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Abstract

Host cell invasion and dissemination within the host are hallmarks of virulence for many pathogenic microorganisms. As
concerns Trypanosoma cruzi, which causes Chagas disease, the insect vector-derived metacyclic trypomastigotes (MT)
initiate infection by invading host cells, and later blood trypomastigotes disseminate to diverse organs and tissues. Studies
with MT generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect-borne and
bloodstream parasites, have implicated members of the gp85/trans-sialidase superfamily, MT gp82 and TCT Tc85-11, in cell
invasion and interaction with host factors. Here we analyzed the gp82 structure/function characteristics and compared
them with those previously reported for Tc85-11. One of the gp82 sequences identified as a cell binding site consisted of an
a-helix, which connects the N-terminal b-propeller domain to the C-terminal b-sandwich domain where the second binding
site is nested. In the gp82 structure model, both sites were exposed at the surface. Unlike gp82, the Tc85-11 cell adhesion
sites are located in the N-terminal b-propeller region. The gp82 sequence corresponding to the epitope for a monoclonal
antibody that inhibits MT entry into target cells was exposed on the surface, upstream and contiguous to the a-helix.
Located downstream and close to the a-helix was the gp82 gastric mucin binding site, which plays a central role in oral T.
cruzi infection. The sequences equivalent to Tc85-11 laminin-binding sites, which have been associated with the parasite
ability to overcome extracellular matrices and basal laminae, was poorly conserved in gp82, compatible with its reduced
capacity to bind laminin. Our study indicates that gp82 is structurally suited for MT to initiate infection by the oral route,
whereas Tc85-11, with its affinity for laminin, would facilitate the parasite dissemination through diverse organs and tissues.
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Introduction

Host cell invasion and dissemination within the host are

required for many pathogenic microorganisms to establish

infection. Different pathogens may employ common tactics as

well particular strategies for interaction with host components and

for cell invasion. Enteropathogenic bacteria rely on their ability to

bind to mucins, the main component of the mucus layer that

protects the gastrointestinal mucosa, in order to reach the target

cells. Shigella dysenteriae, for instance, adheres preferentially to

colonic mucin as the first step to gain access to the colonic

epithelial cells, within which it replicates after invasion [1,2].

Helicobacter pylori, which does not invade cells but attaches to gastric

epithelial cells and causes ulcers, binds to human gastric mucin at

acidic pH [3]. Trypanosoma cruzi, the protozoan parasite that causes

Chagas disease, binds selectively to gastric mucin as a prelude to

traverse the mucus layer towards the underlying target cells [4].

Microbial infection may be facilitated by binding to extracellular

matrix components. An invasive Escherichia coli isolate was found to

bind basement-membrane laminin as opposed to non-invasive E.

coli that exhibited only low-level laminin binding [5]. Infection by

T. cruzi was dramatically reduced by stable knock down of host cell

laminin gamma-1 by RNA interference [6].

Studies with MT generated in vitro and tissue culture-derived

trypomastigotes (TCT), as counterparts of insect-borne and

bloodstream parasites, have revealed the MT stage-specific surface

molecule gp82 and Tc85-11 expressed in TCT, which are

members of the gp85/trans-sialidase superfamily, as key players

in the process of cell invasion [7,8]. Gp82 mediates MT invasion

of host cells by inducing signaling cascades that culminate in

lysosome exocytosis [9], an event required for parasite internal-

ization [10,11]. In vivo, gp82 plays a central role in the

establishment of T. cruzi infection in mice by the oral route [12],

a mode of transmission that has been responsible for frequent

outbreaks of acute Chagas disease in recent years [13–19]. A

property of gp82 critical for oral T. cruzi infection is its ability to

bind to gastric mucin present in the mucus layer that protects the

stomach mucosa [4]. It has been proposed that, upon binding to

gastric mucin, MT migrate through the mucus layer and reach the

underlying epithelial cells that they invade in a gp82-mediated

manner [20–22]. In vitro, MT were found to efficiently translocate

through a gastric mucin layer [23]. Whether TCT exhibit such an
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ability has yet to be examined. On the other hand, TCT express

Tc85-11 that binds laminin, a property that may enable the

parasite to traverse extracellular matrices and reach the target cells

[24].

