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Abstract

Outcome prediction following severe traumatic brain injury (sTBI) is a widely investigated field of research. A
major breakthrough is represented by the IMPACT prognostic calculator based on admission data of more than
8500 patients. A growing body of scientific evidence has shown that clinically meaningful biomarkers, including
glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), and aII-spectrin breakdown
product (SBDP145), could also contribute to outcome prediction. The present study was initiated to assess
whether the addition of biomarkers to the IMPACT prognostic calculator could improve its predictive power.
Forty-five sTBI patients (GCS score £ 8) from four different sites were investigated. We utilized the core model of
the IMPACT calculator (age, GCS motor score, and reaction of pupils), and measured the level of GFAP, UCH-
L1, and SBDP145 in serum and cerebrospinal fluid (CSF). The forecast and actual 6-month outcomes were
compared by logistic regression analysis. The results of the core model itself, as well as serum values of GFAP
and CSF levels of SBDP145, showed a significant correlation with the 6-month mortality using a univariate
analysis. In the core model, the Nagelkerke R2 value was 0.214. With multivariate analysis we were able to
increase this predictive power with one additional biomarker (GFAP in CSF) to R2 = 0.476, while the application
of three biomarker levels (GFAP in CSF, GFAP in serum, and SBDP145 in CSF) increased the Nagelkerke R2 to
0.700. Our preliminary results underline the importance of biomarkers in outcome prediction, and encourage
further investigation to expand the predictive power of contemporary outcome calculators and prognostic
models in TBI.
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Introduction

According to the World Health Organization

(WHO) in high-income countries traumatic brain injury
(TBI) is the leading cause of death under the age of 40, and
approximately 10 million head-injured persons are hospi-
talized annually worldwide. Based on the prognosis of the
WHO, in two decades, head injury will be the third most
frequent cause of death in the world (Murray and Lopez,
1997).

Based on a nationwide survey initiated by the Centers for
Disease Control and Prevention (CDC) in the United States in
2006, at least 1.4 million people sustained TBI. Of them, ap-
proximately 50,000 died, 235,000 were hospitalized, and 1.1
million were treated and released from an emergency de-
partment (ED; Langlois et al., 2006).

The socioeconomic consequences of TBI have ignited
widespread research aimed at decreasing the burden of the
disease. A major field to be explored is the establishment and
construction of reliable prognostic tools that will facilitate
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more efficient design of clinical trials and improve individu-
alized patient management (Menon and Zahed, 2009).

To date, there are three different approaches to outcome
prediction following severe TBI (sTBI). The first is based on
admission characteristics such as age, the reaction of pupils,
Glasgow Coma Scale (GCS) score, GCS motor score, body
temperature, blood glucose level, and significant non-cranial
injuries, in addition to other factors (Hukkelhoven et al.,
2005; Mushkudiani et al., 2008). The second approach is
based on the pathological findings seen on the first available
CT scan, and is represented by the Marshall CT classification
(Marshall et al., 1992), and the primarily prognostically-
oriented Rotterdam score (Maas et al., 2005). The third
utilizes blood and/or cerebrospinal fluid (CSF) levels of
biomarkers of brain injury (Kovesdi et al., 2010; Svetlov et al.,
2009). The methods used in the first two approaches have
recently been synthesized during detailed analysis of data
derived from the IMPACT (Steyerberg et al., 2008) and
the CRASH (Perel et al., 2008) trials, and led to the devel-
opment of prognostic calculators that are available for online
analysis.

The International Mission for Prognosis and Clinical Trial
(IMPACT) database was developed by Andrew I.R. Maas
and his colleges in 2003. They collected and analyzed the
data for 9205 patients from eight randomized controlled
trials and three epidemiological studies (Marmarou et al.,
2007). In 2008, after detailed statistical analysis of the ad-
mission data of 8509 patients with logistic regression, and
after an internal and external validation process (using data
from 6681 patients with a GCS score £ 12 from the MRC
CRASH trial), they created a prognostic calculator that is
available online (Steyerberg et al., 2008). These workers de-
cided to consider the 6-month outcome as the prognostic
end-point based on the Glasgow Outcome Scale (GOS;
Murray and Lopez, 1997), applying two different forms of
dichotomy: mortality (GOS 1) versus survival (GOS 2–5),
and unfavorable (GOS 1–3) versus favorable (GOS 4–5)
outcomes. Twenty-six parameters have been assessed that
are available at or soon after admission, and may have pre-
dictive value. With the utilization of logistic regression, the
10 strongest predictive parameters were identified, leading
to the definition of three prognostic models that are super-
imposed on each other. Constituents of the core model are
the age, motor score component of the GCS, and reaction of
the pupils. The extended model utilizes hypoxia, hypoten-
sion, CT characteristics (Marshall CT classification), and
the presence of epidural hematoma (EDH) or traumatic
subarachnoid hemorrhage (tSAH) on the first CT scan,
which are added to the parameters of the core model. The
third, a laboratory model, includes all parameters of the
extended model plus blood glucose and hemoglobin levels.
The core model alone has been associated with considerable
predictive value, as defined by an area under the receiver-
operating characteristic (ROC) curve values between 0.66
and 0.84 during the internal and external validation pro-
cesses. The IMPACT group attained slightly better values
with the extended and lab models (Steyerberg et al., 2008).

