brain tissue [4]. Samples were sectioned at 10 μm thickness and imaged at 20x 

magnification, giving an in-plane pixel size of 5.4 µm. The nature of the image acquisition in 

cryo-imaging makes the PSF asymmetric along z; i.e., no fluorescence is left once the source 

is sectioned away. Twenty measured PSF‟s were aligned and averaged. There was a constant, 
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low background signal in the averaged PSF arising from the OCT which was estimated from 

the mean of the local sub-volume devoid of signal. This constant value was subtracted from 

the averaged PSF. The measured PSF was resampled to lower resolution by box-car 

averaging. For resampling to higher resolution, tri-linear interpolation was used. 

The above PSF depends upon scatter and absorption in the medium rather than optical 

properties of our microscope. For a 1X objective with 0.11NA, the manufacturer reports a 

depth of field of 477 μm, a distance much greater than the depth of measured subsurface 

fluorescence. To measure relative contributions of scatter and absorption versus optical 

blurring, we compared measurements in OCT or tissue to those in free-space. For 0.2 μm 

microspheres on a coverless glass slide in free space, digital images had a single bright pixel 

(5.4 μm pixel size) with no attenuation over a depth of field of 500 μm. In OCT gel, the 

image of the microsphere was typically 3x3 pixels and attenuated to background over a depth 

of about 100 μm. In free-space, 15 μm diameter microsphere images typically had low 

intensity, single pixel side lobes along x and y when imaged with a pixel size of 15.4 μm. 

After background subtraction, the intensity of the side lobes was 1/10 the peak intensity. 

There was minimal intensity drop over a 500 μm depth of field. As shown in multiple figures, 

there is significant blurring and attenuation of these microspheres in tissue and OCT. 

Biological sample and phantom experiments 

We performed a variety of imaging experiments using phantom and animal tissues. First, we 

created an O.C.T phantom containing 15.4 µm green fluorescent microspheres, mimicking 

cells. According to the manufacturer, microsphere size was 15.4 ± 1.4 μm (standard 

deviation) and the total fluorescence intensity varied by less than 4%. Images were acquired 

with an in-plane resolution of 4 μm and section thickness of 5 µm with a 27x magnification. 

Second, to test algorithms in autofluorescent tissues, we injected 5 million of the 15.4 µm 

green fluorescent microspheres through the left ventricle of mouse, providing an elegant test 

sample with microspheres trapped in small vessels throughout the mouse. After sufficient 

time to allow for circulation, the mouse was euthanized, embedded in O.C.T, and imaged 

using the cryo-imaging system [4]. Cryo-imaging was done at 7x magnification (15.6 μm in-

plane resolution) and 40μm slice thickness. Third, we also imaged 14 day embryos of a 

transgenic mouse line expressing green fluorescent protein (EGFP) under the regulatory 

control of the smooth muscle gamma-actin promoter (SMGA). These SMGA/EGFP mice 

express fluorescently labeled smooth muscle delineating the vascular, respiratory, and GI 

systems. In all experiments, a long pass GFP filter cube (Exciter: HQ470/40x, Dichroic: 

Q495LP, Emitter: HQ500LP, Chroma, Rockingham, VT) was used. The excitation peak was 

475nm and the emission peak was 509nm. Animal experiments were covered under an 

IACUC approved protocol. 

Restoration experiments and analyses 

All image processing and analysis was done in Matlab using algorithms previously described 

and PSF measured as above. Unless indicated otherwise, the following parameters were used: 

Wiener (NSR = 0.01), RL (N = 20, T = 3), and Next-image processing parameters were as 

follows: μt was, O.C.T. (187 cm-1) heart (267 cm-1), liver (218 cm-1), brain (161 cm-1), and 

fat (254 cm-1) ; σ was, O.CT.(7.2 μm), heart (9.1 μm), liver(7.5 μm), brain (11.2 μm), and fat 

(12.2 μm). 