Here we analyzed the structural characteristics of MT gp82 and

their relation with specific functions of gp82 in host cell invasion

and in gastric mucin binding. In addition, the structural/

functional properties of MT gp82 were compared to those

reported for TCT Tc85-11.

Methods

Homology Modeling of gp82 Protein
For the modeling of gp82 protein, we selected as a template the

high resolution crystal structure of inhibitor-bound Trypanosoma

rangeli sialidase (PDB 1N1T), which is closely related T. cruzi trans-

sialidase, [25]. The gp82 sequence (Genbank L14824), which

exhibited .39% identity when aligned with T. rangeli sialidase, was

modeled using YASARA software (www.yasara.org) based on T.

rangeli sialidase structure obtained from the Protein Data Base

(www.rcsb.org). The best model was prepared for energy

minimization and all the hydrogen atoms and other missing

atoms from the model were created. Parameters for the force field

were obtained from YAMBER3 [26], the pKa values for Asp, Glu,

His and Lys residues were predicted. Based on the pH 7.0, the

protonation states were assigned according to convention: Asp and

Glu were protonated if the predicted pKa was higher than the pH,

His was protonated if the predicted pKa was higher than the pH

and it did not accept a hydrogen bond, otherwise it was

deprotonated, Cys was protonated, Lys was deprotonated if the

predicted pKa was lower than the pH, Tyr and Arg were not

modified (www.yasara.org). A simulation box was defined at 15 Å

around all atoms of each macromolecular complexes, then it was

filled with water molecules and Na/Cl counter ions, that were

placed at the locations of the lowest/highest electrostatic potential,

until the cell neutralization, and the requested NaCl concentration

reached 0.9%. A short molecular dynamics (MD) simulation was

performed for the solvent adjust, and water molecules were

subsequently deleted until the water density reached 0.997 g/ml.

A short steepest descent energy minimization was carried out until

the maximum atom speed dropped below 2,200 m/s. Then 500

steps of simulated annealing were performed with a temperature

0 K. Finally, a 45 nanosecond simulation at 298 K and a non-

bonded cutoff of 7.86 A was carried out. A snapshot was saved

every 7.5 picosecond. The graphical analysis was carried out using

Visual Molecular Dynamics (VMD) software [27]. The average

structure based on the last 20 nanoseconds was submitted to an

energy minimization and used in all analyses. Validation

procedure using the program PROCHECK [28] demonstrated

that the final 3D structure agreed with the distance restrains and

offered good geometry and side chain packing. The residues’

exposure for the solvent was analyzed using the program DSSP

[29].

Production and Purification of Recombinant Protein J18
The recombinant protein J18, containing the full-length T. cruzi

gp82 (GenBank L14824) in frame with gluthatione S-transferase

(GST), was produced in E. coli DH5-a and purified as previously

described [30].

Binding of the Recombinant Protein J18 to Gastric Mucin
or Laminin

Microtiter plates (96 wells) were coated with mucin from

porcine stomach (Type III, Sigma) or with laminin in PBS (10 mg/

well). The antibodies used to ascertain by ELISA the effective

coating were: antibodies against gastric mucin, generated by

immunizing mice with porcine gastric mucin as described [4], and

rabbit antibodies to mouse laminin, kindly provided by Dr. José

Daniel Lopez, Universidade Federal de São Paulo. For J18

binding assay, the microtiter plates coated with gastric mucin or

laminin were blocked with PBS containing 2 mg/ml bovine serum

albumin (PBS/BSA) for 1 h. The plates were sequentially

incubated at 37uC for 1 h with the recombinant protein J18,

and peroxidase-conjugated anti-mouse IgG, all diluted in PBS/

BSA, and the final reaction was revealed by o-phenilenediamine

and the absorbance at 490 nm was read in ELx800TM absorbance

microplate reader (BioTek).