Ideally a biomarker should be an easily and reliably
measurable molecule with serum levels that display a close
correlation with a biological or pathogenic process and/or a
pharmacological intervention. Currently, biomarkers that
can be used to predict clinical outcome are considered sur-

rogate biomarkers or surrogate end-points (Biomarkers De-
finitions Working Group, 2001). During the last few decades
a rapidly growing number of molecules have been tested as
potential biomarkers of TBI. However, so far no single
molecule has proven specific and sensitive enough to be
employed as a comprehensive clinical diagnostic tool to
predict the extent of neural tissue damage, or to aid in
monitoring care and forecasting outcome. Nevertheless,
there are a handful of molecules that are potential candidates
for a complex biomarker panel, including neuron-specific
enolase (NSE), glial fibrillary acid protein (GFAP), S-100b
protein, myelin basic protein, cleaved tau protein, spectrin
breakdown products (SBDPs), and ubiquitin C-terminal
hydrolase-L1 (UCH-L1; Hergenroeder et al., 2008; Papa
et al., 2010; Svetlov et al., 2009).

In this study we investigated the serum and CSF levels of
GFAP and UCH-L1, as well as CSF levels of a 145-kDa SBDP
(SBDP145).

GFAP is an intermediate filament monomer found only in
the cytoskeleton of astroglial cells, and thus is specific for the
central nervous system. After damage to the astroglia, GFAP
is released into the peripheral blood circulation in neurode-
generative disorders (Middeldorp and Hol, 2011), and after
stroke (Herrmann et al., 2000) and TBI (Lumpkins et al., 2008;
Vos et al., 2010). In a recent study, serum GFAP levels dis-
played greater sensitivity and specificity after TBI than serum
S-100b or NSE (Honda et al., 2010). It was also proven that
serum GFAP levels possess significant predictive power of
mortality and outcome (Pelinka et al., 2004).

The ubiquitin C-terminal hydrolases (UCH-L1, UCH-L3,
UCH37, and BAP1) form a subfamily among the deubiquiti-
nating enzymes that are capable of removing ubiquitin from
their protein substrates. Among them UCH-L1, also known as
neuronal specific gene product 9.5 (PGP9.5), is the most
strongly associated with the central nervous system, where it
is predominantly detectable in neuronal cell bodies. A role of
mutations and polymorphisms of UCH-L1 was found in
Parkinson’s disease (Schulz 2008), and other neurodegenera-
tive disorders (Gong and Leznik, 2007). Recent studies have
demonstrated significant increases in CSF and serum levels of
UCH-L1 after controlled cortical impact TBI in rats (Liu et al.,
2010), and have associated CSF levels of UCH-L1 with injury
severity (Papa et al., 2010), as well as CSF and serum levels of
UCH-L1 with outcome and 3-month mortality (Brophy et al.,
2011).

Non-erythroid aII-spectrin is a well known component of
the cytoskeleton of all non-erythroid tissues. Neurons contain
the highest concentrations in the subaxolemmal compartment
and presynaptic terminals. After TBI, SBDPs are cleaved from
the intact brain spectrin. The 145-kDa fragment is specific for
calpain, while the 120-kDa SBDP is associated with caspase-3-
mediated cleavage. The former is mainly associated with ne-
crotic and the latter with apoptotic processes. To date our
findings are primarily based on the analysis of CSF levels of
SBDPs. Nevertheless the results indicate that both calpain and
caspase-derived spectrin fragments may serve as potential
biomarkers of TBI (Brophy et al., 2009; Farkas et al., 2005;
Mondello et al., 2010; Pineda et al., 2007).

