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Introduction

RalA and RalB are nearly identical proteins (85% amino acid 
identity) within the Ras family of monomeric G proteins which, 
in addition to normal cellular functions, contribute to cancer 
cell migration, chemotherapy resistance, invasion and metasta-
sis.1-6 The best-characterized Ral effector is Ral-binding protein 
(RalBP1), whose association with Ral-mediated tumorigenesis 
has previously been suggested.7 RalBP1 is a multifunctional mem-
brane protein that has been implicated in cancer cell proliferation,8 
radiation and chemoresistance,9-13 and ligand dependent receptor 
internalization.14-16 Recent studies have shown that overexpres-
sion of RalBP1 enhanced migration and invasion of fibrosarcoma 
cells,17 whereas depletion inhibited tumor growth and metastasis 
formation in prostate and bladder metastasis models.8 Depletion 
or inhibition of RalBP1 increased apoptosis in cultured cells from 
various malignancies, such as small cell lung cancer, non-small cell 
lung cancer, melanoma, ovarian cancer, prostate cancer, lymphoma 
and myeloid leukemia.18 Xenograft models in which RalBP1 was 
depleted by antisense caused regression of commercial cell lines of 
lung and colon cancer.21 In summary, RalBP1 may be a promising 
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therapeutic target for cancer therapy owing to its intermediary 
signaling role in affecting cellular migration, metastasis forma-
tion and chemotherapeutic resistance. The objective of the present 
study is to establish the relative baseline RalBP1 expression levels 
in matched human CRC and normal mucosa tissue.

Results

Quantitative RT-PCR analysis for RalBP1 mRNA expression. 
Quantitative RT-PCR (qPCR) analysis showed mRNA expres-
sion for RalBP1 in all tumor and mucosa samples; however, 
marked differences in mRNA levels were seen between normal 
mucosa and tumor samples for RalBP1 (Fig. 1). Pairwise com-
parison demonstrated that 70.0% (53/76) overall, 82.4% (14/17) 
in stage I, 63.6% (14/22) in stage II, 54.5% (12/22) in stage III 
and 86.7% (13/15) of patients in stage IV overexpressed RalBP1 
in tumor as compared with mucosa. Significantly higher RalBP1 
mRNA levels were observed in tumor than in normal mucosa for 
patients in UICC stage I (p = 0.024), stage II (p = 0.038) and 
stage IV (p = 0.004). When grouping all stages, RalBP1 mRNA 
was significantly overexpressed in tumor when compared with 
normal mucosa (p = 0.027).
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disease-free and OS, univariate analysis using the log-rank test 
confirmed well-known prognostic parameters such as lymph 
node status (p < 0.001), UICC tumor stage (p < 0.001) and grade 
(p = 0.026, Table 2) to be of prognostic relevance in our patient 
cohort. Regarding RalBP1 expression, median DFS and OS were 
significantly reduced in tumors with protein overexpression. In 
a multivariate analysis based on the Cox proportional hazards 
regression model, we tested the independent predictive value for 
all relevant clinical and pathological parameters and RalBP1 
expression. Lymph node status was excluded for its linear depend-
ing covariance with tumor stage. The group of patients who over-
expressed RalBP1 protein expression had significantly worse DFS 
(p = 0.016, HR = 6.892) and OS (p = 0.039, HR = 5.986) at each 
time point, whereas mRNA expression had no effect on DFS or 
OS (Table 3).

Discussion

Multivariate analysis found that overexpression of RalBP1 pro-
tein was an independent predictor of both decreased DFS and OS 
in CRC patients. To our knowledge, our results are the first to 
show that RalBP1 protein expression provides prognostic infor-
mation for CRC patients. From a functional point of view, these 
results could be explained by the intermediary signaling role 
that RalBP1 plays in metastasis formation, and its protective role 
against oxidative stress metabolites and xenobiotics.

A number of studies have demonstrated the role of RalBP1 in 
cellular migration and metastasis. Wu et al. showed that RalBP1 

ELISA analysis for RalBP1 protein expression. All of the 
tumor and mucosa samples were found to be positive for RalBP1 
measured by ELISA. Pairwise comparison demonstrated that 
50.0% (37/74) overall, 17.6% (3/17) in stage I, 37.5% (9/24) in 
stage II, 54.5% (12/22) in stage III and 100% (13/13) of patients 
in stage IV overexpressed RalBP1 in tumor as compared with 
mucosa. Significantly higher RalBP1 protein levels were observed 
in tumor than in normal mucosa only for stage IV patients 
(p = 0.018, Fig. 2).