Parasites
T. cruzi (Y strain) was maintained cyclically in mice and in liver

infusion tryptose (LIT) medium containing 5% fetal bovine serum.

To promote differentiation to metacyclic forms, the parasites were

grown for one passage in Grace’s medium (Invitrogen). For MT

purification, parasites harvested from cultures at the stationary

growth phase were passed through DEAE-cellulose column, as

described [31]. TCT were obtained as follows: Vero cells,

purchased from Instituto Adolfo Lutz, São Paulo, Brazil, were

infected with MT. Five to six days later, the trypomastigotes

released into the medium were collected.

Parasite Migration Assay through Gastric Mucin Layer
Polycarbonate transwell filters (3 mm pores, 6.5 mm diameter,

Costar) were coated with 50 ml of a preparation containing

10 mg/ml gastric mucin in water. Parasites (MT or TCT)

suspended in 600 ml PBS were added to the bottom of 24-well

plates (1.06107 parasites/well). Mucin-coated transwell filters

were placed onto parasite-containing wells, and 100 ml PBS were

added to the filter chamber. At 30 and 60 min incubation at 37uC,

10 ml were collected from the filter chamber for determination of

parasite number. Assays were also performed with transwell filters

coated with 50 ml of a preparation containing gastric mucin

(10 mg/ml) mixed with the recombinant protein J18 (1 mg/ml) or

GST (1 mg/ml), or coated with 50 ml of a gastric mucin

preparation (10 mg/ml) mixed with the 20-mer synthetic peptide

p7 or p7* at. 1 mg/ml.

Treatment of Parasites with Pepsin
Treatment of parasites with pepsin was performed under two

conditions, one using sodium citrate 0.1 mM, pH 3.5, and the

other using the same buffer plus 0.9% NaCl, at pH 3.5. Parasites

were incubated with pepsin at 2 mg/ml in either of the citrate

buffer, at 37uC for 30 min, and then examined in the light

microscope.

Statistical Analysis
The significance level of experimental data was calculated using

the Student’s t test, as implemented in the program GraphPad

InStat.

Ethics Statement
All procedures and experiments conformed with the regula-

tion of the Universidade Federal de São Paulo Ethical

Committee, in accord with Resolution Nu 196 (10/10/1996)

of National Council of Health, and the study was approved by

the Committee.
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Figure 1. Sequences of T. cruzi surface proteins gp82 and Tc85-11. Shown are the aminoacid sequences deduced from cDNA clone J18,
containing the full-length metacyclic stage gp82 (GenBank L14824), and from the cDNA insert containing Tc85-11 open reading frame (GenBank
AF085686). In gp82, the sequences identified as P4 and P8 represent the host cell binding sites, P3 corresponds to the epitope for mAb 3F6, and P7
constitutes the main gastric mucin-binding site. In Tc85-11, the sequences corresponding to cell adhesion sites are identified as N-17, N-20 and N-21
and overlap with laminin-binding sites N17 and N-21 [34]. Points represent residues that are conserved in the two proteins, nonconserved amino
acids are indicated, and dashes represent residues that are lacking.
doi:10.1371/journal.pone.0042153.g001
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Figure 2. Comparison of gp82 sequences associated with recognition by mAb 3F6 or binding to gastric mucin with the equivalent
sequences in Tc85-11. A) The gp82 sequence identified as the epitope for mAb 3F6 (P3) was aligned with the equivalent Tc85-11 sequence, with
the differences highlighted in red. B) Soluble extracts of MT and TCT were analyzed by Western blot using mAb 3F6. C) The gp82 sequence
corresponding to the gastric mucin-binding site (P7) was aligned with the equivalent Tc85-11 sequence, with the changed residues indicated in red.
D) Transwell filters coated with gastric mucin were placed onto 24-well plates containing MT or TCT. After 30 or 60 min incubation, samples from the
filter chamber were collected and the number of parasites counted. Values are the means 6 SD of three independent experiments. E) Assays were
performed as in (D) using transwell filters coated with gastric mucin alone, or mixed with the recombinant protein J18 or GST. The difference
between the filter containing J18 and the control was significant (*P,0.05, **P,0.01). F) Assays were performed as in (D) using transwell filters
coated with gastric mucin alone, or mixed with the synthetic peptide P7 or P7*. The difference between the filter containing P7 and the control was
significant (*P,0.05, **P,0.0005).
doi:10.1371/journal.pone.0042153.g002
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Results