In light of these findings, the aim of our study was to ex-
amine whether biomarkers of TBI can improve outcome
prediction when combined with the IMPACT core prediction
model.
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Methods

Patient enrollment, sample, and clinical data collection

This study is part of the Biomarker Assessment For Neu-
rotrauma Diagnosis and Improved Triage System (BANDITS)
Study, which is a project involving the clinical, biochemical,
and neuroimaging evaluation of patients with TBI. In this
study, we focused on a cohort of 45 patients with severe TBI
for whom biomarkers of brain damage in the CSF and serum
were available. Severe TBI patients from four different centers
(University of Pecs, Hungary: 21 patients; University of
Szeged, Hungary: 12 patients; University of Maryland, U.S.: 6
patients; and University of Florida, U.S.: 6 patients) were se-
lected for the study.

The main inclusion criterion was GCS score £ 8 years on
admission caused by sTBI less than 24 h before enrollment.
Exclusion criteria were age < 18 years, known autoimmune
disease, and pregnancy. Because of the comatose state of these
patients, informed consent was obtained from their legally-
authorized representative (LAR). Lack of informed consent by
the LAR was an exclusion criterion.

Initial serum and CSF sample collection was carried out on
enrollment, and every 6 h up to 24 h post-injury. All blood and
CSF samples were centrifuged (4000 rpm for 8 min), stored at
- 80�C, and shipped in dry ice to Banyan Biomarkers Inc.
(Alachua, FL), where the biomarker levels were measured.

Outcome was measured by GOS scores recorded 1, 2, 3, and
4 weeks, and 3 and 6 months post-injury. GOS scores were
dichotomized two ways: lethal outcome (GOS 1) versus sur-
vival (GOS 2–5), and unfavorable (GOS 1–3) versus favorable
(GOS 4–5) outcomes.

All procedures were carried out with the permission and
under the rigorous control of the local institutional review
boards of each site, the Western Institutional Review Board,
and the Human Research Protection Office.

Measurement of biomarker levels in the serum
and CSF samples

Measurement of GFAP and UCH-L1 levels in serum and
CSF samples and SBDP145 levels in CSF were carried out
using sandwich ELISA protocols, which were previously de-
scribed in detail by members of our research team (Mondello
et al., 2010,2011).

For GFAP and UCH-L1, reaction wells were coated with
capture antibody (500 ng/well of purified anti-rabbit UCH-L1,
made in-house) in 0.1 M sodium bicarbonate (pH 9), and were
incubated overnight at 4�C. Then they were emptied out and
300 lL/well of blocking buffer (Startingblock T20-TBS; Thermo
Fisher Scientific, Rockford, IL) was added and incubated for
30 min at room temperature, followed by the addition of anti-
gen standard (UCH-L1 standard curve: 0.05–50 ng/well), un-
known samples (3–10 lL CSF), or assay internal control
samples. The plates were incubated for 2 h at room tempera-
ture, then washed using an automatic plate washer (each well
was rinsed with 5 · 300 lL with wash buffer [TBST]). Detection
antibody (50 lg/mL of anti-rabbit UCH-L1-HRP conjugate,
made in-house) in blocking buffer was next placed in the wells
(100lL/well), and the plates were incubated for 1.5 h at room
temperature. More automatic washing was followed by 15 min
of incubation in biotinyl-tyramide solution (Elast Amplification
Kit; PerkinElmer, Waltham, MA) at room temperature, fol-

lowed by automatic washing. The addition of streptavidin-
HRP (1:500; 100 lL/well) in PBS with 0.02% Tween-20 and 1%
BSA with 30 min incubation at room temperature was followed
by automatic washing. Then the wells were developed with
substrate solution: ultra-TMB ELISA 100 lL/well (Pierce no.
34028; Pierce Protein Research Products, Rockford, IL), incu-
bated for 5–30 min, and read at 652 nm with a 96-well spectro-
photometer (Spectramax 190; Molecular Devices, Sunnyvale,
CA). GFAP protein was analyzed using a commercially avail-
able (catalog no. rd192072200; BioVendor, Candler, NC) poly-
clonal two-sided immunoluminometric assay according to the
manufacturer’s instructions. A standard curve was constructed
by plotting absorbance values versus GFAP concentrations of
calibrators.