We qualitatively and quantitatively evaluated restoration. To compare images 

qualitatively following restoration, we windowed the images so that the microspheres 

correspond to the brightest objects in the processed and unprocessed images. Second, to 

determine the contrast to noise ratio and contrast to background ratio, we used morphological 

reconstruction to determine the background in the unprocessed and the restored images. The 

bead locations were determined by hysteresis thresholding. The upper and lower thresholds 

for hysteresis thresholding were determined manually by inspecting the microsphere 
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intensities and the histogram of the image. The maximum intensities of the microspheres from 

the bead locations were recorded. We selected regions of interest (4x4 pixels) in sections 

above the ones containing the bead and measured the noise in that region after verifying that 

they did not contain any microspheres. 

We constructed ROC curves for microsphere detection as a function of processing 

methods. We used a sub-volume of the brain (401x401x20 voxels) and manually determined 

microspheres (n = 175) to serve as the gold standard. Using the processed images, we varied 

the threshold for detection so as to trace out the ROC curve. A connected component analysis 

was done on the binary image following thresholding to determine the centroid of all 

connected groups of voxels detected as microspheres. For a detected cluster to be classified as 

true positive, it had be less than 10 voxels in volume and had to be within 5 voxel Euclidean 

distance of the manually recorded location. If a cluster was larger than 10 voxels and it 

contains a manually recorded location, a true positive was recorded and the rest of the pixels 

in the cluster were assigned as false positives. Clusters which did not meet either of the 

aforementioned criteria were labeled as false positives. The ROC curve was generated by 

varying the threshold across the full range of image voxel values. 

Results 

PSF measurements for 20 Microspheres (0.2 μm diameter) were aligned and averaged. 

Maximum intensity projections (MIPS) along XY and YZ are shown in Fig. 1. The 

subsurface fluorescence artifact, hereafter called the „comet‟ tail artifact extends to about 100 

μm and spreads maximally in the XY plane to 15 μm. Region of interest volumes below the 

beads was used to estimate background intensity, a value which was typically <10% of the 

maximum value. As argued in Methods, this response is largely due to the scatter/attenuation 

in the medium rather than optical blurring. 

Restoration results for larger microspheres (15.4 μm) embedded in O.C.T are shown in 

Fig. 2. Comet tail artifacts in the unprocessed image extended to a height of 100 μm. All 

three image restoration methods reduced the comet tail artifacts. Next-image did not affect the 

in-plane dimension, which was about 30 μm, indicating lateral blur from the microspheres. 

RL and Wiener narrow the in-plane width to 2-4 pixels (5 μm pixel size), a value 

corresponding to the actual size of the microspheres. RL restores the shape of the 

microspheres along Z better than Wiener and Next-image processing. Wiener deconvolution 

introduces noise compared to RL and Next-image processing. 

 

Fig. 1. Measured scatter PSF of the cryo-imaging system. Twenty measured PSFs were aligned 

and averaged. A background value was subtracted. Maximum intensity projections in the YZ 
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(a) and XY (b) planes are shown. The comet tail extends approximately 100 µm and the 

maximal in-plane spread is 15 µm. The PSF was acquired at a resolution of 5.4x5.4x10 µm 

using microspheres 0.2 μm diameter 

 

Fig. 2. Reduction of comet tail artifacts using image restoration algorithms. Microspheres (15.4 

μm diameter) were embedded in O.C.T phantom, imaged, and processed. MIPS of a sub 

volume are shown. The unprocessed image (a) shows the comet tail artifact extending to a 

depth of 100 μm. RL processing (b) removes comet tail artifacts and restores the shape of the 

bead both in-plane and along Z. Next-image processing (c) reduces the comet tail artifacts but 

in-plane spread persists. Wiener deconvolution (d) removes comet tail artifacts but the 

resultant image suffers from high frequency noise and in-plane restoration is not as effective as 

in RL. Parameters were: voxel size 4x4x5µm3, (RL, 20 iterations, damping factor of 3), and 

Wiener, NSR = 104. Scale bar corresponds to 50 µm 

In Fig. 3, we magnify images to examine the quality of restoration for a single 

representative microsphere. Subsurface fluorescence is clearly reduced in all methods, 

although Wiener retains some small noise speckles. We note that this noise with Wiener can 

be reduced by increasing the NSR parameter, but there is a tradeoff between size restoration 

and image noise. The shape of the spherical microsphere is clearly evident with RL but not 

with other methods. The RL deconvolved microsphere occupied 10-15 µm in the Z direction 

and an estimated 12-16 µm across within the cutting plane. 
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Fig. 3. Restoration of a single, representative microsphere from the same volume in Fig. 2. 