Comparative Analysis of Sequences Relevant for T. Cruzi
Infection in gp82 and Tc85-11 Proteins

In previous studies, the amino acid sequences deduced from a

cDNA clone (J18) containing the full-length metacyclic stage gp82

(GenBank L14824) [32] and of a cDNA insert containing Tc85-11

open reading frame (GenBank AF085686) [24] have been

reported. Here we compared the two sequences (Fig. 1), which

share 54% identity and 64% similarity, focusing on sites

considered to be important for T. cruzi infection. In gp82, the

sequences P4 (amino acids 254–273) and P8 (amino acids 294–

313) identified as the host cell adhesion sites [33] are localized in

the C-terminal domain (Fig. 1). By contrast, the functionally

equivalent sites in Tc85-11, represented by sequences N-17, N-20

and N-21 (Fig. 1), are present in the N-terminal domain [34]. The

gp82 sequence P3 (amino acids 244–263), corresponding to the

epitope for monoclonal antibody (mAb) 3F6 [33], which inhibits

MT entry into host cells [35], partially overlaps the P4 sequence

(Fig. 1). Compared to P3, the equivalent sequence in Tc85-11

exhibited considerable difference, with several non conservative

amino acid substitutions (Fig. 2A) that may preclude its

recognition by the referred antibody. No protein was revealed

by mAb 3F6 in Western blot of TCT extract (Fig. 2B). P7 (amino

acids 284–303), the sequence identified as the main gp82 gastric

mucin-binding site that is associated with the MT capacity to

migrate through the gastric mucin layer [4], had its counterpart in

Tc85-11 and exhibited five amino acid substitutions, two of which

were conservative (Fig. 2C). Assays were performed in which the

ability of MT and TCT to traverse a gastric mucin layer was

compared. The number of MT that traversed the mucin layer was

about two-fold higher than TCT (Fig. 2D). Translocation of non

infective epimastigotes, which do not express gp82 or Tc85-11,

was about 25-fold lower as compared to MT. To further

demonstrate that the ability of metacyclic forms to migrate

through the gastric mucin layer was dependent on gp82, more

specifically on P7 sequence, additional experiments were carried

out. In one set, the transwell filters were coated with gastric mucin

mixed with the recombinant protein J18, which is fused to GST,

or with gastric mucin mixed with GST. Migration of metacyclic

forms through the gastric mucin mixed with J18 was significantly

reduced, whereas the presence of GST had no inihibitory effect

(Fig. 2E). The other experiment consisted in coating the transwell

filters with gastric mucin mixed with the synthetic peptide P7 or

P7*. Peptide P7 corresponds to the gp82 gastric mucin binding site

and was shown to inhibit the parasitism of gastric mucosal

epithelium in oral T. cruzi infection [4]. Peptide P7* (LA-

DLAGWLSPSDVGGAINST) has the same composition as P7

Figure 3. Comparative analysis of Tc85-11 sequences mapped as laminin-binding sites and the equivalent sequences in gp82. A)
The Tc85-11 sequences N-17 and N-21, corresponding to laminin-binding sites, were aligned with the equivalent sequences in gp82, with the
differences highlighted in red. B) Microtiter plates were coated with laminin or gastric mucin (10 mg/well), and ELISA assay was performed using anti-
laminin or anti-gastric mucin antisera, at the indicated dilutions. C) Laminin- or gastric mucin-coated plates were incubated with J18, the recombinant
protein containing the full length gp82 sequence, at the indicated concentrations. Binding of J18 was revealed by anti-J18 antibodies. Values are the
means 6 SD of triplicates of a representative experiment.
doi:10.1371/journal.pone.0042153.g003
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but with a scrambled sequence and is devoid of inhibitory effect on

oral infection by metacyclic forms [4]. As shown in Fig. 2F, the

presence of P7, but not of P7*, profoundly affected the parasite

traversal through the gastric mucin.