To detect SBDP145 another sandwich ELISA was used. First,
96-well plates were coated with 100 lL/well of capture anti-
body (1000 ng/well of affinity-purified rabbit polyclonal anti-
SBDP145 fragment-specific antibody) overnight at 4�C. The
blocking buffer (Fisher 37539 Startingblock T20-PBS; Thermo
Fisher Scientific), was followed by an antigen standard (re-
combinant GST-fusion-aII-spectrin, repeats 13–18[ + 145])
cleaved with calpain (1:50 ratio for 10 min at 4�C, or with
caspase-3 for 4 h at room temperature) to establish a standard
curve. Stock solution of 0.5–5000 ng/mL of prepared SBDP145
protein (0.005–50 ng in 10 mL) were diluted 1:10 with sample
diluent to a final incubation volume of 100 lL/well. Thus the
standard curve range was 0.05–500 ng/ml in the wells. Each
sample was evaluated in duplicate. The target (10 lL CSF/well
and 90 lL PBST blocking buffer) and capture antibody were
incubated for 2 h at 27�C with gentle shaking. The plate was
washed with TBST washing buffer 5 · with an automatic plate
washer. Then a 1:3000–1:4000 dilution of HRP-labeled detec-
tion antibody (alpha fodrin; Biomol International, Plymouth
Meeting, PA) was added to each well (100 lL/well), and was
incubated at room temperature for 1.5 h with gentle shaking. If
amplification was needed, biotinyl-tyramide solution (Elast
Amplification Kit; PerkinElmer) was added for 15 min at room
temperature, then washed and followed by 100 lL/well
streptavidin-HRP (1:3000) in PBS with 0.02% Tween-20 and 1%
BSA for 30 min, followed by 5 · washing in the automatic plate
washer. As a final step, the wells were developed with 100 lL/
well of chemiluminescent substrate solution (SuperSignal
ELISA Femto #37075; Thermo Fisher Scientific) and incubated
for 1 min. The signal was read by a 96-well chemiluminescence
microplate reader (GloRunner DXL Luminometer; Turner
BioSystems, Inc., Sunnyvale, CA).

GFAP and UCH-L1 levels were measured in each CSF and
serum sample, and SBDP145 in each CSF sample up to 24 h
post-injury for the statistical analysis, and we defined the
following parameters: GFAP level in the first serum sample
(GFAP_1S), GFAP level in the first CSF sample (GFAP_1C),
UCH-L1 level in the first serum sample (UCH-L1_1S), UCH-
L1 level in the first CSF sample (UCH-L1_1C), SBDP145 level
in the first CSF sample (SBDP145_1C), the average of the
GFAP levels of all the serum samples taken in the first 24 h
(GFAP_24S), the average of all of the GFAP levels of the CSF
samples taken in the first 24 h (GFAP_24C), the average of all
of the UCH-L1 levels in the serum samples taken in the first
24 h (UCH-L1_24S), the average of all of the UCH-L1 levels in
the CSF samples taken in the first 24 h (UCH-L1_24C), and the
average of the SBDP145 levels in all of the CSF samples taken
in the first 24 h (SBDP145_24C).

1772 CZEITER ET AL.



Statistical analysis

Receiver-operating characteristic (ROC) curves have been
constructed for the biomarkers to describe their values in pre-
dicting 6-month lethal and unfavorable outcomes. The area
under the curve (AUC) has been computed for each, and its
difference from the non-discriminative 0.5 value has been tes-
ted. The optimal thresholds that maximize the predictive abil-
ities of the biomarkers have been determined. The sensitivity
and specificity for these cut-points have been calculated as well.

The probability of a 6-month lethal outcome has been cal-
culated by the core model of the IMPACT calculator utilizing
clinical data of the enrolled patients.

The relationship between observed and biomarker-based
predicted outcomes have been analyzed by univariate logistic
regression. The strength of the association between observed
and IMPACT core model-based predicted outcomes have
been tested by logistic regression analysis as well.

The potential additive value of biomarker data to the pre-
dictive power has been investigated by quantifying the in-
crease in predictive power in logistic regression models by
inserting one or more biomarkers into the basic logistic re-
gression model, and assessing the actual outcome and the
outcome predicted by the IMPACT core model. The predic-
tive power was described by Nagelkerke R2 values.

Statistical test results are considered significant at p < 0.05.
All statistical procedures were carried out using SPSS 19.0 for
Windows software.

Results

Descriptive statistics

The mean age of the patients was 49.78 – 19.99 years,
ranging between 19 and 88 years (median 53 years, inter-
quartile range 30–63 years). Our statistical analysis showed
that the demographic characteristics and the etiology of the
injuries in our patients were consistent with the findings of
recent epidemiological studies conducted in high-income
countries (Langlois et al., 2006; Tagliaferri et al., 2006). Table 1
shows demographic characteristics, relevant admission pa-
rameters, and 6-month outcomes of our patient sample.

Of the 45 patients 18 died within the first week, re-
presenting 40% mortality, and this increased to 68.9% by the
6-month end-point (in all, 31 patients died). We had unfa-
vorable outcomes in 35 patients (77.8%) at the end of the first
week, and 34 patients (75.6%) at the end of the 6-month pe-
riod, which represents a dramatic decrease in the number of
patients in a vegetative state or with severe disability during
the first 6 months post-injury.