Unprocessed image (a) contains significant subsurface fluorescence artifacts and in-plane 

spread. RL (b), Wiener (c) and Next-image (d) effectively remove subsurface fluorescence. RL 

gives a truer spatial representation of the microsphere. 

We compared the three restoration methods on a variety of tissues with fluorescent cells 

or microspheres. In tissue, we use lower resolution cryo-imaging: 40 µm slice thickness and 

15.6 µm pixels. Observations were similar to those for the O.C.T. phantom, with RL giving 

the best result, although all three methods gave significant improvement. Results were 

surprisingly robust even though we used a scatter PSF from O.C.T. to correct scatter in tissue, 

and probably this is due to using lower resolution data. In Fig. 4, we show image results from 

RL restoration in heart tissues showing some diffuse auto fluorescence. RL removed 

subsurface fluorescence in the heart tissue as evidenced by the removal of comet tail artifacts, 

and the results for Wiener and Next-Image (not shown) were comparable. 
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Fig. 4. Reduction of subsurface fluorescence in the various tissue types. Subsurface 

fluorescence is seen in both the axial (a) and (c) side view. The PSF measured in OCT was 

subsampled to restore the images. The restored images show reduced subsurface fluorescence 

in the axial view (b) and the comet tail reduction in the side view (d). RL image restoration 

parameters, N = 20 iterations and a damping factor of 1. The original image size was 

1036x1360x20 with pixel size of 15.6x15.6x40 µm. 

To quantify restoration results, we estimated the contrast to noise ratio (CNR) and contrast 

to background ratio (CBR) after processing with the image restoration methods (Table 1). 

Table 1. CNRs and CBRs for restored and unprocessed images. The average values were 

obtained over 200 microspheres in the brain after detection and manual verification 

Algorithm Mean Peak Value Background CNR CBR 

Unprocessed 26 1.7 27 +/ 5 14 +/ 2 

RL 60 1.8 53 +/ 19 32 +/11 

Wiener 54 1.77 51 +/ 16 29 +/ 9 

Next-Image 18 0.72 39 +/15 23 +/ 9 

Image data was mouse brain tissue with 15.4 µm microspheres. CNRs and CBRs were 

improved by processing. RL and Wiener filter gave comparable results, which were better 

than Next-image. RL more than doubled the CBR, indicating that it will be much easier to 

detect cells by thresholding following RL processing. We also compared the integrated 

intensity of the RL and Wiener deconvolved volumes versus the original volume and found 

that they varied by less than 3%. 
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Fig. 5. Isosurface rendering of string of microspheres in the mouse brain trapped in the 

vasculature. The cluster is oriented along the z-axis of the volume. Two different views of the 

unprocessed volumes are shown in (a) & (c) and the RL deconvolved volumes are rendered in 

(b) & (d). Following deconvolution there is better separation between the microspheres along 

the z-axis. The images were generated from microspheres in the mouse brain. The images were 

acquired at 15.6x15.6x40 microns. The RL parameters were 20 iterations and a damping factor 

of 3. The scale bar corresponds to 50 µm. 

Figure 5 shows the impact of deconvolution on clusters of perfused microspheres in the 

mouse brain. We present here result of RL (Figs. 5b & 5d). The other two methods provided 

comparable results. The string of microspheres is oriented at an angle to the z-axis and 

appears as a single continuous object in the iso-surface rendering of the uprocessed image 
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(Figs. 5a & 5c). Following RL deconvolution, the iso-surface rendering shows better 

separation of microspheres and clearly delineates 13 microspheres. 

In addition to microspheres and cells, we assessed restoration on fluorescent anatomical 

structures. In Fig. 6, we show results from a transgenic embryo with EGFP under the 

promoter for smooth muscle gamma actin, the so-called SMGA mouse (kindly provided by J. 