Tc85-11 is a laminin-binding protein [24]. Laminin-binding

sites of Tc85-11have been mapped to sequences N-17 and N-21

(Fig. 1) that are nested within the target cell adhesion domain [34].

Equivalent sequences in gp82 exhibited marked differences, such

as gaps either in J18 or Tc85-11, in addition to non-conservative

amino acid substitutions (Fig. 3A), which may interfere with

laminin-binding capacity. Assays to address this question were

performed using microtiter plates coated with laminin, or gastric

mucin as control. First, the effective coating of plates with these

compounds was ascertained using antibodies to laminin or gastric

mucin. The reactivity of serum containing anti-laminin and anti-

gastric mucin antibodies with laminin and gastric mucin decreased

with the increasing serum dilution (Fig. 3B), what assured us that

we could use these coated plates to compare the J18 binding

capacity. Next, the recombinant protein J18 containing the full-

length gp82 sequence, at varying concentrations, was added to

plates coated with laminin or gastric mucin, and the binding was

revealed with anti-J18 antibodies. The ability of J18 to bind

laminin was lower than its capacity to bind gastric mucin (Fig. 3C).

Modeling of Metacyclic Form gp82 Protein
To obtain the structure model of MT gp82, we employed

homology modeling, the same technique reported for obtaining

the three-dimensional structure of Tc85-11. By using as templates

the crystal structure of T. cruzi trans-sialidase and T. rangeli

sialidase, which are closely related [25,36], Tc85-11 was found to

consist of a b-propeller domain at the N-terminal region

connected by an a-helix joint to a b-sandwich domain at the C-

terminal region [34]. Here, the high resolution crystal structure of

inhibitor-bound T. rangeli sialidase (PDB 1N1T) was used as

template. The model of gp82 was submitted to a molecular

dynamics, and after 15 ns was stable (Fig. S1). The average model

was analyzed with PROCHECK and all the stereochemical

parameters were inside or better than those provided. In that

model, the host cell binding site P4 was found to be part of the a-

helix whereas P8 was located in the b-sandwich domain (Fig. 4A).

Both P4 and P8 were exposed at the gp82 surface (Fig. 4B),

compatible with the ability of these sequences to interact with host

cells [33]. In P4, five amino acids with charged polar side chains

had high solvent accessibility, whereas in P8 three amino acids

were highly solvent-accessible (Table 1). Along the P3 sequence

that corresponds to the epitope for mAb 3F6, nine residues

displayed high solvent accessibility (Table 2). The almost full

exposure of P3 (Fig. 4C) is in accord with the intense reaction of

mAb 3F6 with live MT surface (Fig. S2). By binding to P3, which

partially overlaps with the cell binding site P4 (Fig. 1 and 4D),

mAb 3F6 possibly impairs parasite adhesion/invasion. Compared

to the cell binding sites, the gastric mucin binding site represented

by sequence P7 contained fewer solvent-accessible amino acids

(Table 2) and was less exposed at gp82 surface (Fig. 5A). More

specifically, its C-terminal portion that overlaps with the N-

terminal sequence of P8 was exposed, whereas the more

Figure 4. The structural model of gp82. A) Cartoon representation highlighting the cell binding sites P4 (magenta) and P8 (blue). B) Surface
representation of sites P4 and P8. C) The epitope for mAb 3F6 (P3) is highlighted (green). D) The portion of P3 that overlaps with P4 is indicated
(yellow).
doi:10.1371/journal.pone.0042153.g004
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hydrophobic portion was buried (Fig. 5B). The surface represen-

tation of P7 in relation to the cell binding site P4, shown in Fig. 5C,

suggests the possibility of simultaneous binding of gp82 to gastric

mucin and the host cell, through P7 and P4, respectively. As

concerns the VTV motif (VTVxNVxLYNR), highly conserved in

gp85/trans-sialidase superfamily [37], it contained many amino

acids barely accessible to solvent and, accordingly, was mostly

buried (Fig. S3).