A detailed summary of the results of the descriptive sta-
tistical analysis of the measured biomarker levels is provided
in Table 2. It is of note that despite the relatively small number
of patients enrolled in this study, the standard deviations are
small, while the amount of missing data is minimal, and was
caused by unmeasurable samples, but this did not hinder the
statistical analysis.

Results of ROC analysis

AUCs from ROC curves of lethal outcome proved to be
significant for GFAP_1S, UCH-L1_1S, GFAP_24S, UCH-
L1_24S, and SBDP145_1C for at least one investigated time
point (Table 3). In case of the 6-month outcome, which was the

most important aspect of our comparative analysis, we ob-
served four significant AUCs: GFAP_1S: 0.845 ( p = 0.005),
GFAP_24S: 0.851 ( p = 0.004), UCH-L1_24S: 0.768 ( p = 0.028),
and SBDP145_1C: 0.744 ( p = 0.045).

When considering unfavorable outcome as the end-point
we found significant AUCs for GFAP_1S, UCH-L1_1S,
GFAP_24S, UCH-L1_24S, and UCH-L1_24C (Table 3). We
observed significant AUCs for only two biomarkers with re-
gard to 6-month unfavorable outcome: GFAP_1S: 0.867
( p = 0.011) and GFAP_24S: 0.883 ( p = 0.008).

Optimal threshold levels were calculated for each bio-
marker that showed significant AUC. Table 4 shows the
threshold levels of the biomarkers related to the 6-month
outcome and their related specificity and sensitivity.

Univariate logistic regression

The predictive value for 6-month lethal and unfavorable
outcomes of those biomarkers with significant AUCs were
tested using univariate logistic regression. For the prediction
of 6-month lethality two biomarkers (OR = 12.800, p = 0.021 for
GFAP_24S; OR = 4.444, p = 0.042 for SBDP145_1C) showed
significant predictive power. GFAP_1S was not significant
(OR = 3.571, p = 0.092), and in the case of UCH-L1_24S, the OR

Table 1. Summary of Demographic Characteristics,

Admission Parameters, and 6-Month

Outcomes of the Subjects

Severe TBI
(n = 45)

Age, years 49.78 – 19.99
Range, years 19–88

Gender, n (%) Female 12 (26.67)
Male 33 (73.33)

Race, n (%) Caucasian 44 (97.78)
African-American 1 (2.22)

Injury mechanism,
n (%)

Motor vehicle accident 14 (31.11)
Motorcycle accident 1 (2.22)
Gunshot wound 2 (4.44)
Fall 22 (48.89)
Assault 1 (2.22)
Other 5 (11.11)

GCS score, median
(range)

5 (3–8)

GCS motor score,
median (range)

3 (1–6)

Reaction of pupils,
n (%)

Both 17 (37.78)
One 3 (6.67)
None 23 (51.11)
NA 2 (4.44)

Marshall CT score,
n (%)

Diffuse injury I 1 (2.86)
Diffuse injury II 8 (22.86)
Diffuse injury III 4 (11.43)
Diffuse injury IV 4 (11.43)
Evacuated focal

mass lesion V
4 (11.43)

Focal mass lesion VI 14 (40)
NA 10

6-Month survival,
n (%)

Deceased 31 (68.89)
Alive 14 (31.11)

NA, not applicable; GCS, Glasgow Coma Scale; CT, computed
tomography.
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was not calculable. However, GFAP_24S proved to be the
only biomarker with a significant relationship with 6-month
unfavorable outcome. The association between the 6-month
outcomes calculated using the IMPACT core model alone and
the observed outcomes were significant for mortality, and
nearly significant for unfavorable outcome (OR = 2.303,
p = 0.015 for lethality, and OR = 1.895, p = 0.062 for unfavorable
outcome; Table 4).

Combined predictive models

Upon univariate analysis the core model of the prognostic
calculator reached an R2 value of 0.214 for predicting 6-month
mortality (Table 4). In an attempt to increase the predictive
power in terms of R2 values, multivariate logistic regression
models were utilized with the addition of one or more
biomarker (Fig. 1A and B). Although some of the investi-
gated biomarkers (GFAP_24S, GFAP_24C, SBDP145_24C,
GFAP_1C, and SBDP145_1C) were able to increase the
predictive power in bivariate models, GFAP_1C was found
to be the most effective, increasing R2 from 0.214 to 0.476.
Upon multivariate analysis, the IMPACT core model +

GFAP_1C + GFAP_1S + SBDP145_1C performed the best,
with an R2 level of 0.70.

In the case of unfavorable outcome, we only observed a
slight increase in R2 values with the application of GFAP_24S
in a bivariate model, increasing the level from 0.138 to 0.233.