RalBP1 expression relationship. By crosstable calculation 
(χ2-test), we found RalBP1 protein overexpression to have a sig-
nificant correlation with nodal status (p = 0.044), UICC stage 
(p < 0.001), recurrence (p < 0.001) and death (p = 0.001, Table 1). 
There were no significant correlations between RalBP1 mRNA 
overexpression and any of the clinicopathologic parameters.

Spearman correlation coefficient analysis showed a statisti-
cally significant direct correlation between mRNA Cp (crossing 
point) values and tissue protein levels for both tumor (r = 0.4173; 
p = 0.0004) and mucosa (r = 0.2933; p = 0.0160).

Kaplan-Meier survival curves. Survival curves were com-
pared via the log rank test, and the corresponding p values are 
printed on each graph (Figs. 3 and 4). Survival probabilities are 
comparable for patients with and without mRNA overexpression 
(DFS: p = 0.595; OS: p = 0.490). Patients with protein over-
expression have lower survival probabilities at each time-point 
(DFS: p < 0.001; OS: p = 0.002). As expected, more advanced 
colorectal cancer stages have lower survival rates (DFS: p < 
0.001; OS: p < 0.001). When analyzing prognostic factors for 

Figure 1. Summary of RalBP1 mRNA expression in normal mucosa and tumor by both stage and overall. mRNA levels are expressed as a relative ratio 
according to the Equation 2-ΔΔCT.
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of some mRNAs.35 Panner et al. demonstrated that RalA bind-
ing of RalBP1 induced suppression of S6 kinase and the transla-
tion of the antiapoptotic FLICE-like inhibitory protein. Further 
research will be needed to determine the mechanism by which 
the translation of RalBP1 begins to occur at an accelerated rate 
during tumorigenesis.

In conclusion, overexpression of the RalBP1 protein is an 
independent predictor of poor survival and early relapse for CRC 
patients. Owing to its multifunctional intermediary role in cell 
survival, chemotherapeutic resistance and metastasis formation, 
RalBP1 represents a promising novel therapeutic target.

Materials and Methods

Patients and samples. Matched tissue samples (histologically 
proven) of normal colon mucosa and tumor were obtained from 
the surgical specimens of 78 patients with curatively resected 
(R0) primary sporadic colon adenocarcinomas treated between 
February 2004 and April 2007 at the Department of Surgery, 
University of Heidelberg in accordance with the ethics commit-
tee. Tissue samples were frozen in liquid nitrogen immediately 
after surgical removal and maintained at 80°C until RNA extrac-
tion. Clinical and pathological data were documented prospec-
tively, and entered into a specific tumor registry at the time of 
surgery and at each follow-up. The patients’ ages ranged from 39 
to 90 y (mean age, 65 y). Median follow-up time of patients alive 
at last follow-up was 35 mo.The tumors were staged according to 
the Unio Internationalis Contra Cancrum (UICC) system with 
the following distribution: 21.8% stage I (17/78), 30.8% stage 
II (24/78), 28.2% stage III (22/78) and 19.2% stage IV (15/78) 
patients.

depletion not only inhibited cell migration, but also inhibited 
metastasis formation in an experimental metastasis model of 
bladder cancer.8 RalBP1 has also been shown to act upon CDK1 
(cdc42), a protein known to be involved in regulating cell cycle 
progression and migration.24 After binding to CDK1, RalBP1 
dissociates from the cell membrane to act as a motor for spindle 
movement at the mitotic spindle.25,26 Our data demonstrated 
a significant correlation with RalBP1 protein overexpression, 
increasing stage and nodal positivity; providing further evidence 
for the role of RalBP1 in invasion and metastasis formation.

RalBP1 is an ATP-dependent non-ABC transporter which 
actively transports chemotherapeutic agents, in addition to 
anionic metabolites like glutathione-conjugates of electrophiles 
(GS-E).32,33 Studies performed in RalBP1-/- mice showed a sig-
nificant increase in the concentration of aldehydes, lipid hydro-
peroxides and alkenals in tissues as a consequence of RalBP1 
loss.33 This loss translates into greater sensitivity to xenobiotic 
toxins including traditional chemotherapeutic agents, which 
are substrates of RalBP1, as well as other alkylating agents and 
platinum-coordinates that are metabolized to GS-E. Induction of 
RalBP1 thus results in cellular resistance to apoptosis by metabo-
lizing and excluding stress metabolites at a higher rate.37

Although RalBP1 mRNA was overexpressed in tumor vs. 
mucosa, it was not a significant predictor of either disease-free 
or overall survival. Indeed, there was an inverse correlation 
demonstrated between RalBP1 mRNA and protein expression. 
Furthermore, as RalBP1 mRNA transcript amounts decreased 
with increasing stage (data not shown), RalBP1 protein amounts 
increased as stage increased. Oncogenes have been demonstrated 
to co-opt the translational process during transformation, and 
interestingly RalBP1 has been linked to translational regulation 

Figure 2. Summary of RalBP1 protein expression in normal mucosa and tumor by both stage and overall by ELISA method.
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from the calculation. The threshold was set manually, using 
identical threshold levels for one gene in all analyzed samples. 
Reaction efficiency was established for each set of primers, after 
quantification of four different dilutions of a reference cDNA.