Differential Susceptibility of MT and TCT to Pepsin
Digestion

MT gp82 resists degradation by pepsin at acidic pH in vitro

[20] and is preserved upon contact with the gastric juice in oral

infection. In addition, MT surface is covered with protease-

resistant mucin-like molecules [38], which protect the parasites

from lysis in the gastric milieu. As blood trypomastigotes have

been reported to rarely infect mice by the oral route [39], we

checked whether these parasite forms are susceptible to peptic

digestion, using TCT. When treated with pepsin at pH 3.5 for

30 min, TCT was mostly lysed (.90%) whereas MT preserved

their morphology and motility.

Discussion

The metacyclic stage surface molecule gp82, which is highly

conserved among genetically divergent T. cruzi lineages [40], plays

a central role in the process of host cell invasion and in the

establishment of infection by the oral route, through its cell

adhesion and gastric mucin-binding properties [4,7]. In this study,

we have shown that the referred properties conform to the

structural features of gp82. Both P4 and P8 sequences, identified as

the host cell binding sites of gp82, were exposed. This should

enable their recognition by the corresponding receptors. Of the

two sites, P4 has been shown in diverse experiments to be the main

cell binding site [33,41]. As regards P3, the epitope for the

monoclonal antibody 3F6, its partial overlap with P4 and the

confirmation that it is exposed on the surface reinforced the notion

that this antibody exerts its inhibitory effect on MT internalization

by sterical hindrance of P4. The gp82 sequence P7, identified as

the gastric mucin-binding site, was nested in the cell-binding

domain. Whether this positioning is favorable to gp82 interaction

with gastric mucin and subsequently with the target epithelial cells,

is not known. We visualize one possible scenario. In oral infection,

metacyclic forms bind to gastric mucin upon reaching the stomach

and migrate toward the underlying gastric epithelial cells. The

recognition of the gp82 sequence P4 by its target cell receptor

would facilitate the P7 release from the gastric mucin, enabling the

parasites to initiate cell invasion. As the proximity of P4 to P7 is

not so close, this would allow the P4-mediated binding of gp82 to

target cells, while still bound to gastric mucin. In this scenario, P8

would play a minor role because of its partial overlap with P7.

Distinct from MT, blood trypomastigotes are inefficient in

infecting mice by the oral route [39]. This could be due to the

differential capacity of the two infective forms in migrating

through the gastric mucin layer. When that possibility was tested

using TCT, it was found that this parasite form traversed the

mucin layer at two-fold lower numbers than MT, a result

compatible with the observation that, as compared to the gp82

sequence P7, the equivalent sequence in Tc85-11 protein

displayed a few non-conservative amino acid substitutions.

Table 1. The solvent accessibility of the residues from
peptides P4 and P8, measured in water exposed surface in Å2.

P4 P8

Residue
Amino
Acid

Solvent
Accessibility Residue

Amino
Acid

Solvent
Accessibility

254 L 67 294 N 66

255 A 32 295 S 57

256 R 129 296 A 15

257 L 9 297 S 47

258 T 67 298 G 56

259 E 111 299 D 95

260 E 54 300 A 18

261 L 7 301 W 4

262 K 122 302 I 39

263 T 64 303 D 0

264 I 0 304 D 47

265 K 82 305 Y 3

266 S 64 306 R 107

267 V 31 307 S 24

268 L 0 308 V 2

269 S 37 309 N 70

270 T 67 310 A 2

271 W 9 311 K 111

272 S 40 312 V 8

273 K 157 313 M 56

doi:10.1371/journal.pone.0042153.t001

Table 2. The solvent accessibility of the residues from
peptides P3 and P7, measured in water exposed surface in Å2.