Discussion

Our results corroborate previous findings on the predictive
power of the IMPACT calculator, defining it as a useful clin-
ical tool in the prediction of outcomes in the head injured.
Specifically, we have demonstrated that the assumptions
made by the core model of the IMPACT calculator were sig-
nificantly associated with 6-month mortality, and were clo-
sely related to unfavorable outcome. Similarly, our findings
reinforce recent observations regarding the predictive power
of our three biomarker candidates (GFAP, UCH-L1,
SBDP145), demonstrating that their levels and the outcomes
of patients with sTBI are statistically linked.

The most important and novel finding of our work high-
lights that in a multivariate logistic regression analysis, the
addition of biomarker levels can improve the predictive

Table 2. Serum (S) and Cerebrospinal Fluid (C) Biomarker Levels in Patients

with Severe Traumatic Brain Injury

Biomarker n (valid) n (missing) Mean Median SD Minimum Maximum

GFAP_24S 44 1 2.823 0.203 6.760 0.002 29.028
UCH-L1_24S 40 5 1.698 0.653 2.623 0.025 11.370
GFAP_1S 42 3 3.456 0.291 8.428 0.009 40.865
UCH-L1_1S 41 4 2.551 0.765 4.488 0.026 19.773
GFAP_24C 36 9 4.641 0.646 9.978 0.015 49.614
UCH-L1_24C 41 4 137.051 78.188 143.654 7.900 611.411
GFAP_1C 34 11 4.114 0.807 8.403 0.036 38.069
UCH-L1_1C 41 4 151.133 80.940 153.953 7.900 597.932
SBDP145_24C 41 4 58.319 31.858 82.515 4.867 471.120
SBDP145_1C 41 4 45.829 29.915 57.345 5.501 298.570

All biomarker levels are expressed in ng/mL.
GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-terminal hydrolase-L1; SBDP145, 145-kDa aII-spectrin breakdown product; 1S,

first measured level in serum; 1C, first measured level in cerebrospinal fluid; 24S, average of all measured serum levels within 24 h post-
injury; 24C, average of all measured cerebrospinal fluid levels within 24 h post-injury; n (valid), number of cases with measurable biomarker
levels; n (missing), number of cases with unmeasurable biomarker levels; SD, standard deviation.

Table 3. Area Under the Curve (AUC) from Receiver-Operating Characteristic Curve Analysis

of the Predictive Potential of Biomarkers for 6-Month Unfavorable Outcome

AUC mortality (p value) AUC unfavorable outcome (p value)

Biomarker 1 week 4 weeks 6 months 1 week 4 weeks 6 months

GFAP_1C 0.697 (0.072) 0.662 (0.150) 0.667 (0.172) 0.558 (0.667) 0.633 (0.356) 0.608 (0.453)
GFAP_1S 0.889 ( < 0.001) 0.833 (0.003) 0.845 (0.005) 0.826 (0.015) 0.850 (0.015) 0.867 (0.011)
GFAP_24C 0.707 (0.059) 0.672 (0.126) 0.661 (0.188) 0.601 (0.451) 0.667 (0.248) 0.642 (0.326)
GFAP_24S 0.861 (0.001) 0.838 (0.003) 0.851 (0.004) 0.848 (0.010) 0.875 (0.009) 0.883 (0.008)
UCH-L1_1C 0.683 (0.096) 0.535 (0.753) 0.542 (0.733) 0.725 (0.095) 0.708 (0.149) 0.675 (0.225)
UCH-L1_1S 0.841 (0.002) 0.788 (0.010) 0.720 (0.071) 0.790 (0.031) 0.858 (0.013) 0.725 (0.119)
UCH-L1_24C 0.697 (0.072) 0.576 (0.500) 0.560 (0.626) 0.768 (0.046) 0.783 (0.050) 0.708 (0.149)
UCH-L1_24S 0.880 (0.001) 0.833 (0.003) 0.768 (0.028) 0.833 (0.013) 0.892 (0.007) 0.767 (0.065)
SBDP145_1C 0.615 (0.293) 0.631 (0.243) 0.744 (0.045) 0.667 (0.216) 0.575 (0.603) 0.717 (0.133)
SBDP145_24C 0.625 (0.254) 0.626 (0.261) 0.702 (0.097) 0.710 (0.118) 0.742 (0.094) 0.725 (0.119)

GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-terminal hydrolase-L1; SBDP145, 145-kDa aII-spectrin breakdown product; 1S,
first measured level in serum; 1C, first measured level in cerebrospinal fluid; 24S, average of all measured serum levels within 24 h post-
injury; 24C, average of all measured cerebrospinal fluid levels within 24 h post-injury.
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power of the IMPACT calculator. To the best of our knowl-
edge this is the first report demonstrating the feasibility and
sensitivity of this combined approach to outcome prediction
to aid in the care of those with TBI.