Lessard, University of Cincinnati [20]). The embryo expresses GFP in the smooth muscle 

cells lining the GI tract and the esophagus. After RL processing, cross sections are clearly 

improved as compared to the unprocessed image data. Unprocessed images clearly show 

subsurface fluorescence in the lumen of the esophagus, which is removed by RL processing, 

allowing one to clearly see the outline of the esophageal wall. The Next-image processing 

method has a comparable performance in terms of removing subsurface fluorescence inside 

the lumen of the esophagus. The Wiener deconvolution method amplifies noise and produced 

ringing artifacts at the wall of the esophagus and subsurface fluorescence removal wasn't 

nearly as effective as the other two methods. 

 

Fig. 6. Image restorations by elimination of subsurface fluorescence from fluorescent 

structures. XY cross sections were obtained from the esophagus of a mouse (a). Unprocessed 

image shows significance subsurface fluorescence in the lumen of the esophagus. RL image 

restoration (b) removes the subsurface fluorescence and clearly delineates the esophagus. The 

brightfield section with the corresponding RL processed fluorescence image is shown in (c) 

and the region in the box is zoomed in and shown in (d). The images were acquired at a 

resolution of 15.6x15.6x20 µm. A sub volume of size 337x195x44 containing the esophagus 

was processed. RL parameters, 20 iterations and 0.3 damping parameter. 

We assessed the impact of the restoration algorithms on microsphere detection (Fig. 7). 

ROC curves were generated as described in Methods for the three restoration methods. A 

statistical comparison of the Area Under the Curves (Az) showed significant difference 

(P<0.02) between the microsphere detection using unprocessed data and the restored data. In 

addition, RL and Wiener restoration were significantly better (P<0.05) than Next-image 

processing. 
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Fig. 7. ROC curves for detection of microspheres in tissue. Following restoration, detection 

was done using a simple thresholding technique. Areas under the curves (Az) were 0.9977, 

0.9985, 0.99894, and 0.99892, for unprocessed, Next-image, RL, and Wiener respectively. The 

inset shows the curve after zooming in on the x-axis between 0 and 0.01 where there are slight 

but visually perceptible differences between the curves. The image thresholds for two of the 

data points are marked as T = 0, T = 1 and T = 3(inset). 

Discussion 

Next-image, Wiener, and RL all greatly reduced the subsurface artifact in both phantom and 

tissue experiments. RL and Wiener provided very high contrast improvement, shape and size 

restoration. In addition, deconvolution of clusters of fluorescent microspheres clearly 

separated it into individual microspheres. Next-image processing provides artifact free images 

and very fast execution times. Below, we review each of these criteria. 

A restoration method should remove subsurface fluorescence, localizes the fluorescence 

signal to the proper location, and restore shape and size. In Fig. 2, RL clearly restores the 

shape and size of the microspheres better than either Wiener or Next-image processing. 

Taking all qualitative observations together, we conclude that RL > Wiener > Next-image. 

We determined a variety of quantitative metrics of image quality including CNR, CBR, 

and ROC. CNR assesses noise as well as the effectiveness of deconvolution in reassigning 

intensity from neighboring pixels to the source. CBR measures the ability to threshold for 

detection. As shown in Table 1, RL improved CNR by a factor of 2 and was 35% better than 

the Next-image processing and marginally better than Wiener filtering. Next-image 

processing did not improve contrast as much as RL or Wiener because the subtraction step 

adds to the noise and diminishes the peak intensity of microspheres. The CBR for RL and 

Wiener were much higher than the Next-image processing for the same reasons. CNR and 

CBR are indicators of an improved ability to detect cells and microspheres. 

Statistical analysis of areas under the ROC curves (Az) indicates that each of the three 

processing methods is significantly different from the “raw” result without processing (P < 

0.02). Wiener and RL are significantly different (P < 0.05) from Next-image processing, but 

there is no significant difference between Wiener and RL (P > 0.05). Statistically significant 

results are obtained even when all four methods are nearly identical in the larger graph in Fig. 