Analysis of RalBP1 expression using the 2-ΔΔCt method. 
Details of the 2-ΔΔCt method have been previously described in ref-
erence 23 and 24. Briefly, the mean target gene mRNA expression 
level for the three mRNA measurements was calculated. The 2-ΔΔCt 
method was used to calculate relative changes in gene expression 
determined from real-time quantitative PCR experiments. In the 
present study, the data are presented as the fold change in target 
genes RalBP1 expression in tumors normalized to the internal 
control gene (ACTB) and relative to the normal control (matched 
normal as calibrator). Results of the qPCR data were represented 
as threshold cycle (Ct) values, where Ct was defined as the thresh-
old cycle number of PCR at which amplified product was first 
detected. There is an inverse correlation between Ct and amount 
of target: lower amounts of target correspond to a higher Ct value. 
The average Ct was calculated for both the target genes and ACTB 
and the ΔCt was determined as (the mean of the triplicate Ct 

RNA extraction and qPCR. Fresh tumor and mucosa tis-
sue were frozen in RNAlater Reagent (Invitrogen) and stored at 
-80°C. Approximately 20 mg of tissue was used for each RNA 
extraction. SV total RNA isolation (Promega) was performed, 
followed by ImProm-II reverse transcription (Promega) for 
cDNA synthesis. The cDNA was amplified with real-time quan-
titative polymerase chain reaction (qPCR) and was performed 
with the LightCycler 2.0 Real-Time PCR system (Roche Applied 
Science). qPCR conditions for RalBP1 were as follows: initial 
denaturation for 5 min at 95°C, 35 cycles (95°C for 30  sec, 
annealing at 55°C for 45 sec, 30 sec at 72°C), followed by 15 min 
at 72°C; incubated with appropriate forward (5'-TCT ATA GTG 
CTC AGC CCA AC-3') and reverse (5'-ATC GCA GAG GTT 
TCA TCA C-3') primers (Invitrogen). cDNA was also ampli-
fied with β-actin primers (ACTB) forward (5'-ATG TGG CCG 
AGG ACT TTG ATT-3') and reverse (5'-AGT GGG GTG GTT 
TTA GGA TG-3') (Invitrogen), serving as an internal control. 
Threshold cycle (Ct) and melting curves were acquired. Only 
genes with clear and single melting peaks were taken for further 
data analysis. Samples with irregular melting peaks were excluded 

Table 1. Correlation between RalBP1 expression and clinical and pathologic parameters (χ2-test)

Characteristics
RalBP1 mRNA RalBP1 Protein

Overexpressed Not overexpressed p value Overexpressed Not overexpressed p value

Gender 0.512 0.876

Male 31 16 22 23

Female 22 7 14 12

Age 0.454 0.701

> Mean 28 15 20 22

≤ Mean 25 8 16 13

Lymph node status 0.355 0.044

N0 31 11 15 26

N1 12 4 11 5

N2 9 8 9 4

N3 1 0 1 0

Differentiation status 0.791 0.305

Well 1 1 0 2

Moderate 36 16 23 23

Poor 16 6 13 10

UICC Stage 0.207  < 0.001

I 14 3 3 12

II 14 8 9 14

III 12 10 12 9

IV 13 2 12 0

Recurrencea 0.633  < 0.001

Yes 16 5 18 2

No 37 18 18 33

Deatha 0.536 0.001

Yes 42 16 21 33

No 11 7 15 2

UICC, Unio Internationalis Contra Cancrum; statistically significant p values are highlighted in bold; arecurrence or death at any time.
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values for the target gene) minus (the mean of the triplicate Ct val-
ues for ACTB). The ΔΔCt represented the difference between the 
paired tissue samples, as calculated by the formula ΔΔCt = (ΔCt 
of tumor - ΔCT of normal). The differential expression in the 
target gene of a tumor sample compared with the normal counter-
part was expressed as 2-ΔΔCt.20,21

Protein extraction and ELISA. Tissue extracts were pre-
pared from frozen tissues by a standard extraction protocol.22 