Our observations provide further evidence about the sig-
nificant independent predictive power of the biomarkers we
have been analyzing in recent collaborative efforts (Brophy
et al., 2011; Mondello et al., 2011). Intriguingly, when
threshold values of these biomarkers are compared with the
minimum and mean values of the biomarkers summarized in
Table 2, it is impressive that they are able to provide accurate
outcome prediction at low levels. It is of note that two of the
biomarkers (GFAP and UCH-L1) that we have statistically
linked both via AUC and logistic regression analysis to the
outcomes in severe TBI were measured in serum samples,
indicating that these two proteins may be clinically useful
surrogate markers of brain injury of traumatic origin (Mon-
dello et al., 2010; Papa et al., 2010; Svetlov et al., 2009). As
current practice guidelines and protocols in severe TBI favor
CSF sampling via ventricular catheters (Bratton et al., 2007),
similar clinical importance could be attributed to the finding
that levels of SBDP145 in the first available CSF sample had
significant predictive power of 6-month mortality in both
statistical models.

Outcome prediction is crucial to effective patient care in
TBI. The information provided to the relatives should be
based on solid clinical as well as scientific evidence. This will
not only help them prepare for the future, but also facilitates
understanding of the indications for the risky and potentially
painful interventions required in these patients. Predictive
systems may also aid with quality assurance, providing a
useful means of assessing patient care, which can facilitate
comparisons of the care provided by different institutions, or
of differing departments in a single institution.

Prognostic calculators can also play a major role in the
design of clinical trials, and will aid in the construction of
successful clinical studies to identify novel treatment strate-
gies to improve the care of TBI patients. As ongoing clinical
trials and translational research may lead to the construction
of rapid, point-of-care biomarker assays, prognostic models
including biomarker panels may serve as a future enrollment
tool. This is particularly important, as many recent studies

have highlighted our failure to identify novel therapeutic
agents due to a lack of pathophysiologically accurate and
reliable assessment tools (Perel et al., 2008; Steyerberg et al.,
2008). Indeed, our most important enrollment tool, the GCS
motor score, does not provide any information on the
pathobiology or the morphological alterations in the injured
brain, and thus many different conditions may have the same
GCS motor score (Saatman et al., 2008). Further, state-of-the-
art treatment protocols include early sedation and the use of
muscle-relaxants in the prehospital setting, which makes re-
liable post-resuscitation GCS scores difficult to obtain. Effec-
tive prognostic calculators could also identify patients whose
inclusion in clinical trials would be of little benefit, as they
would likely end up at the two extremes of the outcome scale
regardless of treatment (Menon and Zahed 2009).

A set of recent articles underscore that automated outcome
calculation is feasible and should be a useful tool in clinical
practice (Lingsma et al., 2010; Maas et al., 2010). There are two
online outcome calculators available, and both of them are
based on admission characteristics and they have been cross-
validated. One is derived from the IMPACT database (Mar-
marou et al., 2007), and contains three models: the core model
(age, GCS motor score, and reaction of pupils), the extended
model (core + hypoxia, hypotension, CT characteristics [Mar-
shall CT classification], tSAH, and EDH), and the lab model
(extended + glucose and hemoglobin levels), superimposed
upon each other (Steyerberg et al., 2008). The other, which is
based on the MRC CRASH trial, involves country, age, GCS
score, the reaction of pupils, the presence of major extra-
cranial injuries, and some CT characteristics depending on the
availability of a CT scan (Perel et al., 2008). The collection of
clinical data in the centers participating in this work was not
designed to allow assessment of outcome calculators, and
thus we only were able to utilize the core model of the IM-
PACT calculator. Nevertheless, our results are in accord with
previous evidence indicating that outcome prediction is fea-
sible and reliable with the IMPACT calculator, and that bio-
markers may make this tool even more accurate.