7. This result is due to the very large number of background pixels, giving a large number of 

true negatives (NN) and low prevalence (Np) in an ROC. At a threshold of T = 0 (upper right), 

every pixel will be counted as a detected microsphere and the false positive fraction ( = 

FP/NN) must be 1.0 and every microsphere will be detected giving a true positive fraction 

(TP/NP) of 1.0. At a threshold of T = 1, the false positive fraction drops precipitously to a 

very small number because of the large number of pixels having value 0, and the true positive 

fraction remains at 1.0. As a result, this gives data points at the upper left corner of the ROC 
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and Az values very near the ideal value of 1.0. Only when we zoom into low values of false 

positive fraction (inset) do we see a difference in the methods. There are differences among 

the curves over a limited range of thresholds (inset). This difference gives rise to statistically 

different Az values. Please note that low prevalence does not impact the accuracy of statistical 

testing with Az [21]. 

To examine the ROC in another way, we can examine the sensitivity of the method for a 

given false positive fraction. At a false positive fraction (1- specificity) of 0.0015, the 

detection sensitivity jumps from 60% for the unprocessed images to greater than 95% for RL. 

This almost two-fold increase in sensitivity corresponds to a detection of tens of thousands of 

microspheres or cells over one of our large volume data sets. 

With regards to fluorescent stem and cancer cells, our ultimate goal is quantification. We 

are creating an evolving analysis pipeline consisting of three steps: (1) Preprocessing to 

remove subsurface fluorescence and improve contrast to background ratio. (2) Detection of 

clusters using pattern classification approaches. (3) Enumeration of cells within a cluster 

using a model-based approach. In this study, we have focused on the first step. Hence, in the 

ROC analysis, we used a simple thresholding approach to detect clusters. 

The restoration methods perform well in various tissue types, despite potential variation in 

scatter and attenuation (Figs. 4-6). This relative insensitivity to PSF error is probably due to 

the decreased cryo-image resolution (40 µm slice thickness and 15.4 µm in-plane pixels) 

when imaging tissue. That is, when the PSF is resampled for the working resolution imaging, 

its depth extends only about 2 slices and 3 pixels. Any deviation between tissue types would 

probably be of the order of a pixel. Both Wiener and RL would be relatively insensitive to 

such variations. We verified this by purposefully making small variations in the PSF decay 

along the radial or z-directions and found little variation in the output 

With these processing methods, cells are more easily quantified but one must be careful 

about assigning fluorophore concentration values. RL and Wiener reassign intensity values 

from neighboring pixels to the source. Because of this reassignment, these methods do not 

necessarily give calibrated results across experiments. For example, if one were to use thinner 

slices, there would be more sampling of the fluorescent signal and a higher signal value after 

processing. Although Next-image does not concentrate the fluorescence comet tail into the 

source, there is a subtraction step which tends to reduce peak signal. In most experiments, 

such as cell counting, we are not concerned with fluorophore concentration. In those cases 

where fluorophore concentration is of interest, we will determine calibration methods which 

account for processing. 

Other considerations include computation time and robustness. A potential downside to 

RL is that it can amplify noise as the number of iterations increase. However, in our hands, 

when we use a damping factor over a very large range (0.3-3), we have not observed such 

behavior. With Next-image processing, we are always ensured of getting an improved result 

closer to the actual input image data. As described previously, computation time gives Next-

image a distinct advantage over RL and Wiener. We benchmarked processing times using a 

work station with a quad-core 3 GHz processor and 32GB of RAM. In order to analyze a 

stack of images of size 1360x1040x150, it takes 45 minutes for RL, 79 seconds for Wiener 

and 15 seconds for Next-image method. Another downside of RL is the need for large 

amounts of memory, requiring one to partition a large mouse volume for processing. This 

additional complexity is not inherent with Next-image processing where one can simply 

consider two images at a time. Please note that timing and memory considerations for RL are 

based on un-optimized Matlab code. Multi-threading, GPU calculations, and C++ 

implementations might give much different results. In summary, we believe that both RL and 

Next-image have value for cryo-imaging. On the one hand, in those instances where one 

wants to process a large volume image data with strong fluorescence signal, one should use 

Next-image processing. On the other hand, if we want to create the best reconstruction of the 

distribution of fluorescence such as in the embryo experiment (Fig. 6), RL has clear 
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advantage. In addition, for very dim cells, RL clearly improves detection, an important 

consideration in many cryo-imaging applications. We conclude that image restoration is a 

valuable processing step to include in the cryo-imaging pipeline and that multiple algorithms 

should be included. 
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