The protein content of cell lysates and tissue extracts was deter-
mined using the Lowry protein assay (Sigma). The enzyme-
linked immunosorbent assay (ELISA)Kit for human RalBP1 
was purchased from USCN Life Science, Inc. (E97265Hu), and 
performed as indicated by the manual. The standard was recon-
stituted and a dilution series was made with the standard serving 
as a blank. The blank and samples were loaded and incubated for 
2 h at 37°C. Every item of the standard dilution series, the blank 

Figure 3. Univariate analysis (log-rank test, Kaplan-Meier curves) of 
statistically significant prognostic parameters for disease free survival in 
colorectal cancer. (A) Stage; (B) RalBP1 protein overexpression.

and samples were loaded as duplicates. The liquid of each well was 
removed and a detection reagent was added and incubated for 1 
h at 37°C. The liquids were removed and washed (Wash Solution 
and aqua dest) three times after the incubation was finished. A 
second detection reagent was added to each well and incubated 
for 30 min at 37°C, after which the samples were washed five 
times as described above. The detection procedure continued by 
adding 90 μl Substrate Solution to each well and incubation for 
15–20 min at 37°C. The microplate was immediately measured 
by 450 nm in a standard ELISA microplate reader.

Statistical analysis. All statistical analyses were performed 
using Statistical Analysis Systems (SAS) (SAS Corp., NC). The 
t-test was used to compare all continuous parameters from nor-
mal vs. tumor samples, and the χ2 test was used for compari-
son of discrete parameters. The relationship between RalBP1 
protein and mRNA expression levels within the same samples 

Figure 4. Univariate analysis (log-rank test, Kaplan-Meier curves) of 
statistically significant prognostic parameters for overall survival in 
colorectal cancer. (A) Stage; (B) RalBP1 protein overexpression.
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as the time interval between the date of surgery and the date of 
death or last follow-up. Disease free survival (DFS) was defined 
as the time interval between the date of surgery and the date of 
disease recurrence or death from any cause, whichever came first, 
or date of last follow-up evaluation.
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was examined using the Spearman correlation coefficient anal-
ysis. The Kaplan-Meier method was used to estimate the sur-
vival probability, and the log-rank test was used to compare the 
survival curves between groups. Independent predictive factors 
affecting survival were analyzed by the Cox multivariate propor-
tional hazards regression model with stepwise and enter models, 
respectively. All p values were two-sided and considered statisti-
cally significant if p < 0.05. Overall survival (OS) was defined 

Table 2. Univariate analysis (log-rank test) of prognostic parameters in colorectal cancer for progression-free survival and overall survival

Characteristics Cases
Progression free survival Overall survival

Time (months) p value Time (months) p value

Gender 0.921 0.947

Male 48 38.4 29.2

Female 30 30.0 23.6

Age 0.062 0.375

 > Mean 45 34.2 12.9

 ≤ Mean 33 31.2 30.0

Lymph node status  < 0.001  < 0.001

Negative 44 33.3 30.3

Positive 34 31.0 22.0

Differentiation status 0.025 0.120

Well/Moderate 55 27.3

Poor 23 25.7

UICC stagea  < 0.001  < 0.001

II 24 34.0 17.3

III 22 33.4 21.1

IV 15 25.1 17.9

RalBP1 mRNA 0.490 0.595

Overexpressed 53 38.0 28.6

Normal expression 23 26.5 14.4

RalBP1 Protein 0.002  < 0.001

Overexpressed 36 10.7 9.9

Normal expression 35 33.7 22.8

UICC, Unio Internationalis Contra Cancrum; athere were no stage I patients who experienced either recurrence or death at time of last follow-up; statis-
tically significant p values are highlighted in bold.

Table 3. Multivariate analysis (cox proportional hazards regression model) of prognostic parameters in colorectal cancer for progression-free survival 
and overall survival

Progression Free Survival Overall Survival

Parameter Hazard ratio 95% CI p value Hazard ratio 95% CI p value

Gender 0.566 0.217–1.476 0.2441 0.491 0.172–1.406 0.1853

Age 0.998 0.957–1.040 0.9207 0.965 0.921–1.011 0.1301

Differentiation status 0.825 0.318–2.138 0.6921 0.582 0.204–1.656 0.3104

UICC stage 8.811 1.847–42.047 0.0063 17.348 1.953–33.125 0.0105

RalBP1 mRNA expression 0.709 0.233–2.160 0.5449 0.276 0.083–0.920 0.0797

RalBP1 protein expression 6.892 1.429–33.249 0.0162 5.986 1.094–32.766 0.0391

UICC, Unio Internationalis Contra Cancrum; CI, confidence intervals; statistically significant p values are highlighted in bold.
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