The future role biomarkers may play in the care of TBI
patients has been detailed in various recent articles (Dash
et al., 2010; Hergenroeder et al., 2008). Although S-100b, NSE,
and other candidate biomarkers have failed to lead to a

Table 4. Threshold Levels for Biomarkers with Significant Area Under the Curve and the Relationship

of the Core Model of the IMPACT Calculator and Biomarker-Based Outcomes to the Observed

6-Month Mortality and Unfavorable Outcomes as Assessed by Univariate Logistic Regression Analysis

Biomarker Threshold Sensitivity Specificity OR (95% CI) p R2

6-Month mortality
GFAP_1S 0.546 0.619 0.875 3.571 (0.812–15.714) 0.092 0.102
GFAP_24S 0.529 0.667 1.000 12.800* (1.479–110.789) 0.021 0.255
UCH-L1_24S 1.279 0.619 0.875 nc nc Nc
SBDP145_1C 20.905 0.571 0.750 4.444* (1.058–18.667) 0.042 0.146
Core model 2.303* (1.178–4.506) 0.015 0.214

6-Month unfavorable outcome
GFAP_1S 0.220 0.583 1.000 2.111 (0.433–10.284) 0.355 0.033
GFAP_24S 0.195 0.583 1.000 11.000* (1.219–99.258) 0.033 0.233
Core model 1.895 (0.969–3.706) 0.062 0.138

OR, odds ratio (significant ORs indicated by asterisks); CI, confidence interval; nc, not calculable; GFAP: glial fibrillary acidic protein;
UCH-L1, ubiquitin C-terminal hydrolase-L1; SBDP145, 145-kDa aII-spectrin breakdown product; 1S, first measured level in serum; 1C, first
measured level in cerebrospinal fluid; 24S, average of all measured serum levels within 24 h post-injury.
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breakthrough in this field (Pelinka et al., 2005; Piazza et al.,
2007; Svetlov et al., 2009), we believe that our most recent
investigations have identified a new set of biomarkers that can
be linked to pathobiological processes (calpain- and caspase-
mediated spectrin breakdown) and/or brain constituents
(UCHL-1 and GFAP), that are indicative of traumatically-
evoked brain damage (Brophy et al., 2011; Mondello et al.,
2010,2011). The results detailed here of how these biomarkers
aided in outcome prediction should spur further research to
explore the potential of these substances.

Although our results clearly indicate the important role
biomarkers may play in models and calculators used to es-

tablish the prognosis of TBI patients, we must proceed with
caution in the interpretation of our data. The first limiting factor
is the relatively low number of patients enrolled, which forced
us to make compromises during our statistical analysis. To this
end we had to dichotomize the biomarker values with the
application of post-hoc-determined threshold values instead of
utilizing them as a continuous variable, an approach that pre-
cludes any reliable internal validation. The relatively low pro-
portion of patients with favorable 6-month outcomes may also
exaggerate the predictive power of the models applied.

Second, while here we aimed to demonstrate the potential
prognostic power of biomarker levels in addition to the use of

FIG. 1. Predictive power of combined models for 6-month lethal outcome by multivariate logistic regression analysis. (A) Core
model + the average level of a biomarker over the first 24 h post-injury. (B) Core model + one or more first available biomarker
levels (GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-terminal hydrolase-L1; SBDP145, 145-kDa aII-spectrin
breakdown product; 1S, first measured level in serum; 1C, first measured level in cerebrospinal fluid; 24S, average of all
measured serum levels within 24 h post-injury; 24C: average of all measured cerebrospinal fluid levels within 24 h post-injury).
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admission criteria, the technology and the methodology uti-
lized here to assess biomarker levels cannot be considered an
admission parameter, which is another limitation of our re-
sults.

Third, although the high percentage of patients with less
favorable outcomes according to classical dichotomization for
those assessed at 6 months could have benefitted from utili-
zation of the sliding dichotomy model described by Murray
and associates (Murray et al., 2005), we decided to assess
outcomes on the basis of conventional dichotomization. This
approach was selected to be consistent with the analyses
provided by the other outcome calculators.

On the basis of the clinical data on hand, we decided to
analyze our data exclusively in light of the results obtainable
via the IMPACT calculator. Nevertheless, our candidate bio-
markers should soon be tested in conjunction with the
CRASH outcome calculator, to assess whether they can im-
prove the prediction of 2-week mortality as well. To this end,
on the basis of the similarity between the results and efficacy
of these two outcome calculators, we foresee that the results
achieved in this study will be reproduced in other experi-
ments.

It is also of note that biomarkers and their use with outcome
calculators may also be subject to other limitations, such as the
false-positive (non-TBI-related) detection of biomarkers as-
sociated with neurodegenerative diseases and/or stroke
(Gong and Leznik 2007; Herrmann et al., 2000; Middeldorp
and Hol, 2011), as well as the increasing complexity of these
calculators, which may be difficult to handle in the acute
clinical setting.

While the above limitations underscore the preliminary
nature of our findings, we hope that this work will highlight
the importance of combining state-of-the-art outcome pre-
diction models with biomarker analysis, and will set the stage
for the application of this approach in future large-scale
clinical trials. We believe that our results will pave the way for
tools that connect basic science and clinical research with
pathobiology-driven and clinical data-based decision making,
which will ultimately improve the care of the head-injured
patient.
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