P3 P7

Residue
Amino
Acid

Solvent
Accessibility Residue

Amino
Acid

Solvent
Accessibility

244 R 91 284 P 18

245 A 71 285 T 29

246 N 111 286 A 64

247 D 140 287 G 13

248 K 177 288 L 0

249 G 13 289 V 9

250 S 91 290 G 1

251 V 86 291 L 18

252 I 87 292 L 14

253 S 48 293 S 19

254 L 67 294 N 66

255 A 32 295 S 57

256 R 129 296 A 15

257 L 9 297 S 47

258 T 67 298 G 56

259 E 111 299 D 95

260 E 54 300 A 18

261 L 7 301 W 4

262 K 122 302 I 39

263 T 64 303 D 0

doi:10.1371/journal.pone.0042153.t002
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Expression of gp82 or Tc85-11 on the parasite surface is

presumably an important requirement for gastric mucin translo-

cation. Epimastigotes that lack either of these molecules displayed

very reduced ability to migrate through a gastric mucin layer,

about 25 fold lower than MT. The difference between MT and

TCT in traversing the gastric mucin layer did not seem to be

sufficient to explain the low efficiency of blood trypomastigotes in

infecting by the oral route. The possibility that blood trypomas-

tigotes were more susceptible to pepsin digestion at acidic pH was

tested using TCT. Lysis of TCT by pepsin at acidic pH was higher

than 90% whereas MT preserved their morphology and motility,

in the same manner as MT recovered from the mouse stomach

1 hour after oral infection [21]. If the blood trypomastigotes

resisted peptic digestion, it is possible that they would be able to

overcome the gastric mucin barrier.

Metacyclic forms interact with host cells and host components

at the portal of entry, in the skin, the ocular mucosa or the

stomach, whereas blood trypomastigotes have to overcome many

barriers such as extracellular matrices and basal laminae to reach

the target cells. In this context, the interaction of parasites with

these components is critical for the dissemination within the host,

and such a requirement is possibly fulfilled by the expression of

Tc85-11, with its laminin-binding property [24], and/or by an

85 kDa protein that interacts with cells bearing fibronectin

molecules [42]. It is of interest that the Tc85-11 sequences mapped

as laminin-binding sites were nested in the cell adhesion domain

[34]. Away from the laminin-binding sites of Tc85-11, in the C-

terminal portion, lied the conserved VTV motif, whose function is

not known. By using a synthetic peptide based in VTV motif, it was

shown that it binds to cytokeratin 18 [43]. But this finding probably

does not bear any association with the recognition of Tc85-11 by

cytokeratin 18 and TCT entry into host cells. Transient silencing of

cyotkeratin 18 gene in RNAi-treated HeLa cells did not affect

binding and invasion of TCT [44]. Furthermore, a recombinant

protein based on amastigote surface protein-2 containing the VTV

motif failed to bind cytokeratin 18 [44]. In gp82, the VTV motif

localized very close to the hydrophobic sequence that putatively is

replaced by GPI, at the C-terminal end. This localization, and the

fact that VTV motif is mostly unexposed, makes its interaction with

host cell or with host factors unlikely.

In summary, metacyclic forms and blood trypomastigotes appear to

use very closely related surface molecules to interact with distinct host

components that they would find in natural infection, in order to reach

the target cells and to ascertain their survival within the host.

Figure 5. Surface representation of gp82 showing the gastric mucin-binding site. A) P7, the gastric mucin-binding site is highlighted in
orange. B) Shown is the site P7 (orange) overlapped (yellow) with the cell binding site P8 (blue). C) The relative localization of P7 (orange) and the cell
binding site P4 (magenta).
doi:10.1371/journal.pone.0042153.g005

Structure and Role of a T. cruzi Surface Molecule

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e42153



Supporting Information

Figure S1 The a-carbon Root Mean Square Deviation
from the gp82 model plotted as a function of simulation
time. A small oscillation was observed during the first 15 ns and

after that the model became stable.

(TIF)

Figure S2 Reaction of T. cruzi metacyclic trypomasti-
gotes with mAb 3F6. Live parasites were incubated with mAb

3F6 and processed for visualization at fluorescence microscope.

(TIF)

Figure S3 The MT gp82 VTV motif. A) VTV motifs of gp82

and Tc85-11 are aligned. B) Surface representation of gp82 VTV

motif.

(TIF)
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